Научная статья на тему 'Heavy metal removal by cellulose-based textile waste product'

Heavy metal removal by cellulose-based textile waste product Текст научной статьи по специальности «Химические науки»

CC BY
239
85
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕКСТИЛЬНЫЕ ЦЕЛЛЮЛОЗОСОДЕРЖАЩИЕ ОТХОДЫ / КАТИОНООБМЕННАЯ СМОЛА НА ОСНОВЕ СУЛЬФИРОВАННОЙ ЦЕЛЛЮЛОЗЫ / ТЯЖЕЛЫЕ МЕТАЛЛЫ / СТОЧНЫЕ ВОДЫ / TEXTILE CELLULOSE-CONTAINING WASTE / SULPHONATED CELLULOSE CATION EXCHANGE RESINS / HEAVY METALS / WASTEWATER

Аннотация научной статьи по химическим наукам, автор научной работы — Pugacheva Inna N., Karmanov Andrei V., Zueva Svetlana B., De Michelis Ida, Ferella Francesco

The textile industry is a source of significant amounts of cellulosic waste that can be processed into promising sorbents. The aim of study was understanding the adsorption behavior of metal ions on cellulose surfaces obtained from cellulose textile waste of light industry. Previous studies have shown that unmodified cellulose-based ion exchange resins obtained at different pH values were able to remove metal ions from aqueous solution. In present work the cellulose-based ion exchange resins were prepared by H2SO4 hydrolysis of initial waste product with following neutralization up to different pH and drying at 80 °C. Based on the fractional composition of powdered sorbents, the weighted average particle size of the sorbents used is determined: sorbents with pH = 1.5 - 3 ≈ 0.57 mm; sorbents with pH = 5 - 7 ≈ 0.14 mm. The IR analysis of the elemental composition of the particles showed the presence of bound sulfate groups in the powder sorbent with pH = 1.5-3. The results of experiments showed that the modification of the surface of the cellulose waste with sulfuric acid increased the effect of adsorption of Ni, Fe and Pb ions from an aqueous solution. It has been established that the electrostatic interaction between surface functional groups plays a significant role in the adsorption properties of the sorbents obtained. The affinity of sulphonic acid resins for cations generally varies with the ionic size and charge of the cation. This study showed that adsorption capacities of studied metals were in the order of Fe3+2+2+. Resulting cellulose particles have sulfate groups on their surface, which have wide range of applications for the removal of heavy metal ions from wastewater.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

УДАЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ ТЕКСТИЛЬНЫМИ ОТХОДАМИ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ

Текстильная промышленность является источником значительных количеств целлюлозных отходов, которые можно перерабатывать в перспективные сорбенты. Целью исследования было изучение адсорбционного поведения ионов металлов на целлюлозных поверхностях, полученных из целлюлозных текстильных отходов легкой промышленности. Проведенные ранее исследования показали, что немодифицированные ионообменные смолы на основе целлюлозы, полученные при различных значениях pH, способны удалять ионы тяжелых металлов из водных растворов. В представленной работе ионообменные смолы на основе целлюлозы получали гидролизом исходного отхода серной кислотой с последующей нейтрализацией до различных значений pH и сушкой при 80 °С. Средневзвешенный размер частиц используемых сорбентов был определен на основе фракционного состава порошкообразных сорбентов и составил 0,57 мм (рН = 1,5 - 3) и 0,14 мм (рН = 5 - 7). ИК-анализ элементного состава частиц выявил наличие связанных сульфатных групп в порошковом сорбенте с рН = 1,5-3. Результаты экспериментов показали, что модификация поверхности целлюлозного отхода серной кислотой повысила эффект адсорбции ионов Ni, Fe и Pb из водной среды. Сродство сульфокислотных смол к катионам обычно зависит от размера ионов и заряда катиона. Установлено, что значительную роль в адсорбционных свойствах полученных сорбентов играет электростатическое взаимодействие между поверхностными функциональными группами. Показано, что адсорбционная способность изучаемых металлов возрастает в ряду Fe3+ 2+ 2+. Результаты исследований позволяют сделать вывод о целесообразности применения модифицированных отходов целлюлозных текстильных отходов легкой промышленности для очистки сточных вод от ионов металлов.

