Научная статья на тему 'EFFECT OF NOBLE METAL NANOPARTICLES IN TRANSITION METAL OXIDE MAGNETRON SPUTTERING'

EFFECT OF NOBLE METAL NANOPARTICLES IN TRANSITION METAL OXIDE MAGNETRON SPUTTERING Текст научной статьи по специальности «Нанотехнологии»

CC BY
34
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
METAL-INDUCED CATALYTIC GROWTH / NOBLE METAL NANOPARTICLE / TRANSITION METAL OXIDES / OPTOELECTRONIC DEVICE

Аннотация научной статьи по нанотехнологиям, автор научной работы — Kondrateva A.S., Komarevtsev I.M., Enns Ya.B., Kazakin A.N., Mishin M.V.

The purpose of this work is to study the transition metal oxides with metal nanoparticles structures formation features. A design technology is proposed, consisting of the oxide matrix magnetron sputtering, noble metal nanoparticles thermal evaporation and dewetting, and covering it with oxide. Gold nanoparticles, nickel and titanium oxides were used as materials under investigation. Metal-induced catalytic growth of nickel and titanium oxides on gold nanoparticles has been found. It is shown that the top layer being formed has a pronounced texture. During the process, cones are formed with an opening angle of 10-12° and a predominant growth direction coinciding with the crystallographic axis perpendicular to the (111) surface. The optical and electrical characteristics of the formed coatings were studied. The results obtained indicate a broad prospect of using the formed structures in the field of integrated optoelectronic devices.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «EFFECT OF NOBLE METAL NANOPARTICLES IN TRANSITION METAL OXIDE MAGNETRON SPUTTERING»

i l St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.2) 2022

Conference materials UDC 620.3

DOI: https://doi.org/10.18721/JPM.153.216

Effect of noble metal nanoparticles in transition metal oxide magnetron sputtering

A. S. Kondrateva I. M. Komarevtsev 12 H, Ya. B. Enns 12, A. V. Kazakin 12, M. V. Mishin 12

1 Alferov University, St. Petersburg, Russia;

2 Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia

H [email protected]

Abstract. The purpose of this work is to study the transition metal oxides with metal nanoparticles structures formation features. A design technology is proposed, consisting of the oxide matrix magnetron sputtering, noble metal nanoparticles thermal evaporation and dewetting, and covering it with oxide. Gold nanoparticles, nickel and titanium oxides were used as materials under investigation. Metal-induced catalytic growth of nickel and titanium oxides on gold nanoparticles has been found. It is shown that the top layer being formed has a pronounced texture. During the process, cones are formed with an opening angle of 10—12° and a predominant growth direction coinciding with the crystallographic axis perpendicular to the (111) surface. The optical and electrical characteristics of the formed coatings were studied. The results obtained indicate a broad prospect of using the formed structures in the field of integrated optoelectronic devices.

Keywords: metal-induced catalytic growth, noble metal nanoparticle, transition metal oxides, optoelectronic device

Funding: This study was funded by Ministry of Education foundation grant number FSRM-2020-0011.

Citation: Kondrateva A. S., Komarevtsev I. M., Enns Ya. B., Kazakin A. N., Mishin M. V., Effect of noble metal nanoparticles in transition metal oxide magnetron sputtering, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 86—90. DOI: https://doi.org/10.18721/JPM.153.216

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 620.3

DOI: https://doi.org/10.18721/JPM.153.216

Влияние наночастиц благородных металлов на магнетронное распыление оксидов переходных металлов

А. С. Кондратьева 12, И. М. Комаревцев 12 н, Я.Б. Эннс 12, А.В. Казакин 12, М.В. Мишин 12

1 Алферовский университет, Санкт-Петербург, Россия;

2 Санкт-Петербургский политехнический университет, Санкт-Петербург, Россия

н [email protected]

Аннотация. Целью данной работы является изучение особенностей формирования оксидов переходных металлов с металлическими наночастицами. Предложена технология формирования материалов, состоящая из магнетронного напыления оксидной матрицы, термокоагуляции наночастиц благородных металлов и покрытия их оксидом. В качестве исследуемых материалов использовались наночастицы золота, оксиды никеля и титана. Обнаружен металлоиндуцированный каталитический рост оксидов никеля и титана на наночастицах золота. Показано, что образующийся верхний слой имеет

© Kondrateva A. S., Komarevtsev I. M., Enns Ya. B., Kazakin A. N., Mishin M. V., 2022. Published by Peter the Great St.

Petersburg Polytechnic University.

ярко выраженную текстуру. В процессе образуются конусы с углом раскрытия 10—12° и преимущественным направлением роста, совпадающим с кристаллографической осью, перпендикулярной поверхности (111). Исследованы оптические и электрические характеристики сформированных покрытий. Полученные результаты указывают на широкую перспективу использования сформированных структур в области интегральных оптоэлектронных устройств.

