Научная статья на тему 'ION-BEAM-INDUCED FORMATION OF GOLD NANOSTRUCTURES ON POLYMETHYL METHACRYLATE FILM'

ION-BEAM-INDUCED FORMATION OF GOLD NANOSTRUCTURES ON POLYMETHYL METHACRYLATE FILM Текст научной статьи по специальности «Нанотехнологии»

CC BY
24
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GOLD NANOPARTICLES / IRRADIATION WITH IONS / POLYMETHYL METHACRYLATE / MOLECULAR EFFECT / NANOMATERIALS / POLYMER

Аннотация научной статьи по нанотехнологиям, автор научной работы — Studzinskii V.M., Karabeshkin K.V., Kondrateva A.S., Fedorenko E.D., Karaseov P.A.

In this work, we study the behavior of a thin gold layer on the surface of a polymethyl methacrylate (PMMA) film under irradiation with keV atomic P and molecular PF4 ions. Transformation of both the gold layer and the PMMA film depends on the kind of ions used. Formation of gold nanoparticles is found in all cases. This process is less efficient than in the case of the ion-beam-induced Au layer dewetting on SiO2 substrate. The formation of nanostructured regions in the polymer bulk was also established. The dependence of transmission in the IR range on the stage of formation of nanostructures has been investigated. The PMMA matrix destruction is low as revealed by FTIR investigation. Obtained structures could be used as efficient substrates for surface enhanced Raman scattering studies.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ION-BEAM-INDUCED FORMATION OF GOLD NANOSTRUCTURES ON POLYMETHYL METHACRYLATE FILM»

ATOM PHYSICS AND PHYSICS OF CLUSTERS AND NANOSTRUCTURES

Conference materials UDC 539.1

DOI: https://doi.org/10.18721/JPM.153.213

Ion-beam-induced formation of gold nanostructures on polymethyl methacrylate film

V. M. Studzinskii 1 H, K. V. Karabeshkin 2, A. S. Kondrateva \

E. D. Fedorenko 1, P. A. Karaseov 1, M. V. Mishin 3

1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; 2 Joint - Stock Company "Research and Production Enterprise "ELAR", St. Petersburg, Russia; 3 Alferov University, St. Petersburg, Russia H svm.fl@mail.ru

Abstract. In this work, we study the behavior of a thin gold layer on the surface of a polymethyl methacrylate (PMMA) film under irradiation with keV atomic P and molecular PF4 ions. Transformation of both the gold layer and the PMMA film depends on the kind of ions used. Formation of gold nanoparticles is found in all cases. This process is less efficient than in the case of the ion-beam-induced Au layer dewetting on SiO2 substrate. The formation of nanos-tructured regions in the polymer bulk was also established. The dependence of transmission in the IR range on the stage of formation of nanostructures has been investigated. The PMMA matrix destruction is low as revealed by FTIR investigation. Obtained structures could be used as efficient substrates for surface enhanced Raman scattering studies.

Keywords: gold nanoparticles, irradiation with ions, polymethyl methacrylate, molecular effect, nanomaterials, polymer

Funding: Work was supported by the Ministry of Science and Higher Education (project № FSRM-2020-0011).

Citation: Studzinskii V. M., Karabeshkin K. V., Kondrateva A. S., Fedorenko E. D., Karaseov P. A., Mishin M. V., Ion-beam-induced formation of gold nanostructures on polymethyl methacrylate film, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 69-74. DOI: https://doi.org/10.18721/JPM.153.213

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 539.1

DOI: https://doi.org/10.18721/JPM.153.213

Ионно-индуцированное формирование наноструктур золота на пленке из полиметилметакрилата

В. М. Студзинский 1 н, К. В. Карабешкин 2, А. С. Кондратьева Е. Д. Федоренко 1, П. А. Карасев 1, М. В. Мишин 3 1 Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия; 2 Акционерное общество "Научно - производственное предприятие "ЭЛАР", Санкт-Петербург, Россия; 3 Академический университет имени Ж.И. Алферова РАН, Санкт-Петербург, Россия

