Научная статья на тему 'Исправления к статье «Активация угольного электрода соединениями цинка»'

Исправления к статье «Активация угольного электрода соединениями цинка» Текст научной статьи по специальности «Нанотехнологии»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы —

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Исправления к статье «Активация угольного электрода соединениями цинка»»

Вестник Пермского университета. Серия «Химия». 2023. Т. 13, № 3. C. 236-239

Исправления

http://doi.org/10.17072/2223-1838-2023-3-236-239

Исправления к статье «Активация угольного электрода соединениями цинка»

Исходная версия: Шавкунов С.П., Сидорова И.П. Активация угольного электрода соединениями цинка // Вестник Пермского университета. Серия «Химия». 2023. Т. 13, № 2. С. 101-108. http://doi.org/10.17072 /2223-18382023-2-101-108.

Erratum

http://doi.org/10.17072/2223-1838-2023-3-236-239

Erratum to the article «Activation of carbon electrode with zinc compounds»

Original version: Shavkunov, S.P. and Sidorova, I.P. (2023) "Activation of carbon electrode with zinc compounds", Bulletin of Perm University. Chemistry, vol. 13, no. 2, pp. 101-108. (In Russ.). http://doi.org/10.17072/2223-1838-2023-2-101-108.

На странице 106 подпись к рисунку вместо

Рис. 6. Годографы импеданса в координатах Найквиста для исходной поверхности угольного электрода (1) и после снятия ЦВА в 50 ммоль/л водном растворе хлорида цинка (2)

следует читать

Рис. 5. Годографы импеданса в координатах Найквиста для исходной поверхности угольного электрода (1) и после снятия ЦВА в 50 ммоль/л водном растворе хлорида цинка (2)

На странице 106-107 в разделе Список источников вместо

1. Xu B., Chen Y., Wei G., Cao G. et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors // Materials Chemistry and Physics. 2010. V. 124. P. 504-509.

2. Liao W.-C., Liao F.-S., Tsai C.-T., et al. Preparation of activated carbon for electric double layer capacitors // China Steel Technical Report. 2012. №. 25. P. 36-41.

3. Kotz R., Carlen M. Principles and applications of electrochemical capacitors // Electrochemical 2000. V. 45. P. 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6.

4. Bleda-Martinez M.J., Macia-Agullo J.A., Lozano-Castello D., et al. Role of surface chemistry on electric double layer capacitance of carbon materials // Carbon. 2005. V. 43, №. 13. P. 2677-2684.

5. Lota G., Centeno T.A. Frackowiak, et al. Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors // Electrochimica Acta. 2008. V. 53. P. 22102216. https://doi.org/10.1016/j.electacta.2007.09.028.

6. Шведене Н.В., Чернышев Д.В., Плетнев И.В. Ионные жидкости в электрохимических сенсорах // Журнал Российского химического общества им. Д.И. Менделеева. 2008. Т. LII, № 2. С. 80-91.

7. Стюхин В.В., Лапшин Э.В. Графеновый суперконденсатор // Труды Международного симпозиума «Надежность и качество». Т. 1. Пенза, 2011. C. 7.

8. Zhang and L.L. Zhao X.S. Carbon-Based Materials as Supercapacitor Electrodes // Chemical Society Reviews. 2009. V. 38, № 9. P. 2520-2531.

9. Вольфкович Ю.М., Рычагов А.Ю., Сосенкин В.Е. и др. Силовой электрохимиечский суперконденсатор на основе углеродных нанотрубок // Электрохимическая энергетика. 2008. Т. 8, № 2. С. 106.

10. Корыта К., Дворжак И., Богачкова В. Электрохимия. М.: Мир, 1977

11. Тарасевич М.Р. Электрохимия углеродных материлов. М.: Наука, 1984.

12. Токунов В. И., Саушин А.З. Технологические жидкости и составы повышения продуктивности нефтяных и газовых скважин. М.: Недра-Бизнесцентр, 2004.

13. Рычагов А.Ю., Вольфкович Ю.М. Особенности взаимодействия активированных угольных электродов с растворами серной кислоты // Электрохимия. 2007. Т. 43, № 11. С. 1343-1349

14. Yuge R., Manako T., Nakahara K. The production of an electrochemical capacitor electrode using holey singlewall carbon nanohorns with high specific surface area // Carbon. 2012. V. 50. P. 5569-5573. https://doi.org/10.1016/j.carbon.2012.08.005

15. Supercapacitors. Materials, Systems, and Applications / Ed. М. Lu, F. Begun, E. Frackowiak. Wiley, 2013.

© Шавкунов С П., Сидорова И.П., 2023

16. Астахов И.И., Графов Б.М., Кабанов Б.Н. Кинетика сложных электрохимических реакций. М.: Наука, 1981.

