Научная статья на тему 'Исследование полумарковского потока событий'

Исследование полумарковского потока событий Текст научной статьи по специальности «Математика»

CC BY
102
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по математике, автор научной работы — Назаров А. А., Лопухова С. В., Гарайшина И. Р.

In the submitted work, the semimarkovian process is considered. Limiting model is considered. Results of analytical treatment of limiting model are compared with results, obtained by the asymptotical method.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Назаров А. А., Лопухова С. В., Гарайшина И. Р.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Исследование полумарковского потока событий»

Вычислительные технологии

Том 13, Специальный выпуск 5, 2008

Исследование полумарковского потока событий

А. А. Назаров, С. В. Лопухова Томский государственный университет, Россия e-mail: nazarov@f pmk. tsu. ru, lopuchovasv@mail. ru

И.Р. Гарайшина

Филиал Кемеровского государственного университета в г. Анжеро-Судженске, Россия e-mail: irina_g@asf.ru

In the submitted work, the semimarkovian process is considered. Limiting model is considered. Results of analytical treatment of limiting model are compared with results, obtained by the asymptotical method.

Введение

Существует проблема расширения класса математических моделей потоков однородных событий. Зачастую классические модели случайных потоков событий не могут быть адекватны реальным информационным, телекоммуникационным потокам. Моделей пуассоповского и простейшего потоков часто бывает недостаточно для более правдоподобного, приближенного к реальности описания входящих потоков для систем массового обслуживания. Несмотря на то что существуют потоки фазового типа и модулированные пуассоновские потоки, которые более адекватны реальным ситуациям, большой интерес представляют модели полумарковского потока, частным случаем которых являются потоки марковского восстановления и все вышеперечисленные потоки. Методы исследования таких моделей достаточно сложны и приводят к значительным математическим проблемам. Поэтому наряду с задачей расширения классов потоков существует проблема развития методов их исследования.

1. Математическая модель

Случайным потоком однородных событий (потоком) будем называть упорядоченную последовательность

t\ < ¿2 < ■ ■ ■ <tm < tm+1 < . . . (1)

случайных величин tm — моментов наступления событий в потоке.

Пусть задана полумарковская матрица A(x) с элемента ми Aklk2 (x), Матрн ца P = lim A(x) является стохастической, поэтому при заданном начальном распределении

она определяет некоторую цепь Маркова k (tm) с дискретным временем, которую будем называть вложенной в полумарковский поток цепью Маркова,

© Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

84

А. А. Назаров, С. В. Лопухова, И. Р. Гарайшина

Случайный поток однородных событий будем называть полумарковским, если вероятностный закон формирования последовательности (1) определяется начальным распределением и равенствами

Ак1к2 (х) = Р {к(Ьт+1) = к2, Ьт+1 — Ьт < х ^^т) = к\ }

при всех т > 1.

Обозначим п(Ь) число событий полу марко веко го потока, наетуп ивших за время Ь па интервале [0,Ь].

Задачей исследования данной работы является установление распределения вероятностей Р(п, Ь) = Р{п(Ь) = п} при стационарном функционировании эргодичеекой цепи Маркова к (1т). Очевидно, процесс п(Ь) — немарковский, поэтому определим еще два случайных процесса: г(Ь) — длину интервала от момента времени Ь до момента наступления очередного события в рассматриваемом потоке, к(Ь) — непрерывный слева процесс с непрерывным временем, значение которого на интервале (Ьт,Ьт+1] постоянны и определяются равенствами к (Ь) = к (Ьт+1). В силу сделанных определений случайный процесс {к(Ь), п(Ь), г(Ь)} является трехмерным марковским процессом с непрерывным временем.

Заметим, что случайный процесс к(Ь) не является полумарковским в классическом определении [1], так как полумарковский процесс Б(Ь) непрерывен справа и, как указано в [1], для его переходных вероятностей не существует дифференциальных эволюционных уравнений Колмогорова, в то время как предложенный выше процесс {к(Ь), п(Ь), г(Ь)} — марковский, поэтому для его распределения вероятностей

Р (к, п, г,Ь) = Р {к(Ь) = к, п(Ь) = п, г(Ь) < г} (2)

нетрудно составить систему дифференциальных уравнений Колмогорова дР (к,п,г,Ь) дР (к,п,г,Ь) дР (к,п, 0,Ь) ^ дР (и,п - 1,0,Ь)

^ дГ (и,1Ь - 1, 0,Ь) А ( \ 2-^-

дЬ дг дг ^ дг

v=1

Обозначим

Н(к, и, г, г) = ^ е'иПР(к,п,г,Ь),

п=0

где ] = ¡~ ~~ мнимая единица. Для этих функций из системы дифференциальных уравнений Колмогорова можно записать

дН (к,и,г,Ь) дН (к,и,г,Ь) дН (к, и, 0,Ь) ,и ^ дН (и, и, 0,Ь)

+ Т Ч^)- (3)

дЬ дг дг ^ дг

v=1

Обозначим Н (и,г,Ь) = {Н (1,и,г,Ь) ,Н (2,и,г,Ь),...} строку вектор-функции, тогда систему уравнений (3) перепишем в матричном виде

дН{и,г,г) _ дН{и,г,г) дН{и,0,г) Мц,г ч п т

дг дг + дг 1 [ ) '' [ }

решение которой удовлетворяет начальному условию H(u,z, 0) = R(z), где I — единичная матрица, а стационарное распределение R(z) двумерного марковского процесса {k(t), z(t)} является решением задачи Коши

<Ш = <Ш(1-Мг)),

R(0) = 0

z

Г 1

и определяется равенством R{z) = seiт / (Р — A(x))dx, где aei = Здесь г — вектор-

0

строка стационарного распределения вероятностей значений вложенной цепи Маркова

оо

k(tm); E — единичный вектор-столбец и матрица A = (P — A(x))dx.