н svm.fl@mail.ru

Аннотация. В настоящей работе исследуется поведение тонкого слоя золота на поверхности пленки полиметилметакрилата (ПММА) при облучении атомарными ионами Р и молекулярными ионами РБ4 с энергиями порядка кэВ. Поведение как слоя золота,

© Studzinskii V. M., Karabeshkin K. V., Kondrateva A. S., Fedorenko E. D., Karaseov P. A., Mishin M. V., 2022. Published by Peter the Great St.Petersburg Polytechnic University.

так и пленки ПММА зависит от типа используемых ионов. Формирование наноча-стиц золота происходит менее эффективно, чем при ионно-лучевом осушении слоя Au на подложке SiO2. Установлено также образование наноструктурированных областей в объеме полимера. Выявлена зависимость пропускания в ИК-диапазоне от стадии формирования наноструктур. С помощью ИК-Фурье анализа доказано, что при формировании наноструктур полимер хоть и претерпевает изменения, но все же остается ПММА. Полученные структуры могут быть использованы в качестве подложек для исследований методом поверхностно-усиленного комбинационного рассеяния.

Ключевые слова: золотые наночастицы, облучение ионами, полиметилметакрилат, молекулярный эффект, наноматериалы, полимер

Финансирование: Работа выполнена в рамках Государственного задания «Активные композитные материалы и методики анализа для (био)сенсорики» (код темы FSRM-2020-0011).

Ссылка при цитировании: Студзинский В. М., Карабешкин К. В., Кондратьева А. С., Федоренко Е. Д., Карасев П. А., Мишин М. В. Ионно-индуцированное формирование наноструктур золота на пленке из полиметилметакрилата // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.2. С. 69—74. DOI: https://doi.org/10.18721/ JPM.153.213

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

Nanocomposite materials are of widespread use in various fields from catalysis to sensing and more. Noble metal nanoparticles exhibit tuneable plasmon resonances over VIS-NIR spectral range. Incorporation of nanoparticles into a bulk matrix could increase hardness, wear resistance and other mechanical properties of a composite material. One can also tailor electrical conductivity, optical transmission and reflection, antimicrobial properties, temperature response, and many other characteristics. Noble metal, especially gold, nanoparticles have attracted attention, primarily due to their unique electronic, optical, thermal, chemical and biological properties, and, accordingly, promising potential applications in various fields, including biology and medicine, chemistry, photonics, materials science, and other interdisciplinary areas.

One of dry low-temperature techniques of gold nanoparticle synthesis is heating of a few nanometer thick gold layer [1], or its irradiation with accelerated ions [2]. This layer can be either deposited on a substrate, or buried ten to hundred nanometer deep. Moreover, metal ion implantation has been used to fabricate [3] and control the size, shape, and distribution [4-6] of metal nanoclusters in various matrices. In particular, carbon based polymer matrices are of interest due to possible biocompatibility of a composite [7]. Bombardment with small metallic clusters also can be successfully utilized to produce pinned or buried nanoparticles [8]. Besides a lot of efforts, there are still a number of unanswered questions; in particular, role of the relative density of collision cascades formed in the target by a fast ion during its stopping [9] is not clear. The influence of the substrate material on the process of particle formation can play a decisive role in the formation of nanoparticles. Local density of collision cascades formed by a stopping ion also affects radiation-related phenomena. Overlapping of collision sub-cascades formed by atomic constituents of a molecular ion gives rise to an increase in the density of the cumulative cascade formed by molecular ion. This fact let us study the effect of collision cascade density on formation of gold nanoparticles. This work is devoted to study change of a thin gold layer deposited on polymethylmethacrylate (PMMA) film under bombardment with accelerated molecular and monatomic ions.