Текст научной работы на тему «Heavy metal removal by cellulose-based textile waste product»

DOI: 10.6060/ivkkt.20206302.6098 УДК: 628.316.12

УДАЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ ТЕКСТИЛЬНЫМИ ОТХОДАМИ

НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ

И.Н. Пугачева, А.В. Карманов, С.Б. Зуева, I. De Michelis, F. Ferella, Л.В. Молоканова, F. Veglio

Инна Николаевна Пугачева*, Андрей Викторович Карманов

Факультет экологии и химической технологии, Воронежский государственный университет инженерных технологий, просп. Революции, 19, Воронеж, Российская Федерация, 394036 E-mail: eco-inna@yandex.ru *, andrikar93@yandex.ru

Светлана Борисовна Зуева

Факультет экологии и химической технологии, Воронежский государственный университет инженерных технологий, просп. Революции, 19, Воронеж, Российская Федерация, 394036

Faculty of industrial and information engineering and Economics, University of L'Aquila, Via Giovanni Gronchi 18, L'Aquila, 67100, Italy E-mail: s.b.zueva16@gmail.com

Ida De Michelis, Francesco Ferella, Francesco Veglio

Faculty of industrial and information engineering and Economics, University of L'Aquila, Via Giovanni Gronchi 18, L'Aquila, 67100, Italy

E-mail: ida.demichelis@univaq.it, francesco.ferella@univaq.it, francesco.veglio@univaq.it Лариса Витальевна Молоканова

Кафедра промышленной экологии, оборудования химических и нефтехимических производств Воронежского государственного университета инженерных технологий, просп. Революции, 19, Воронеж, Российская Федерация, 394036 E-mail: larisa280272@yandex.ru

Текстильная промышленность является источником значительных количеств целлюлозных отходов, которые можно перерабатывать в перспективные сорбенты. Целью исследования было изучение адсорбционного поведения ионов металлов на целлюлозных поверхностях, полученных из целлюлозных текстильных отходов легкой промышленности. Проведенные ранее исследования показали, что немодифицированные ионообменные смолы на основе целлюлозы, полученные при различных значениях pH, способны удалять ионы тяжелых металлов из водных растворов. В представленной работе ионообменные смолы на основе целлюлозы получали гидролизом исходного отхода серной кислотой с последующей нейтрализацией до различных значений pH и сушкой при 80 °С. Средневзвешенный размер частиц используемых сорбентов был определен на основе фракционного состава порошкообразных сорбентов и составил 0,57мм (рН = 1,5 - 3) и 0,14мм (рН = 5 - 7). ИК-анализ элементного состава частиц выявил наличие связанных сульфатных групп в порошковом сорбенте с рН = 1,5-3. Результаты экспериментов показали, что модификация поверхности целлюлозного отхода серной кислотой повысила эффект адсорбции ионов Ni, Fe и Pb из водной среды. Сродство сульфокислотных смол к катионам обычно зависит от размера ионов и заряда катиона. Установлено, что значительную роль в адсорбционных свойствах полученных сорбентов играет электростатическое взаимодействие между поверхностными функциональными группами. Показано, что адсорбционная способность изучаемых металлов возрастает в ряду Fe3+ <Pb2+ <Ni2+. Результаты исследований позволяют сделать вывод о целесообразности применения модифицированных отходов целлюлозных текстильных отходов легкой промышленности для очистки сточных вод от ионов металлов.

Ключевые слова: текстильные целлюлозосодержащие отходы, катионообменная смола на основе сульфированной целлюлозы, тяжелые металлы, сточные воды

HEAVY METAL REMOVAL BY CELLULOSE-BASED TEXTILE WASTE PRODUCT I.N. Pugacheva, A.V. Karmanov, S.B. Zueva, I. De Michelis, F. Ferella, L.V. Molokanova, F. Veglio

Inna N. Pugacheva*, Andrei V. Karmanov

Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Revolution

ave., 19, Voronezh, 394036, Russia

E-mail: eco-inna@yandex.ru *, andrikar93@yandex.ru

Svetlana B. Zueva

Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Revolution ave., 19, Voronezh, 394036, Russia

Faculty of Industrial and Information Engineering and Economics, University of L'Aquila, Via Giovanni Gronchi, 18,

L'Aquila, 67100, Italy

E-mail: s.b.zueva16@gmail.com

Ida De Michelis, Francesco Ferella, FrancescoVeglio

Faculty of Industrial and Information Engineering and Economics, University of L'Aquila, Via Giovanni Gronchi, 18, L'Aquila, 67100, Italy

