Научная статья на тему 'Исследование электретных характеристик эпоксидных композитов на основе смолы der-331 с различным содержанием отвердителя'

Исследование электретных характеристик эпоксидных композитов на основе смолы der-331 с различным содержанием отвердителя Текст научной статьи по специальности «Химические технологии»

CC BY
478
338
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕРМОЭЛЕКТРЕТЫ / ЭПОКСИДНЫЕ ОЛИГОМЕРЫ / ЭФФЕКТИВНЫЙ ПОВЕРХНОСТНЫЙ ПОТЕНЦИАЛ ЗАРЯДА / THERMAL ELECTRETS / EPOXIDE OLIGOMERS / EFFECTIVE CHARGE SURFACE POTENTIAL

Аннотация научной статьи по химическим технологиям, автор научной работы — Мочалова Е. Н., Лимаренко Н. А., Дебердеев Р. Я.

Получены электретные материалы на основе эпоксидиановой смолы DER-331, отвержденной отвердителями аминного типа. Выявлены зависимости электретных характеристик эпоксидных композитов от содержания отвердителя.Electret materials based on amine-cured DER-331 epoxide resin were produced. Dependence of epoxide composite electret charcteristics on curing agent content.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Мочалова Е. Н., Лимаренко Н. А., Дебердеев Р. Я.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Исследование электретных характеристик эпоксидных композитов на основе смолы der-331 с различным содержанием отвердителя»

УДК 678: 621.319.2

Е. Н. Мочалова, Н. А. Лимаренко, Р. Я. Дебердеев

ИССЛЕДОВАНИЕ ЭЛЕКТРЕТНЫХ ХАРАКТЕРИСТИК ЭПОКСИДНЫХ КОМПОЗИТОВ НА ОСНОВЕ СМОЛЫ DER-331 С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ ОТВЕРДИТЕЛЯ

Ключевые слова: термоэлектреты, эпоксидные олигомеры, эффективный поверхностный потенциал заряда.

Получены электретные материалы на основе эпоксидиановой смолы DER-331, отвержденной отвердителями аминного типа. Выявлены зависимости электретных характеристик эпоксидных композитов от содержания отвердителя.

Key words: thermal electrets, epoxide oligomers, effective charge surface potential.

Electret materials based on amine-cured DER-331 epoxide resin were produced. Dependence of epoxide composite electret charcteristics on curing agent content.

Введение

На сегодняшний день пространственно-сетчатые полимеры занимают особое место среди полимерных материалов, благодаря своим свойствам и возможности получения на их основе изделий широкого спектра назначения [1-3]. Использование эпоксидных полимеров особенно перспективно для создания стабильных термо- и короноэлектретов. Поэтому важным и актуальным являются исследования олигомерных термореактивных смол, как сырья для получения стабильных полимерных электретов. Электретный эффект достаточно хорошо изучен для большинства полимерных систем [4-7]. Электреты на основе пространственно-сетчатых полимеров исследованы менее всего [8-10]. Особое внимание при изучении данных систем необходимо оказывать молекулярной структуре полученных композитов.

Эпоксидные полимеры относятся к полярным материалам и дипольная поляризация играет важную роль в релаксационном диэлектрическом спектре. В таких полимерах формирование и релаксация электрического состояния управляется взаимодействием гомо- и гетерозарядов. После поляризации молекулярные диполи ориентируются в направлении поляризирующего поля, пространственная структура полимера фиксируется трехмерной сеткой химических связей, в результате носители зарядов оказываются надолго «замороженными» в структуре сетчатого продукта отверждения.

Цель настоящей работы заключалась в получении термоэлектретов на основе эпоксидных полимеров и определении следующих характеристик: эффективного поверхностного потенциала заряда (Уэ1, Уэ2), эффективной поверхностной плотности заряда (сэф) и напряженности электростатического поля электрета (Е).

Экспериментальная часть

В качестве объектов исследования были выбраны материалы на основе эпоксидиановой смолы ББЯ-331. Для отверждения композиции использовали отвердители на основе алифатических (этиленовых) аминов (ДЭТА и ПЭПА).