Materials and Methods. Fabrication

Monocrystalline (100) и-silicon was used as a sample substrate. It was cleaned in hydrochloric acid, followed by thorough rinse with distilled water and acetone. Polymeric film was deposited

© Студзинский В. М., Карабешкин К. В., Кондратьева А. С., Федоренко Е. Д., Карасев П. А., Мишин М. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

by the drop-casting technique. 0,0104 g of polymethyl methacrylate was dissolved in 3,75 g of dichloroethane at 24° C. After that, 1 drop of solution was applied onto 1*1 cm2 Si substrate. Samples were dried at room temperature for 24 hours. The thickness of the resulting PMMA films was about 250 nm, as measured by atomic force microscopy over iron needle applied scratch.

The gold deposition was carried out by vacuum thermal evaporation at a pressure of 10—5 Torr using an Oxford Instruments setup. The substrate was kept at room temperature during the deposition. Thickness of the gold layer on a test silicon sample (without polymethylmethacrylate) was measured by Rutherford backscattering technique using 0,7 MeV He++ ions (see [10] for detailes). Thickness of Au layer is 5,7 nm.

Finally, samples were irradiated at room temperature with P and PF4 ions using 500 keV HVEE implanter. Ion energies were kept as 1,3 keV/amu, which is equal to 40 and 140 keV for P and PF4 ions respectively. Ion irradiation parameters are presented in Table I. The irradiation fluences used to compare the effect of irradiation were selected to keep constant number of displacements of gold atoms (displacements per atom) after bombardment with monatomic and molecular ions [9]. The values of DPAa were calculated from simulation data in the TRIM

L J Au

software package [11] as:

DPA = nv*D / n ,

Au ' aV

where nv is the average number of displacements of atoms per unit length produced by a single ion (cm-1); is the concentration of atoms of a substance (for gold nat = 5,9-1022 cm-3); D is the fluence of incident ions (cm-2). nv was determined using the TRIM code simulation with the default values of threshold displacement energies in gold and PMMA layers. Number of displacements generated by a molecular ion was calculated as a sum of displacements produced by a one P and four F monatomic ions.

Most of the works related to the accumulation Table1 of damage in substances were carried out on

List of irradiation parameters

crystal substrates [2], or SiO2. The starting point for choosing the irradiation doses was the data from [7], where the results of PF4 ion-beam — induced modification of a gold film on a silicon substrate are reported. The values of the irradiation doses used in this study and corresponding fluences are shown in the Table I.

Samples obtained were investigated by Fourier-Transform Infrared Spectroscopy (FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM) after each irradiation step.

Results and Discussion

Figure 1 shows SEM and AFM images of a non-irradiated sample (Fig. 1, a, d) and samples irradiated with P ions (Fig. 1, b, e) and PF4 ions (Fig. 1, c, f), at dose DPAAu = 0.81. In the image with a non-irradiated sample, one can see that the formation of inhomogeneous nanosized regions occurs, in contrast to silicon, on which uniform Au layer is obtained at the given film thickness. It is also seen variable shape of gold islands and no single pattern describing the shape of these islands cannot be identified from the data obtained. Ion irradiation modify this surface with some notable trends. Indeed, gold structures become smaller and forrmation of bubble-like structures is seen. Fig. 2, a shows area covered by gold nanostructures, as deduced from SEM imagews. It is seen that gold occupied area decreases under ion irradiation. It follows from Fig. 2, a that same level of surface modification with P ions requires a higher dose compare to PF4 molecular ions.

AFM images show that nanostructures are formed on the surface (Fig. 1, a, b, c). A significant part of these structures is seriously different from the images obtained by SEM (Fig. 1, d, e, f).