E-mail: ida.demichelis@univaq.it; francesco.ferella@univaq.it, francesco.veglio@univaq.it Larisa V. Molokanova

Department of Industrial Ecology, Equipment of Chemical and Petrochemical Industries, Voronezh State University of Engineering Technologies, Revolution ave., 19, Voronezh, 394036, Russia E-mail: larisa280272@yandex.ru

The textile industry is a source of significant amounts of cellulosic waste that can be processed into promising sorbents. The aim of study was understanding the adsorption behavior of metal ions on cellulose surfaces obtained from cellulose textile waste of light industry. Previous studies have shown that unmodified cellulose-based ion exchange resins obtained at different pH values were able to remove metal ions from aqueous solution. In present work the cellulose-based ion exchange resins were prepared by H2SO4 hydrolysis of initial waste product with following neutralization up to different pH and drying at 80 °C. Based on the fractional composition ofpowdered sorbents, the weighted average particle size of the sorbents used is determined: sorbents with pH = 1.5 - 3 ~ 0.57 mm; sorbents with pH = 5 - 7 ~ 0.14 mm. The IR analysis of the elemental composition of the particles showed the presence of bound sulfate groups in the powder sorbent with pH = 1.5-3. The results of experiments showed that the modification of the surface of the cellulose waste with sulfuric acid increased the effect of adsorption of Ni, Fe and Pb ions from an aqueous solution. It has been established that the electrostatic interaction between surface functional groups plays a significant role in the adsorption properties of the sorbents obtained. The affinity of sulphonic acid resins for cations generally varies with the ionic size and charge of the cation. This study showed that adsorption capacities of studied metals were in the order of Fe3+<Pb2+<Ni2+. Resulting cellulose particles have sulfate groups on their surface, which have wide range of applications for the removal of heavy metal ions from wastewater.

Key words: textile cellulose-containing waste, sulphonated cellulose cation exchange resins, heavy metals, wastewater

Для цитирования:

Пугачева И.Н., Карманов А.В., Зуева С.Б., De Michelis I., Ferella F., Молоканова Л.В., Veglio F. Удаление тяжелых металлов текстильными отходами на основе целлюлозы. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 2. С. 105-110

For citation:

Pugacheva I.N., Karmanov A.V., Zueva S.B., De Michelis I., Ferella F., Molokanova L.V., Veglio F. Heavy metal removal by cellulose-based textile waste product. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem & Chem Tech.]. 2020. V. 63. N 2. P. 105-110

INTRODUCTION

Despite the variety of sorbents used [1-3], many of them do not satisfy the entire set of requirements for materials of this type, in connection with which the search and development of new sorption materials is carried out constantly [4-6]. Priority is to obtain relatively cheap sorption materials based on industrial wastes, since waste is reused [7-10].

Cellulose is cheap, renewable, biodegradable, and the most abundant organic raw material in the world [11-15]. During recent years, removal of heavy metal ions, both from waste water and natural waters, has gained importance to solve and minimize the industrial and ecological waste problems [16-18]. Cellulose particles as adsorbents for water purification have been an area of great interest in materials science research in recent years [19]. Owing to the hierarchical structure and tailor able adsorption behavior via surface chemical modification with negative binding groups such as carboxylic, sulfate, and phosphate, cellulose has shown excellent potential to adsorb water pollutants such as dyes pesticides, bacteria and virus, and a wide range of heavy metal ions [20].

It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents [22]. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment [21]. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. [22].

Application of sulfuric acid results in negative surface charge formation due to incorporation of a number of sulfate groups at the surface of the cellulose nanocrystal. The number of sulfate groups will dependent on the hydrolysis time and the sulfuric acid concentration [16]. From other hand, these groups can be removed by washing with dilute sodium hydroxide solutions, or by high temperature [17, 18].

It was shown [20] that the surface modification of cellulose microspheres by sulfate and phosphate functionalities improves the adsorption of metal ions from the aqueous medium.

This paper presents the results of the experiments studying sorption of Fe3+ Ni and Pb3+ ions from aqueous solutions by cellulose-based ion exchange resins, depending on the pH of the resin and duration of the process.

MATERIALS AND METHODS

Model solution was prepared by dissolving the standard metal salts in distilled water. Concentrations of metal ions in the standard solution were 5 mg/L for each studied metals: Fe3+, Ni2+, Pb2+.