Для проведения исследований были получены термоэлектреты на основе эпоксидной смолы ББЯ-331 в процессе совмещения синтеза полимера путем отверждения исходной смолы при Т=900С с процессом одновременной поляризации в постоянном электрическом поле напряжением 5 кВ в течение 2 часов, с последующем охлаждением в поле в течение 30 минут.

Параметры электростатического поля полимера измеряли методом периодического экранирования приемного электрода при помощи измерителя параметров электростатического поля марки ИПЭП - 1.

Обсуждение результатов

Как известно из литературы [1-3, 11], пространственно-сетчатые полимеры отличаются широким диапазоном физико-механических и физико-химических свойств, которые

обеспечиваются, главным образом, природой и количеством отверждающих агентов. Природа и количество отвердителя, используемого в композициях, оказывает влияние на структуру полимерной матрицы, формирующейся в процессе отверждения, которая фиксируется

пространственной сеткой и в дальнейшем не может быть значительно изменена за счет конформационных превращений межузловых цепей без разрыва химических связей. Ранее в работе [10] при исследовании электретов, полученных на основе эпоксидиановой смолы ЭД-20, была показана возможность изменять определенные электретные характеристики, варьируя структурные параметры отвержденного композита. Данные исследования продолжены при изучении электретных

характеристик композитов, полученных на основе эпоксидиановой смолы ББЯ-331.

Используя различные соотношения

отвердителя в составе композиции, можно предположить, что с увеличением содержания отвердителя возрастает количество функциональных групп, способных участвовать в процессах поляризации с участием дипольно-сегментальных фрагментов под действием поляризующего поля. Для проведения этих исследований, содержание отвердителя ДЭТА в составе композиции

варьировали от 7 до 15% массовых, что соответствует недостатку отвердителя,

стехиометрическому соотношению и избытку отвердителя по отношению к эпоксидной смоле.

ОДЙ

0,1а Ч-

ш £

> ОД

0,06

0,02

х» сутки 5 10 15

а

V» кВ

0.24

0,18

016

П/:Л

0.11

0 сутки 10 ' 15

Уч кП 0,14

0,12 _

од Ч

о,ов

0,06

0,04

о.ог

0

о 5 10 Тц^сугнм 15

б г

Рис. 1 - Спад потенциала полимерного электрета Уэ на основе смолы БЕЯ-331, полученного при отверждении при температуре 90@С и одновременной поляризации с напряжением 5 кВ в течение 2 ч, при различном содержании отвердителя ДЭТА: а) 7 % масс.; б) 10 % масс.; в) 12 % масс.; г) 15 % масс.

На рисунке 1 приведены кривые спада потенциала поверхности Уэ от времени хранения электрета при различном содержании отвердителя ДЭТА для полимерных электретов на основе смолы ББК-331. Снижение потенциала полимерного электрета Уэ от времени хранения для всех образцов имеет монотонно убывающий характер и стабилизируется примерно к 15 суткам хранения.

Зависимость максимального поверхностного потенциала Уэ от содержания отвердителя (рис. 2) была получена объединением результатов рисунка 1 (а, б, в, г).

Как видно из рисунка 2, максимальное значение потенциала поверхности Уэ (около 0,8 кВ ) соответствует стехиометрическому содержанию отвердителя, при недостатке и избытке отвердителя потенциал поверхности снижается. Недостаток и избыток отвердителя ДЭТА, при получении композита на основе смолы ББЯ-331, соответствует снижению эффективной плотности сшивки пространственной сетки по сравнению со стехиометрическим соотношением отвердителя. Измерение значений эффективной поверхностной плотности заряда (сэф) и напряженности электростатического поля электрета (Е) для этих же образцов в зависимости от времени хранения показали, что эти характеристики имеют характер, аналогичный спаду потенциала поверхности Уэ,

приведенного на рисунке 1. При стехиометрическом соотношении отвердителя ДЭТА эффективная поверхностная плотность заряда (сэф) снижается с 0,28 мкКл/м2 (1 сутки хранения) до 0,14 мкКл/м (для 25 суток хранения образцов), а напряженность электростатического поля электрета (Е) для этих же образцов - с 28 кВ/м до 10 кВ/м соответственно.