17. Brug G.J., van der Eeden A.L.G., Sluyters-Rehbach M., Sluyters J.H. The analysis of electrode impedances complicated by the presence of a constant phase element // Journal of Electroanalytical Chemistry. 1984. V. 176, № 1-2. Р.275-295. https://doi.org/10.1016/S0022-0728(84)80324-1.

следует читать

1. Sharma S., Chand P. Supercapacitor and electrochemical techniques: A brief review // Results in Chemistry. 2023. Vol. 5. ID 100885. https://doi.org/10.1016/j.rechem.2023.100885.

2. Zhang H., Zhang J., Liu Y., et al. Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives // Coordination Chemistry Reviews. 2023. Vol. 482. ID 215056. https://doi.org/10.1016/j.ccr.2023.215056.

3. Chen J., Chen M., Ma H., et al. Advances and perspectives on separators of aqueous zinc ion batteries // Energy Reviews. 2022. Vol. 1, № 1. ID 100005. https://doi.org/10.1016/j.enrev.2022.100005.

4. Wang H., Ye W., Yang Y., et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives // Nano Energy. 2021. Vol. 85. ID 105942. https://doi.org/10.1016/j.nanoen.2021.105942.

5. Xu G., Nie P., Dou H., et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors // Materials Today. 2017. Vol. 20, № 4. P. 191-209. https://doi.org/10.1016/j.mattod.2016.10.003.

6. Dunn B., Kamath H., Tarascon J.M. Electrical energy storage for the grid: a battery of choices // Science. 2011. № 334 (6058). P. 928-935. https://doi.org/10.1126/science.1212741.

7. Wang H., Chen Y., Fan R., et al. Selective electrochemical reduction of nitrogen to ammonia by adjusting the three-phase interface // Research. 2019. Vol. 2019. ID 1401209. https://doi.org/10.34133/2019/1401209

8. Liang, Y., Dong, H., Aurbach, D., et al. Current status and future directions of multivalent metal-ion batteries // Nature Energy. 2020. Vol. 5. P. 646-656. https://doi.org/10.1038/s41560-020-0655-0.

9. Chao D., Zhou W., Xie F,. et al. Roadmap for advanced aqueous batteries: From design of materials to applications // Science Advances. 2020. Vol. 6, № 6. ID eaba4098. https://doi.org/10.1126/sciadv.aba4098

10. Li L., Zhang Q., He B., et al. Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems // Advanced Materials. 2022. Vol. 34. ID 202104327. https://doi.org/10.1002/adma.202104327.

11. Wang D., Gao X., Chen Y., et al. Plating and stripping calcium in an organic electrolyte // Nature Materials. 2018. Vol. 17. P. 16-20. https://doi.org/10.1038/nmcit5036.

12. Luo B., Wang Y., Sun L., et al. Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for den-drite-free Zn anodes // Journal of Energy Chemistry. 2023. Vol. 77. P. 632-641. https://doi.org/10.1016/ j.jechem.2022.11.005.

13. Simon P., Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? // Science. 2014. Vol. 343. P. 1210-1211. https://doi.org/10.1126/science.1249625

14. Wang H., Deng J., Xu C., et al. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance // Energy Storage Mater. 2017. № 7. P. 216-221.

15. WangM., Yan D., Wu T., et al. Towards high energy density zinc-based no aqueous hybrid supercapacitors via regulating oxygen substituents in carbon cathode // Journal of Energy Storage. 2023. Vol. 63. ID 107076. https://doi.org/10.1016/j.est.2023.107076.

16. Wang H., Yang Y., Li Q., et al. Molecule-assisted modulation of the high-valence Co3+ in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors // Science China Materials. 2021. Vol. 64. P.840-851. https://doi.org/10.1007/s40843-020-1476-2.

17. Yuan Z., Wang H., Shen J., et al. Hierarchical Cu2S@ NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors // Journal of Materials Chemistry A. 2020. № 8. P. 22163-22174.

18. Lu W., Shen J., Zhang P., et al. Construction of CoO/Co-Cu-S hierarchical tubular hetero structures for hybrid supercapacitors // Angewandte Chemie International Edition. 2019. № 58. P.15441-15447.

19. Lu W., Yang Y., Zhang T., et al. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors // Journal of Colloid and Interface Science. 2021. № 590. P. 226-237.

20. Березин Н.Б., Березина Т.Н., Межевич Ж.В. Кинетика и механизм восстановления комплексов цинка // Вестник Казанского технологического университета. 2014. Т. 17, № 23. С. 374-379.

21. Козырин В. А., Флеров В. Н. Особенности катодного реагирования кислорода на угольных электродах в щелочно-цинкатных электролитах // Труды НГТУ им. Р. Е. Алексеева. 2011. №3. C. 261-266.