A quantitative analysis was carried out by atomic absorption spectroscopy (AAS) (spectrometer Spectr AA 200, Varian) in order to evaluate the accurate content of Me in model solutions.

pH measurements were made using PS-2 pH meter which was calibrated with pH 6.86 and pH 4.00 standard buffers before use.

Infrared spectroscopy (FTIR, Impact 410 Ni-colet spectrophotometer) was used to characterize the obtained sorbents.

All quantitative analyses were run in triplicate for reproducibility of data and results in the figures and tables were the averaged ones.

The sorbents samples were analyzed using a scanning electron microscope (SEM, JSM-6380 LV).

Wastes product containing cotton fiber were used to produce powdered cellulose-based sorbent.

PREPARATION OF SORBENT FROM TEXTILE CELLULOSE-CONTAINING WASTE

Wastes containing cotton fiber were used to produce powdered cellulose-based sorbent. In all the experiments, a flask containing cellulose waste and diluted H2SO4 (30 % wt.) were mixed and placed in thermostatic bath at 70 °C and kept under thermostatic control for 2 h, with following neutral leaching and drying at 80 °C of the resulting pulp.

Neutral leaching tests were carried out at room temperature in a jacketed stirred reactor tank at different cotton waste/distillate water ratios, in order to reach desired pH of leach liquor, by mixing at 100 rpm for 1 h. After what suspensions were filtered and filter cakes were dried at 80 °C for 2 h and grounded up to finer-dispersed state. Depend on resulting leaching liquor pH following sorbents were obtained: KC1 (without neutral leaching step with initial pH = 1.5); KC2 (pH = 3); KC3 (pH = 5); KC4 (pH = 7).

The IR spectroscopy data are presented in Fig. 1. Based on the fractional composition of powdered sorbents, the weighted average particle size of the sorbents used is determined: sorbents with pH = 1.5-3 ~ 0.57 mm; sorbents with pH = 5-7 ~ 0.14 mm. In turn, the analysis of the elemental composition of the particles showed the presence of bound sulfate groups in the powder sorbent with pH = 1.5-3.

Fig. 1. IR spectra of studied cellulose-containing resins Рис. 1. ИК-спектры исследуемых ионообменных смол на основе целлюлозы: 1 - КС1; 2 - КС2; 3 - КС3; 4 - КС4

b

Fig. 2. SEM images of cellulose-based resins obtained at different

pH: (а) рН = 1.5 - 3; (b) рН = 5 - 7 Рис. 2. СЭМ-изображения исследуемых ионообменных смол на основе целлюлозы: (а) рН = 1,5 - 3; (b) рН = 5 - 7

ADSORPTION EXPERIMENT

Adsorption experiments were carried in a jacketed stirred reactor tank. The time and mixing speed were set with an automatic controller.

Kinetic study of the heavy metal adsorption was investigated for sorbents dosages 1% wt. The suspensions were mixed under stirring during to 10, 20, 30, 40, 50 and 60 min at 250 rpm. All experiments have been realized at 25 °C.

The suspensions have been constituted by dissolving 0.5 g of powder in 50 mL of standard solution. At the end of the mixing, the suspensions have been

filtrated. The residual concentration of Fe, Ni and Pb in the supernatant has been determined by atomic absorption spectroscopy with inductively coupled plasma emission spectrometer "Agilent Technologies 5100 ICP-OES".

Removal percentage for each ion based on its initial concentration was calculated according to following equation:

Removal percentage (%) = [(Ci-Cf)/Ci]100%

where Ci is the initial concentrations of Fe3+, Ni2+, Pb2+ ions in the solution (mg metal ion/L); and Cf is the concentrations of Fe3+, Ni2+, Pb2+ ions in the solution after adsorption (mg metal ion/L).

The sorption capacity of the resin were calculated according to equation below:

qe=(Ci - Cb)V/m were Ci and Cb are the initial and final concentrations of Fe3+, Ni2+, Pb2+ ions, respectively (mg/L); V is the volume of the solution, L; m is the sorbent mass, mg.