Ключевые слова: металл-индуцированный каталитический рост, наночастицы благородных металлов, оксиды переходных металлов, оптоэлектронное устройство

Финансирование: Работа выполнена в рамках Государственного задания «Активные композитные материалы и методики анализа для (био)сенсорики» (код темы FSRM-2020-0011).

Ссылка при цитировании: Кондратьева А. С., Комаревцев И. М., Эннс Я. Б., Казакин А. Н., Мишин М. В. Влияние наночастиц благородных металлов на магнетронное распыление оксидов переходных металлов // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.2. С. 86—90. DOI: https://doi.org/10.18721/ JPM.153.216

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

For the last decades there is a growing need for functional layers with tailored optoelectrical properties, however the bare materials does not usually provide the required characteristics [1, 2]. Thereat, a mixture of materials with precisely guided organization in order to enhance the device features is required. In this respect the noble metal nanoparticles (NPs) dispersed inside semiconductor matrices have recently been under extensive study as high-performance active layers material in numerous integrated optoelectronic devices [3]. Generally, active layers are formed in thin film configuration by using chemical deposition (wet chemistry [4] or CVD [5]), and physical (magnetron deposition [6]). The former are convenient in that they allow the matrix and a filler formation in one process, the latter are more technologically applicable. A wide range of chemical and physical techniques are also used to obtain noble metal nanoparticles [7]. However, despite each of physical techniques requiring expensive deposition equipment, they produce films with sufficient control of NP size, size distribution, and spatial distribution within the layer.

This paper is focused on the metal oxide film (MOF) deposition on AuNPs research for potential enhancement of properties for optoelectronic devices. The purpose of this work is to study the transition metal oxides with metal nanoparticles structures formation features using nickel and titanium oxides as an example and to investigate the optical and electrical properties of the formed functional coatings.

Materials and Methods

In this work, TiO2 films were obtained by reactive magnetron sputtering (DC) with a Ti target in an O/Ar gas mixture on amorphous quartz and Si substrates. The gas ratio varied in the range 0.2-1 at an operating pressure of 1.8 mTorr. NiO films were obtained by reactive magnetron sputtering (DC) with a Ni target in an O/Ar gas mixture on amorphous quartz and Si substrates. The gas ratio varied in the range 0.2-1 at an operating pressure of 1.8 mTorr. The film's thicknesses were controlled by ellipsometry and stands at 50-100 nm. The technique described in [8] were used for AuNP formation.

The structure of the samples were analyzed by scanning electron microscopy (SEM), using a JEOL JSM-7001F equipped with Energy Dispersion Spectroscopy (EDS) attachment Bruker XLash 6/30. Top-view and cross-sectional images were obtained using both secondary and backscattered electrons, respectively for morphology studies and atomic weight contrast of the Au NPs. The behavior of TiO2 and NiO on gold nanoparticles were investigated in terms of texturing and crystallinity. The technique described in [9] were used for electrical and optical experiments.

© Кондратьева А. С., Комаревцев И. М., Эннс Я. Б., Казакин А. Н., Мишин М. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

4

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2

Results and Discussion

SEM images of cleavages show two oxide layers, between which there is a clearly defined boundary (Fig.1). In both cases, the formation of an oxide layer with a pronounced structure was observed above the boundary. At the boundary, there are Au nanocrystallites, the average grain size of 50 ± 1 nm.

Fig. 1. Cross-sectional images of fabricated nanostructure (Si/NiO/AuNP/NiO (a)

and Si/TiO2/AuNP/TiO2) (b)

In the case of Si/NiO/AuNP/NiO (SNAN) (Fig.2, a), the EDS results show the presence of O, Si, Ni and Au. In the case of SNAN, the average size of bunsenite crystallites in the lower and upper layers was 35 ± 2 nm and 45 ± 1 nm. The layers differ in the predominant orientation of crystallites (200) and (111), respectively. It was supposed that Au particles acted as a catalyst for the formation of nickel oxide textured in the (111) direction.

The EDS results for Si/TiO/AuNP/TiO2 (STAT) indicate the presence of O, Si, Ti, and Au. In the case of STAT (Fig.2, b), the average size of anatase crystallites was 70 ± 1 nm, and for rutile, 100 ± 5 nm. That is, the presence of Au particles also contributed to the formation of texture. That is, the presence of gold nanoparticles on the oxide surface provokes the formation of a textured oxide layer. a)

NO (111)

yj

Au (111)

d CO

v

y

(200)

35 36 37 38 39 40 41 42 43 44 45

24 26 28 30 32 34 36 38 40 42

2 Thetta, grad 2 Thetta, grad

Fig. 2. XRD spectra of fabricated heterostructures

A similar behavior of systems is described for a-Si crystallization. It is known that a strong covalent bond is present in a bulk crystal, which is responsible for the high crystallization temperature. However, covalent bonds in a-Si weaken at the interface with the metal layer [10], which ensures a relatively high mobility of atoms at the interface. This fact can ensure the crystallization of a-Si at low temperatures. The bond weakening effect is a local electronic interaction, and the thickness of the free interfacial silicon layer is estimated at approximately 2 Si monolayers.