22. Bocharov D., Chesnokov A., Chikvaidze G., et al. A comprehensive study of structure and properties of nano-crystalline zinc peroxide // Journal of Physics and Chemistry of Solids. 2022. Vol. 160. ID 110318. https://doi.org/ 10.1016/j.jpcs.2021.110318.

На странице 107-108 в разделе References вместо

1. Xu, B., Chen, Y., Wei, G., Cao, G., Zhang, H. and Yang, Y. (2010), "Activated carbon with high capacitance prepared by NaOH activation for supercapacitors", Materials Chemistry and Physics, vol. 124, pp. 504-509.

2. Liao, W.-C., Liao, F.-S., Tsai, C.-T. and Yang, Y.-P. (2012), "Preparation of activated carbon for electric double layer capacitors", China Steel Technical Report, no. 25, pp. 3641.

3. Kotz, R. and Carlen, M. (2000), "Principles and applications of electrochemical capacitors", Electrochemical, vol. 45, pp. 2483-2498.

4. Bleda-Martinez, M.J., Macia-Agullo, J.A., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D. and Linares-Solano, A. (2005) "Role of surface chemistry on electric double layer capacitance of carbon materials", Carbon, vol. 43, pp. 2677-2684.

5. Lota, G., Frackowiak C.T.A. and Stoeckli, F. (2008), "Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors", Electrochimica Acta, vol. 53, pp. 2210-2216.

6. Shvedene, N.V., Chernyshev, D.V. and Pletnev, I.V. (2008) , "Ionic liquids in electrochemical sensors", Rossijs-kij himicheskij zhurnal, vol. 52, no. 2, 2008, pp. 80-91. (In Russ.).

7. Styukhin, V.V. and Lapshin, E.V. (2011), Graphene supercapacitor. In: Proceedings of the International Symposium "Reliability and Quality", p. 7. (In Russ.).

8. Zhang, L.L. and Zhao, X.S. (2009), "Carbon-Based Materials as Supercapacitor Electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531.

9. Wolfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E. and Krestinin, A.V (2008), "Power electrochemical supercapacitor based on carbon nanotubes", Electrochemical Power Engineering, vol. 8, no. 2, pp. 106-110. (In Russ.).

10. Koryta, K., Dvorzhak, I. and Bogachkova, V. (1977) Electrochemistry, Mir, Moscow. (In Russ.).

11. Tarasevich, M.R. (1984) Electrochemistry of carbon materials, Nauka, Moscow. (In Russ.).

12. Tokunov, V.I. and Saushin, A.Z. (2004), Technological fluids and compositions for increasing the productivity of oil and gas wells, Nedra-Business Center, Moscow. (In Russ.).

13. Rychagov, A.Yu. and Wolfkovich, Yu.M. (2007), "Features of interaction of activated carbon electrodes with sulfuric acid solutions", Electrochemistry, vol. 43, no. 11, pp. 1343-1349. (In Russ.).

14. Yuge, R. (2012), "The production of an electrochemical capacitor electrode using holey single-wall carbon na-nohorns with high specific surface area", Carbon, vol. 50, pp. 5569-5573.

15. Lu, М., Begun, F. and Frackowiak, E. (ed.) (2013) Supercapacitors. Materials, Systems, and Applications, Wiley.

16. Astakhov, I.I., Grafov, B.M., and Kabanov, B.N. (1981) Kinetics of complex electrochemical reactions, Nauka, Moscow. (In Russ.).

17. Brug, G.J., van der Eeden, A.L.G., Sluyters-Rehbach, M. and Sluyters, J.H. (1984), "The analysis of electrode impedances complicated by the presence of a constant phase element", Journal of Electroanalytical Chemistry, vol. 176, № 1-2, pp. 275-295.

следует читать

1. Sharma, S. and Chand, P. (2023), "Supercapacitor and electrochemical techniques: A brief review", Results in Chemistry, vol 5, ID 100885.

2. Zhang, H., Zhang, J., Liu, Y., Feng, F., Zhang, Y., Sun, L. and Zhang, Y. (2023), "Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives", Coordination Chemistry Reviews, vol. 482. ID 215056.

3. Chen, J., Chen, M., Ma, H., Zhou, W. and Xu, X. (2022), "Advances and perspectives on separators of aqueous zinc ion batteries", Energy Reviews, vol 1, no. 1, ID 100005.

4. Wang, H., Ye, W., Yang, Y., Zhong, Y. and Hu,Y. (2021), "Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives", Nano Energy, vol. 85, ID 105942.