RESULTS AND DISCUSSION

Cellulose nanocrystals prepared by H2SO4 hydrolysis have sulfate groups on their surface (Fig. 1). The process of sulfuric acid-hydrolysis of cellulose fibers for the preparation of cellulose nanocrystals includes an esterification reaction between acid and cellulose molecules, which induces the covalent coupling of sulfate groups on the surface of prepared sorbents [18]. Negatively charged sulfate groups play an important role in both surface chemistry and physical properties of obtained sorbents. Chemical reaction of cotton cellulose and sulfuric acid is presented below:

OSO.H C,.HX) OSO;ll + nH.O 0S03Hjn

In this case, metal removal from model solution can be explained by following reactions: 0S03H] " [ OR

CI I.O, OSOJT t- nNaOH ç J to, OR R 0S03Hjn [ OR Jn

Fig. 3, shows the adsorption rate of Fe, Ni and Pb from model solution after adding studied adsorbents. Concentration of all studied metals reached a minimum after 15 min and then increased for all studied sorbents apart KC4 (pH = 7).

The affinity of sulphonic acid resins for cations generally varies with the ionic size and charge of the cation. Results of experiment show that Fe, Ni and Pb are rapidly adsorbed on the all sorbents. However, the adsorption capacities of studied metals were in the order of Fe3+ < Pb2+ < Ni2+. It also was found that no desorption of studied metals occurred in case of sorbent with pH = 7.

с6н7о2

Oil

-OH OH

nH,SO, -

-OH -ONa

c d

Fig. 3. The effect of process time on metal removing (1 - Ni; 2 - Fe; 3 - Pb) by studied cellulose-based resins prepared at different pH

values: (a) - pH=1.5; (b) - pH=3; (c) - pH=5; (d) - pH=7 Рис. 3. Влияние продолжительности процесса на эффект удаления металлов (1 - Ni; 2 - Fe; 3 - Pb) исследуемыми ионообменными смолами на основе целлюлозы, полученными при разных рН: (a) - pH=1.5; (b) - pH=3; (c) - pH=5; (d) - pH=7

CONCLUSIONS

Unmodified cellulose-based ion exchange resins obtained at different pH values were able to remove Fe3+, Pb2+, and Ni2+ ions from aqueous solution serving as a model for a contaminated water medium.

The surface functionality of cellulose, ligand contents, depended on the pH of the resin, and electrostatic interaction played a significant role in the adsorption properties of the studied cellulose.

ЛИТЕРАТУРА

1. Лаптедульче Н.К., Дремичева Е.С. Сравнительная оценка эффективности сорбционной очистки сточных вод от тяжелых металлов. Вода: химия и экология. 2014. №№ 12 (78). С. 81-87.

2. Обуздина М.В., Руш Е.А., Шалунц Л.В. Решение экологических проблем очистки сточных вод путем создания сорбента на основе цеолита. Экология и пром-ть России. 2017. № 8. С. 20-25. DOI: 10.18412/1816-0395-2017-8-20-25.

3. Величко Л.Н., Рубановская С.Г. Использование природных материалов при извлечении ионов металлов. LAP LAMBERT Academic Publishing. 2012. 76 с (in Russian).

4. Filiz КА., Zeynep E. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mat. 2006. B 137. Р. 909-914. DOI: 10.1016/j.jhazmat.2006.03.014.

5. Ольшанская Л.Н., Собгайда Н.А., Валиев Р.Ш. Извлечение тяжелых металлов из загрязненных стоков с использованием адсорбентов и фитосорбентов. Экология и пром-ть России. 2015. №> 11. С. 18-23. DOI: 10.18412/1816-0395-2015-11-18-23.

It was shown, that the surface modification of cellulose by sulfuric acid improved the adsorption of Ni, Fe and Pb ions from the aqueous medium.

It was also shown that KC4 sorbent provided maximum metal ion removal without any desorption of metal ions.

The modification of studied cellulose-based ion exchange resins will be the subject of further studies in our laboratories.

REFERENCES

1. Laptedulche N.K., Dremicheva E.S. Comparative evaluation of the efficiency of sorption treatment of wastewater from heavy metals. Voda: Khim. Ekolog. 2014. N 12 (78). P. 81-87 (in Russian).

2. Obuzdina M.V., Rush E.A., Shalunts L.V. Solving environmental problems of wastewater treatment by creating a sorbent based on zeolite. Ekolog. Promysh. Rossii. 2017. N 8. P. 20-25 (in Russian).

3. Velichko L.N., Rubanovskaya S.G. The use of natural materials in the extraction of metal ions. LAP LAMBERT Academic Publishing. 2012. 76 p. (in Russian).