In immiscible metal/semiconductor systems, these two monolayers of interfacial free atoms in a-Si can mediate the low temperature crystallization process by (i) crystallizing at the metal interface and/or (ii) diffusing through the metal grain to the outer boundary of the system.

44

The ratio of the probabilities of the occurrence of these processes is determined by the ratio between the change in the "bulk" Gibbs energies and the change in the corresponding surface and interfacial energies. This process is called Metal-Induced Crystallization (MIC).

In the case of the considered oxide systems, directional crystallization is observed at the metal/semiconductor interface, which is supported by the additional introduction of material into the system during magnetron deposition of the material. During the process, cones are formed with an opening angle of 10-12° and a predominant growth direction coinciding with the crystallographic axis perpendicular to the (111) surface. A similar behavior of the deposit during magnetron sputtering was observed in the [11] for gold nanoparticles.

The formed structures showed a significant increase in the electrical response when illuminated with visible light [8], which indicates the prospects for the use of these materials as optically active layers in devices for various purposes.

Conclusion

In this work the transition metal oxides with metal nanoparticles structures formation features were demonstrated. A novel technology is proposed, consisting of the oxide layer magnetron sputtering, Au nanoparticles thermal evaporation and dewetting. Through covering it with oxide the MIC growth of nickel and titanium oxides on gold nanoparticles has been found. The optical and electrical characteristics of the formed NiO and TiO2 based coatings were investigated. The results obtained indicate a broad prospect of using the formed structures in the field of integrated optoelectronic devices.

Acknowledgments

Authors wishing to acknowledge the Ministry of Education foundation for financial support assistance (№ FSRM-2020-0011).

REFERENCES

1. Lad R. J., Interactions at metal/oxide and oxide/oxide interfaces studied by ultrathin film growth on single-crystal oxide substrates, Surface Review and Letters. 2 (01) (1995) 109-126.

2. Mallah A. R., Zubir M. N. M., Alawi O. A., Kazi S. N., Ahmed W., Sadri R., Kasaeian A., Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency, Renewable Energy. 187 (2022) 1204-1223.

3. Kumar A, Choudhary P, Kumar A, Camargo P H, Krishnan V., Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis, Small. 18(1) (2022) 2101638.

4. Tamm A., Acik I., Arroval T., Kasikov A., Seemen H., Marandi M., Krunks M., Mere A., Kukli K., Aarik J, Plasmon resonance effect caused by gold nanoparticles formed on titanium oxide films. Thin Solid Films. 616 (2016) 449-455.

5. Kulczyk-Malecka J., Donaghy D., Delfour-Peyrethon B., Werner M., Chalker P. R., Bradley J. W., Kelly P. J., Nb-doped TiO2 coatings developed by high power impulse magnetron sputtering-chemical vapor deposition hybrid deposition process, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 38 (3) (2020) 033410.

6. Proen^a M., Borges J., Rodrigues M., Meira D., Sampaio P., Dias J., Pedrosa P., Martin N., Bundaleski N., Teodoro O., Vaz F., Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensing, Applied Surface Science. 484 (2019) 152-168.

7. Bigall N., Eychmuller A., Synthesis of noble metal nanoparticles and their non-ordered superstructures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368 (1915) (2010) 1385-1404.

8. Enns Y., Kondrateva A., Komarevtsev I., Kazakin A., Vyacheslavova E., Kuznetsov A., Andreeva V., Mishin M., Study of the optical properties of a NiO/AuNP/NiO nanocomposite film transferred onto a transparent flexible substrate, Journal of Physics: Conference Series. 2103 (1) (2021) 012106.

9. Enns Y, Kondrateva A, Mishin M., The Simulation of Gold Nanoparticle in a TiO2 Matrix Absorption and Reflection Spectra, Journal of Physics: Conference Series. 1695 (1) (2020) 012115.

^St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2 ^

10. Wang Z., Gu L., Philipp F., Wang J., Jeurgens L., Mittemeijer E., Metal-Catalyzed Growth of Semiconductor Nanostructures Without Solubility and Diffusivity Constraints, Advanced Materials. 23 (7) (2011) 854-859.

11. Soshnikov I.P., Dubrovsky V.G., Sibirev N.V., Barchenko B.T., Vertekha A.V., Ustinov G.E.,

Formation of arrays of GaAs whisker nanocrystals on a Si (111) substrate by magnetron deposition, JTF Letters. 32 (12) (2006) 28-33.

THE AUTHORS

KONDRATEVA Anastasia S.

[email protected] ORCID: 0000-0003-3915-9329

KAZAKIN Alexey V.

[email protected] ORCID: 0000-0001-8762-1587

KOMAREVTSEV Ivan M.

MISHIN Maxim V.

[email protected] ORCID: 0000-0002-9195-3266

[email protected]

ORCID: 0000-0001-5118-8152

ENNS Yakob B.

[email protected]

ORCID: 0000-0003-4396-2368

Received 27.07.2022. Approved after reviewing 04.08.2022. Accepted 16.08.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.