2. Допредельная модель

Пусть имеем дифференциальное уравнение (4), решение H (u,z,t) которого удовлетворяет начальному условию H(u, z, 0) = R(z). Тогда преобразование Фурье — Стилтьесса

ф>(u,a,t) = / ejaz dz H (u, z, t) вектор-функ ции H (u,z,t) удовлетворяет уравнению

0

дф(и,а,Ь) . . дН (и, 0,Ь) , .*. . гЛ , .

т = ~заф{щ а, +-(е?иА*{а) - /) (5)

и начальному условию

ф(и,а, 0) = R*(a) = ^ ё>а2

о

х

где А*(а) = J е>а'2dA(z). Решение уравнения (5) имеет вид о

ф(и, а,1) = е~заЬ [ II*{а) + I (¿>иА*{а) - I) dт ] . (6)

Устремив Ь в бесконечность в выражении (6), получим преобразование Фурье по т

дН (и, 0,т) ^ ^ " л

от вектор-функции---. Выполнив обратное преобразование Фурье, определим,

дz

что

dH(u, 0, т) 1

I e-j<xrR*(a)(i-e>*A*{aj) 1 da.

dz 2п

эо

86

А. А. Назаров, С. В. Лопухова, И. Р. Рарайшшиа

Теперь равенство (6) можно записать в виде

ф(ща,г) = е-аЬ Я*(а) +

Ь са

+ — / е]ат I е~зутК*(у) (/ - е>иА*(у)) 1 Ау (е'иА*(а) - /) <*г ). (7)

0 -с

Зная, что Н(и, ж,г) = Н(и,г) = ф(и, 0,1), получим выражение для вектор-функции Н (и,г):

Тогда распределение вероятностей Р(п, г) числа событий, наступивших за время г, явля-

и

ции Н(и,Ь) = МеЭип(Ь = Н(и,Ь)Е, оно имеет вид

п с

1 С а1 Г 1 — е-™Ь

Р(п,1) = — е~зипНШ)Е(1и = — / -^-5

2п ] 2п ] у2

I - А* (у) А*(у)п-1Ейу, (8)

I - А* (у) Е<1у

2

Заключение

Выполняя асимптотические исследования полу марко веко го потока событий, аналогичные исследованию потоков марковского восстановления [2, 3], получим, что асимптотику третьего порядка для характеристической функции можно записать в виде

МеГап(1) = ^«(ге^+^ае^+^аез*)

где коэффициенты 831, а2, аз3 для полумарковского потока определяются аналогично тому, как это сделано в работах [2, 3]. Полученные равенства (8) определяют распределение вероятностей Р(п,г) числа событий, наступивших в стационарном полумарковском потоке, заданном полумарковской матрицей А(х) и ее преобразованием А*(х) Фурье — Стилтьесса, Численная реализация формул (8) позволяет находить численные значения вероятностей Р(п, г) для достаточно широкого клаееа матриц А* (х) и значений г. Но возможности численной реализации ограничены вычислительными ресурсами. Для достаточно больших значений г естественно применить метод асимптотического анализа полумарковского потока аналогично тому, как это выполнено для потока марковского восстановления в работе [2] и просеянного потока марковского восстановления в работе [3]. Наличие численного алгоритма (8) позволяет определить область применения асимптотических результатов. Для рассмотренных потоков с тремя состояниями вложенной цепи Маркова расстояние Колмогорова — Смирнова между распределениями,

полученными асимптотически и по формулам (8), не превосходит 2-3 % для определенных значений t = Т, это позволяет утверждать, что при t > Т эффективно применение асимптотических результатов, а при t < Т целесообразно использовать формулы (8), полученные в данной работе.

Список литературы

[1] королюк B.C. Стохастические модели систем. Киев: Наук, думка, 1989. 208 с.

[2] Назаров A.A., Лопухова C.B. Исследование потока марковского восстановления асимптотическим методом второго порядка // Матер. Междунар. науч. конф. "Математические методы повышения эффективности функционирования телекоммуникационных сетей". Гродно, 2007. С. 170-174.

[3] Лопухова C.B. Исследование полумарковского потока асимптотическим методом третьего порядка // Матер. VI Междунар. научно-практ. конф. "Информационные технологии и математическое моделирование". Томск: Изд-во Том. ун-та, 2007. Ч. 2. С. 30-34.

Поступила в редакцию 28 марта 2008 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.