4. Filiz N.A, Zeynep E. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mat. 2006. B 137. P. 909-914. DOI: 10.1016/j.jhazmat.2006.03.014.

5. Olshanskaya L.N., Sobgaiyda N.A., Valiev R.Sh. Extraction of heavy metals from contaminated sewage using adsorbents and phytosorbents. Ekolog. Promysh. Rossii. 2015. N 11. P. 18-23 (in Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6. Guo X., Zhang S., Shan X. Adsorption of metal ions on lignin. J. Hazard. Matter. 2008. N 151. Р. 134-142. DOI: 10.1016/j.jhaz-mat.2007.05.065.

7. Hisham A. Essawyb, Magdy F. Mohameda, Nabila S. Am-marc, Hanan S. Ibrahimc. The promise of a specially-designed graft copolymer of acrylic acidonto cellulose as selective sorbent for heavy metal ions. Internal J. Biolog. Macromol. 2017. N 103. Р. 261-267. DOI: 10.1016/j.ijbiomac.2017.05.052.

8. Родионова Д.С. Очистка сточных вод тяжелых металлов сорбентами, полученными из отходов переработки природного сырья. Adv. Sci. 2017. № 3. С. 78-85.

9. Ильичев В.А., Колчунов В.И., Бакаева Н.В., Кобелева С.А. Экологическая безопасность использования текстильных отходов в промышленности строительных материалов. Изв. вузов. Технология текстил пром-ти. 2017. № 1 (367). С. 194-198.

10. Пугачева И., Никулин С. Композиционные материалы: получение, свойства и применение. LAP LAMBERT Academic Publishing. 2017. 219 с (in Russian).

11. Никулин С.С., Пугачева И.Н. Применение отходов текстильной промышленности для получения порошкообразных наполнителей. Изв. вузов Химия и хим. технология. 2012. Т. 55. Вып. 5. С. 104-107.

12. Misin V.M., Nikulin S.S., Pugacheva IN. Cellulose-based textile waste treatment into powder-like fillers for emulsion rubbers. Engineering textiles research methodologies, concepts, and modern applications. Apple Academic Press. 2016. Р. 59-77.

13. Пугачева И.Н, Никулин С.С. Интенсификация процесса сушки каучука введением полимерных наполнителей на стадии его производства. Междун. журн. прикл. и фунд. иссл. 2011. № 10. С. 54-55 https://applied-research.ru/ru/article/view?id= 1743.

14. Misin V.M., Nikulin S.S., Pugacheva IN. A study on possibilities for cellulose-based textile waste treatment into powder-like fillers for emulsion rubber. Process advancement in chemistry and chemical engineering research. Canada: Apple Academic Press Inc. 2016. P. 37-53.

15. Пугачева И.Н., Никулин С.С., Седых В.А. Композиционные материалы на основе бутадиен-стирольного каучука, содержащие органические порошкообразные добавки. Материалы. Технологии. Инструменты. 2014. Т. 19. № 1. С. 64-66.

16. Hubbe M.A., Hasan S.H., Ducoste J.J. Cellulosic substrates for removal ofpollutants from aqueous systems: a review. Metals, Bi-oResources. 2011. N 6(2). Р. 2161-2287.

17. Kozlov V.A., Nikiforova T.E., Loginova V.A., Koifman O.I Mechanism of protodesorption-exchange of heavy metal cations forprotons in a heterophase system of H2O-H2SO4-MSO4-cellu-losesorbent. J. Hazard. Mat. 2015. N 299. Р. 725-732.

18. Hokkanen S., Bhatnagar A., Sillanpaa M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016. N 91. P. 156-173. DOI: 10.1016/j.watres.2016.01.008.

19. Онищенко Д.В., Рева В.П., Чаков В.В. Использование возобновляемого растительного сырья для формирования функциональных материалов. Экология и пром-ть России. 2013. № 1. С. 39-43. DOI: 10.18412/1816-0395-2013-1-39-43.

20. Abdel-Halim E.S. Chemical modification of cellulose extracted from sugarcane bagasse. Arab. J. Chem. 2014. N 7. P. 362-371. DOI: 10.1016/j.arabjc.2013.05.006

21. Gamze Guclu, Gulten Gurdag, Saadet Ozgumus. Competitive Removal of Heavy Metal Ions by Cellulose Graft Copolymers. J. Appl. Polymer Sci. 2003.V. 90. P. 2034-2039. DOI: 10.1002/app.12728.