Dose, DPAAu Fluence, cm 2

P PF4

0.27-10-4 - 4-1010

0.54-10-4 22.58-1010 8-1010

0.27-10-3 11.29T010 4-1011

0.54-10-3 22.58-1011 8-1011

0.54-10-2 22.58-1012 -

0.27-10-1 11.29-1013 4-1013

0.27 11.29-1014 4-1014

0.54 22.58-1014 8-1014

0.81 33.87-1014 12-1014

a)

/ 0 4II« o: 3 4 0 6

it 10 19

b)

/ 3.0 L>

i ' ( T * w

| \

Wm «SÄfn'

»jjfafi

e)

Fig. 1. SEM(d, e, f) and AFM(a, b, c) images of a non-irradiated sample (Fig. 1, a, d) and samples irradiated with P ions (Fig. 1, b, e) and PF4 ions (Fig. 1 c, f), at dose DPAAu = 0.81

There are two possible ways in which the difference may have arisen. Possibly, degradation of the polymer occurs under heavy ion irradiation and gases are released under the surface, which form gas nanobubbles, observed on AFM images. There is also a probability that in during gold deposition and ion irradiation, gold atoms diffuse into the polymer layer. These pattern will not be visible in SEM images due to the light molecular weight of PMMA.

a)

b)

to

£ «j

<D

o

■e

ZJ

C/>

s

V ; ; 7 P PF4

, V

K V j \\v ' N \ \ ■ .......?............-V.^ ■

C 4

DPA

= C.3 E

p -PF4

at,

L)HA

Fig. 2. Gold covered part of a surface as deduced from SEM (a) and IR transmission taken at 2000-2750 range (b) of irradiated samples as a function of ion dose

0,525 0,500 0,475 0,450 0,425 0,400 0,375 0,350 0,325 0,300. 0,100 0,075 0,050 0,025 0,000

- P(DPA=0,027) P(DPA=0,27)

- P(DPA=0,56) P(DPA=0,81)

-- PF04(DPA=0,0 PF4(DPA=0,27; -- PF4(DPA=0,56; PF4(DPA=0,81;

-— '1 /

~r f

' y 1

-H-4-

1

=Ft=:

X

4000 3500 3000 2500 2000 1500

Wavenumber(cm-1)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fig. 3. FTIR spectra of samples: non-irradiated (black solid) and irradiated to various doses by P

(solid colored) and PF4 (dotted colored) ions

1000

500

The transmission spectra in the IR spectral range taken from the samples are shown in the Fig.3. Several PMMA characteristic absorption peaks are visible at 2940cm1, 1725cm1, 1144cm—1, 988 cm-1. Overall transparency of the sample increases with the dose increase. Spectra of samples irradiated to highest doses used (DPAAu = 0.81) confirm that the polymer has not been destroyed. The characteristic PMMA group vibrations are still clearly visible (Fig.3). Also, it is seen from Fig. 3 a and b that the transmitted light intensity correlates well with the surface area occupied by the metal nanostructures. This area depends on the level to which the metal layer was modified (or else, which dose the samples were irradiated to). Thus, due to the high speed of Fourier spectra collecting, this finding let us recommend FTIR as a useful technique for fast analysis of the stage of the process of nanoparticle synthesis by ion bombardment.

Conclusion

When applying a thin layer of gold on polymethyl methacrylate, nanostructures are formed on the surface, occupying almost the entire area. Irradiation with P and PF4 ions makes it possible to modify nanostructures, while irradiation with PF4 ions makes it possible to do this much more efficiently. In the process of modifying the gold layer, the PMMA substrate, although undergoing changes, is still not destroyed. It was also possible to observe the dependence of the transmission intensity in the IR range on the stage of formation of nanostructures, which makes it possible to use FTIR as a fast method for assessing the stage of formation of nanoparticles from thin metal layers on IR-transparent substrates. The formation of nanostructured regions in the polymer bulk was also established.

Acknowledgments

Work was supported by the Ministry ofScience and Higher Education (project № FSRM-2020-0011).

REFERENCES

1. Bespalova P., Enns Y., Kunkel T., Balanov V., Speshilova A., Vorobyev A., Mishin M., Karaseov P.,

Gold Nanoparticle Array Formation by Low-Temperature Annealing, in E. Velichko et al. (eds.), International Youth Conference on Electronics, Telecommunications and Information Technologies, Springer Proceedings in Physics 255, 2020, p.34.