5. Xu, G., Nie, P., Dou, H., Ding, B., Li, L. and Zhang, X. (2017), "Exploring metal organic frameworks for energy storage in batteries and supercapacitors", Materials Today, vol. 20, is. 4, pp. 191-209.

6. Dunn, B, Kamath, H, and Tarascon, J.M. (2011), "Electrical energy storage for the grid: a battery of choices", Science, no. 334, pp. 928-935.

7. Wang, H., Chen, Y., Fan, R., Chen, J., Wang, Z., Mao, S. and Wang, Y. (2019), "Selective electrochemical reduction of nitrogen to ammonia by adjusting the three-phase interface", Research, vol. 2019, ID 1401209.

8. Liang, Y., Dong, H., Auibach, D. and Yao, Y. (2020), "Current status and future directions of multivalent metal-ion batteries", Nature Energy, vol. 5, pp. 646-656.

9. Chao, D., Zhou, W., Xie, F., Ye, C., Li, H., Jaroniec, M. and Qiao, S.-Z. (2020), "Roadmap for advanced aqueous batteries: from design of materials to applications", Science Advances, vol. 6, no. 6, ID eaba4098.

10. Li, L., Zhang, Q., He, B., Pan, R., Wang, Z., Chen, M., Wang, Z., Yin, K., Yao, Y., Wei, L. and Sun, L. (2022), "Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems", Advanced Materials, vol. 34, ID 202104327.

11. Wang, D., Gao, X., Chen, Y., Jin, L., Kuss, C. and Bruce, P.G., (2018), "Plating and stripping calcium in an organic electrolyte", Nature Mater, vol. 17, pp. 16-20.

12. Luo, B., Wang, Y., Sun, L., Zheng, S., Duan, G., Bao, Z., Ye, Z. and Huang, J. (2023), "Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes", Journal of Energy Chemistry, vol. 77, pp. 632-641.

13. Simon, P., Gogotsi, Y. and Dunn, B. (2014), "Where Do Batteries End and Supercapacitors Begin?", Science, vol.343, pp. 1210-1211.

14. Wang, H., Deng, J., Xu, C., Chen, Y., Xu, F., Wang, J. and Wang, Y. (2017), "Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance", Energy Storage Mater, no.7, pp. 216-221.

15. Wang, M., Yan, D., Wu, T. and Li, W.-C. (2023), "Towards high energy density zinc-based no aqueous hybrid supercapacitors via regulating oxygen substituents in carbon cathode", Journal of Energy Storage, vol. 63, ID 107076.

16. Wang, H., Yang, Y., Li, Q., Lu, W., Ning, J., Zhong, Y., Zhang, Z. and Hu, Y. (2021), "Molecule-assisted modulation of the high-valence Co3+ in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors", Science China Materials, vol. 64, pp. 840-851.

17. Yuan, Z., Wang, H., Shen, J., Ye, P., Ning, J., Zhong, Y. and Hu, Y. (2020), "Hierarchical Cu2S@ NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors", Journal of Materials Chemistry A, no. 8, pp. 22163-22174.

18. Lu, W., Shen, J., Zhang, P., Zhong, Y., Hu, Y. and Lou, X. (2019), "Construction of CoO/Co-Cu-S hierarchical tubular hetero structures for hybrid supercapacitors", Angewandte Chemie International Edition, no. 58, pp.1544115447.

19. Lu, W., Yang, Y., Zhang, T., Ma, L., Luo, X., Huang, C., Ning, J., Zhong, Y. and Hu, Y. (2021), "Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors", Journal of Colloid and Interface Science, no. 590, pp. 226-237.

20. Berezin, N.B., Berezina, T.N. and Mezhevich, Zh.V. (2014), "Kinetics and mechanism of reduction of zinc complexes", Bulletin of the Kazan Technological University, vol. 17, no. 23, pp. 374-379. (In Russ.).

21. Kozyrin, V. A., Flerov, V. N. (2011), "Features of the cathodic reaction of oxygen on carbon electrodes in alkaline zincate electrolytes", Proceedings of the NGTUim. R. E. Alekseeva, no. 3, pp. 261-266. (In Russ.).

22. Bocharov, D., Chesnokov, A., Chikvaidze, G., Gabrusenoks, J., Ignatans, R., Kalendarev, R., Krack, M., Kundzins, K., Kuzmin, A., Mironova-Ulmane, N., Pudza, I., Puust, L., Sildos, I., Vasil'chenko, E., Zubkins, M. and Purans, J. (2022), "A comprehensive study of structure and properties of nanocrystalline zinc peroxide", Journal of Physics and Chemistry of Solids, vol. 160, ID 110318.

Исправление является технической ошибкой и не повлияло на сделанные авторами выводы.

i Надоели баннеры? Вы всегда можете отключить рекламу.