22. Hokkanen S., Bhatnagar A., Sillanpaa M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016. V. 91. 15. P. 156-173. DOI: 10.1016/j.watres.2016.01.008.

6. Guo X., Zhang S., Shan X. Adsorption of metal ions on lignin. J. Hazard. Matter. 2008. N 151. P. 134-142. DOI: 10.1016/j.jhaz-mat.2007.05.065.

7. Hisham A. Essawyb, Magdy F. Mohameda, Nabila S. Amman:, Hanan S. Ibrahimc. The promise of a specially-designed graft copolymer of acrylic acidonto cellulose as selective sorbent for heavy metal ions. Internat. J. Biolog. Macromol. 2017. N 103. P. 261-267. DOI: 10.1016/j.ijbiomac.2017.05.052.

8. Rodionova D.S. Cleaning of wastewater from heavy metals by sorbents obtained from waste from processing of natural raw materials. Adv. Sci. 2017. N 3. P. 78-85 (in Russian).

9. Ilyichev V.A., Kolchunov V.I, Bakaeva N.V., Kobeleva S.A. Environmental safety of the use of textile waste in the building materials industry. Izv. Vuzov. Technol. Teks.Promysh. 2017. N 1 (367). P. 194-198 (in Russian).

10. Pugacheva I, Nikulin S. Composite materials: preparation, properties and application. LAP LAMBERT Academic Publishing. 2017. 219 p. (in Russian).

11. Nikulin S.S., Pugacheva I.N. The use of waste textile industry to produce powdered fillers. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2012. V. 55. N 5. P. 104-107 (in Russian).

12. Misin V.M., Nikulin S.S., Pugacheva IN. Cellulose-based textile waste treatment into powder-like fillers for emulsion rubbers. Engineering textiles research methodologies, concepts, and modern applications. Apple Academic Press. 2016. P. 59-77.

13. Pugacheva IN., Nikulin S. S. Intensification of the drying process of rubber by the introduction of polymer fillers at the stage of its production. Mezhd..Zhurn. Prikl. Fund. Issl. 2011. N 10. P. 54-55 (in Russian).

14. Misin V.M., Nikulin S.S., Pugacheva IN. A study on possibilities for cellulose-based textile waste treatment into powder-like fillers for emulsion rubber. Process advancement in chemistry and chemical engineering research. Canada: Apple Academic Press Inc. 2016. P. 37-53.

15. Pugacheva IN., Nikulin S.S., Sedykh V.A. Composite materials based on butadiene-styrene rubber, containing organic powder additives. Materials. Technologies. Instruments. 2014. V. 19. N 1. P. 64-66 (in Belarus).

16. Hubbe M.A., Hasan S.H., Ducoste J.J. Cellulosic substrates for removal ofpollutants from aqueous systems: a review. Metals, Bi-oResources. 2011. N 6(2). P. 2161-2287.

17. Kozlov V.A, Nikiforova T.E., Loginova V.A., Koifman O.I Mechanism of protodesorption-exchange of heavy metal cations forprotons in a heterophase system of H2O-H2SO4-MSO4-cellu-losesorbent. J. Hazard. Mat. 2015. N 299. P. 725-732.

18. Hokkanen S., Bhatnagar A., Sillanpaa M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016. N 91. P. 156-173. DOI: 10.1016/j.watres.2016.01.008.

19. Onischenko D.V., Reva V.P., Chakov V.V. Use of renewable plant material for the formation of functional materials. Ekolog. Promysh. Rossii. 2013. N 1. P. 39-43 (in Russian).

20. Abdel-Halim E.S. Chemical modification of cellulose extracted from sugarcane bagasse. Arab. J. Chem. 2014. N 7. P. 362-371. DOI: 10.1016/j.arabjc.2013.05.006

21. Gamze Guclu, Gulten Gurdag, Saadet Ozgumus. Competitive Removal of Heavy Metal Ions by Cellulose Graft Copoly-mers. J. Appl. Polymer Sci. 2003. V. 90. P. 2034-2039. DOI: 10.1002/app.12728.

22. Hokkanen S., Bhatnagar A., Sillanpaa M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016. V. 91. 15. P. 156-173. DOI: 10.1016/j.watres.2016.01.008.

Поступила в редакцию (Received) 03.07.2019 Принята к опубликованию (Accepted) 30.12.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.