2. LoSavio R., Repetto L., Guida P., Angeli E., Firpo G., Volpe A., Ierardi V., Valbusa U., Control of the micrometric scale morphology of silicon nanowires through ion irradiation-induced metal dewetting. Solid State Communications, 240, 2016, p. 41-45.

3. Mikhaylov A.N., Kostyuk A.B., Korolev D.S., Zhavoronkov I.Yu., Chugrov I.A., Belov A.I., Burdov V.A., Ershov A.V., Tetelbaum D.I., Formation of gold nanoparticles in single-layer and multilayer ensembles of light-emitting silicon nanocrystals using ion implantation, Bulletin of the Russian Academy of Sciences: Physics 76, (2012) 214—217.

4. Bizyaev I.S., Gabdullin P.G., Arkhipov A.V., Babyuk V.Y., Study of surface topography and emission properties of thin Mo and Zr films Journal of Physics: Conference Series, 1236 (1), 2019, 012019.

5. Stepanov A.L., Nuzhdin V.I., Valeev V.F., Vorobev V.V., Rogova A.M., Osin Y.N., Study of silicon surface implanted by silver ions, Vacuum, 159 (2019), pp. 353-357.

6. Modric-Sahbazovic A., Novakovic M., Popovic M., Schmidt E., Gazdic I., Bibic N., Ronning C., Rakocevic Z., Formation of Ag nanoparticles in Si (100) wafers by single and multiple low energy Ag ions implantation, Surface and Coatings Technology 377, 2019, 124913.

7. Prakash J., Tripathi A., Rigato V., Pivin J.C., Tripathi J., Chae K.H., Gautam S., Kumar P., Asokan K., Avasthi D. K., Synthesis of Au nanoparticles at the surface and embedded in carbonceeous matrix by 150 keV Ar ion irradiaion, J. Phys. D: Appl. Phys. 44, 2011, 125302.

8. Tuzhilkin M.S., Bespalova P.G., Mishin M.V., Kolesnikov I.E., Karabeshkin K.V., Karaseov P.A., Titov A.I., Formation of Au Nanoparticles and Features of Etching of a Si Substrate under Irradiation with Atomic and Molecular Ions, Semiconductors 54 (1), 2020, 137-143.

9. Titov, A.I., Karaseov, P.A., Azarov, A.Yu., Kucheyev, S.O., Effects of the density of collision cascades: Separating contributions from dynamic annealing and energy spikes, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267 (16), 2009, 2701-2704.

10. Studzinsky, V.M., Mishin, M.V., Karaseov, P.A., Karabeshkin, K.V., Yurina, U.V., Ion-Beam-Induced Formation of Gold Plasmonic Structures on Polymer Film, 2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 2020, pp. 216-218, doi: 10.1109/ EExPolytech50912.2020.9243992.

11. Ziegler, J. F., Ziegler, M. D., Biersack, J.P., SRIM - The stopping and range of ions in matter (2010), Nucl. Instr. Meth. Phys.Res. B, 268(11-12), 2010, pp. 1818-1823.

THE AUTHORS

STUDZINSKII Vitalii M.

svm.fl@mail.ru

ORCID: 0000-0002-2149-2978

FEDORENKO Elizaveta D.

lizasever69@mail.ru ORCID: 0000-0002-4292-9796

KARABESHKIN Konstantin V.

yanikolaus@yandex.ru

platon.karaseov@spbstu.ru

KARASEOV Platon A.

ORCID: 0000-0003-1770-1877

ORCID: 0000-0003-2511-0188

KONDRATEVA Anastasia S.

kondrateva_n@spbau.ru ORCID: 0000-0003-3915-9329

MISHIN Maksim V. svm.fl@mail.ru

ORCID: 0000-0002-9195-3266

Received 15.07.2022. Approved after reviewing 17.07.2022. Accepted 17.07.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.