0.9

0,8

0.7

0.6 / \

и> 0.5 / \

>" 0.4 / \

0.3 / \

0.2

0

7 9 11 13 15 17 содержание отвердителя.%

Рис. 2 - Кривые зависимости максимального эффективного поверхностного потенциалаУэ полимерного электрета на основе смолы БЕЯ-331, полученного при отверждении при температуре 90ШС и одновременной поляризации с напряжением 5 кВ в течение двух часов, от содержания отвердителя ДЭТА

Увеличение содержания отвердителя в составе композиции выше стехиометрического не приводит к росту количества функциональных групп, способных участвовать в процессах поляризации с участием дипольно-сегментальных фрагментов под действием поляризующего поля, т.к. эти группы не фиксируются трехмерной сеткой, а также могут создавать дополнительные стерические трудности при образовании пространственного узла.

Максимальный эффективный потенциал поверхности Уэ соответствует максимальной частоте пространственной сетки, образующейся в результате отверждения эпоксиаминной матрицы стехиометрическим соотношением отвердителя [11].

Аналогичные зависимости были получены для электретов на основе смолы ББЯ-331 при отверждении ПЭПА (12-17 % масс.).

Полученные экспериментальные данные констатируют зависимость между электретными характеристиками и структурой эпоксидного полимера и полностью согласуются с исследованиями проведенными ранее [10] для короно- и термоэлектретов на основе эпоксидиановой смолы ЭД-20.

Литература

1. В.И. Иржак, Б.А. Розенберг, Н.С. Ениколопян, Сетчатые полимеры - синтез, структура и свойства. Изд-во Наука, М, 1979.- 250 с.

2. И.З. Чернин, Ф.М. Смехов, Ю.В. Жердев, Эпоксидные полимеры и композиции. Химия, Москва, 1982. - 232с.

3. Иржак, В. И. Структурные аспекты формирования сетчатых полимеров при отверждении олигомерных систем / В. И. Иржак, С. М. Межиковский //Успехи химии,- 2009, Т 78, № 2, С.176-206.

в

4. Гороховатский, Ю. А. Электретный эффект и его применение / Ю. А. Гороховатский // Соросовский образовательный журнал. - 1997. - №8. - С.92 - 98.

5. Галиханов, М.Ф. Полимерные короноэлектреты традиционные и новые технологии и области применения / М.Ф. Галиханов, Р.Я. Дебердеев // Вестник Казанского технологического университета.- 2010, Т 13, № 4, С.45-57.

6. А.А. Рычков, В.Г. Бойцов, Электретный эффект в структурах полимер-металл. Изд-во РГПУ им. Герцена, Санкт-Петербург, 2000. - 250 с.

7. В.А. Гольдаде, Л. С. Пинчук. Электретные пластмассы: физика и материаловедение. Наука и техника, Москва, 1987. - 231 с.

8. В.Н. Студенцов, Р.В. Левин Полимерные электреты на основе реактопластов // Доклады Междунар. конф. Композит - 2004 (Саратов, июль 6-8 , 2004). Саратов, 2004. С. 254 - 256.

9. Balakina, M.Yu. Modeling of epoxy oligomers with nonlinear optical chromophores in the main chain: molecular dynamics and quantum chemical study / M.Yu.Balakina, O.D. Fominykh, F. Rua, V Branchadell // Int. J. of Quantum Chemistry. 2007 - №107, Р. 2398 - 2406.

10. Лимаренко, Н.А. Электретный и пьезоэффекты в эпоксидных полимерах / Н.А. Лимаренко, Е. Н. Мочалова, М.Ф. Галиханов, Р.Я. Дебердеев // Вестник Казанского технологического университета.- 2012, Т 15, №10, С.126-127.

11. Мочалова, Е.Н. Исследование влияния частоты пространственной сетки на физико-механические и адгезионные свойства модифицированных эпоксиаминных композитов / Е.Н. Мочалова, Р.М. Гарипов // Вестник Казанского технологического университета.- 2011, Т 14, №14, С.205-210.

© Е. Н. Мочалова - канд. техн. наук, доц. каф. технологии переработки полимеров и композиционных материалов КНИТУ, [email protected]; Н. А. Лимаренко - асп. той же кафедры, [email protected]; Р. Я. Дебердеев - д-р техн. наук, проф., зав. технологии переработки полимеров и композиционных материалов КНИТУ, [email protected].

i Надоели баннеры? Вы всегда можете отключить рекламу.