Научная статья на тему 'Regression analysis of zinc and cadmium ion extraction from aqueous solutions using a lignin-based sulphur-containing sorbent'

Regression analysis of zinc and cadmium ion extraction from aqueous solutions using a lignin-based sulphur-containing sorbent Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
53
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
WATER PURIFICATION / WASTEWATER / ZINC / CADMIUM / ADSORPTION / THE SULPHUR-CONTAINING SORBENT / LIGNIN / ВОДООЧИСТКА / СТОЧНЫЕ ВОДЫ / ЦИНК / КАДМИЙ / АДСОРБЦИЯ / СЕРОСОДЕРЖАЩИЙ СОРБЕНТ / ЛИГНИН

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Aslamova V.S., Chernysheva E.A., Grabelnykh V.A., Levanova E.P., Russavskaya N.V.

The article briefly discusses aspects of the pollution of wastewater with zinc and cadmium compounds. Among the methods developed for treating such wastewater, adsorption technologies, which require the availability of effective, accessible and budget-friendly sorbents, are dominant. The most appropriate way of manufacturing such sorbents is from waste products generated by other industries. Given the fact that lignin comprises a large-tonnage waste of wood chemistry, organochlorine, epichlorohydrin and sodium polysulphide production, the possibilities of using sulphur-containing sorbents obtained from lignin for the extraction of zinc and cadmium compounds from aqueous solutions are considered. Experimental data on the pH effect on the extraction of the studied ions and their adsorption kinetics are obtained. The dependence of the adsorption value on the initial concentration of ions is constructed in the form of adsorption isotherms. Due to the complex coordination mechanism of sorption of Zn2+ and Cd2+ ions by sulphur-containing sorbents, thermodynamic and kinetic dependencies can be seen to deviate from the predications of classical laws. In this regard, the method of regression analysis is used to process the experimental data, with the obtained nonlinear equations of regression satisfactorily describing the observed regularities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РЕГРЕССИОННЫЙ АНАЛИЗ ЗАКОНОМЕРНОСТЕЙ ИЗВЛЕЧЕНИЯ ИОНОВ ЦИНКА И КАДМИЯ ИЗ ВОДНЫХ РАСТВОРОВ СЕРОСОДЕРЖАЩИМ СОРБЕНТОМ НА ОСНОВЕ ЛИГНИНА

В статье кратко рассмотрены проблемы, связанные с загрязнением сточных вод соединениями цинка и кадмия. Среди разработанных методов очистки таких сточных вод важное место принадлежит адсорбционным технологиям. Для их реализации требуется наличие эффективных, доступных и дешевых сорбентов, которые целесообразнее всего получать с использованием отходов других производств. Рассмотрены возможности применения для извлечения соединений цинка и кадмия из водных растворов серосодержащих сорбентов, получаемых из лигнина многотоннажного отхода лесохимии, хлорорганических отходов производства эпихлоргидрина и полисульфида натрия. Экспериментально получены данные по влиянию величины рН на извлечение исследуемых ионов; начальной концентрации ионов на показатель адсорбции (построение изотерм адсорбции) и по кинетике адсорбции. Учитывая комплексно-координационный механизм сорбции ионов Zn2+ и Cd2+ серосодержащими сорбентами, в соответствие с которым термодинамические и кинетические зависимости могут отклоняться от классических закономерностей, для обработки экспериментальных данных использован метод регрессионного анализа. Получены нелинейные уравнения регрессии, которые удовлетворительно описывают наблюдаемые закономерности.

Текст научной работы на тему «Regression analysis of zinc and cadmium ion extraction from aqueous solutions using a lignin-based sulphur-containing sorbent»

ПРИКЛАДНАЯ ЭКОЛОГИЯ / APPLIED ECOLOGY Оригинальная статья / Original article УДК 66.067.8.081.3+66.012

DOI: http://dx.doi.org/10.21285/2227-2925-2018-8-4-174-183

REGRESSION ANALYSIS OF ZINC AND CADMIUM ION EXTRACTION FROM AQUEOUS SOLUTIONS USING A LIGNIN-BASED SULPHUR-CONTAINING SORBENT

© V.S. Aslamova*, E.A. Chernysheva*, V.A. Grabelnykh**, E.P. Levanova**, N.V. Russavskaya*

* Irkutsk State Transport University

15, Chernyshevskogo St., Irkutsk, 664074, Russian Federation ** A.E. Favorsky Irkutsk Institute of Chemistry SB RAS 1, Favorskogo St., Irkutsk, 664033, Russian Federation

ABSTRACT. The article briefly discusses aspects of the pollution of wastewater with zinc and cadmium compounds. Among the methods developed for treating such wastewater, adsorption technologies, which require the availability of effective, accessible and budget-friendly sorbents, are dominant. The most appropriate way of manufacturing such sorbents is from waste products generated by other industries. Given the fact that lignin comprises a large-tonnage waste of wood chemistry, organochlorine, epichlorohydrin and sodium polysul-phide production, the possibilities of using sulphur-containing sorbents obtained from lignin for the extraction of zinc and cadmium compounds from aqueous solutions are considered. Experimental data on the pH effect on the extraction of the studied ions and their adsorption kinetics are obtained. The dependence of the adsorption value on the initial concentration of ions is constructed in the form of adsorption isotherms. Due to the complex coordination mechanism of sorption of Zn2+ and Cd2+ ions by sulphur-containing sorbents, thermodynamic and kinetic dependencies can be seen to deviate from the predications of classical laws. In this regard, the method of regression analysis is used to process the experimental data, with the obtained nonlinear equations of regression satisfactorily describing the observed regularities.

Keywords: water purification, wastewater, zinc, cadmium, adsorption, the sulphur-containing sorbent, lignin

Information about the article: Received May 8, 2018; accepted for publication November 25, 2018; available online December 29, 2018.

For citation Aslamova V.S., Chernysheva E.A., Grabelnykh V.A., Levanova E.P., Russavskaya N.V. Regression analysis of zinc and cadmium ion extraction from aqueous solutions using a lignin-based sulphur-containing sorbent. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2018, vol. 8, no. 4, pp. 174-183. (In Russian). DOI: 10.21285/2227-2925-2018-8-4-174-183

РЕГРЕССИОННЫЙ АНАЛИЗ ЗАКОНОМЕРНОСТЕЙ ИЗВЛЕЧЕНИЯ ИОНОВ ЦИНКА И КАДМИЯ ИЗ ВОДНЫХ РАСТВОРОВ СЕРОСОДЕРЖАЩИМ СОРБЕНТОМ НА ОСНОВЕ ЛИГНИНА

© В.С. Асламова*, Е.А. Чернышева*, В.А. Грабельных**, Е.П. Леванова**, Н.В. Руссавская*

* Иркутский государственный университет путей сообщения 664074, Российская Федерация, г. Иркутск, ул. Чернышевского, 15 ** Иркутский институт химии им. А.Е. Фаворского СО РАН 664033, Российская Федерация, г. Иркутск, ул. Фаворского, 1

РЕЗЮМЕ. В статье кратко рассмотрены проблемы, связанные с загрязнением сточных вод соединениями цинка и кадмия. Среди разработанных методов очистки таких сточных вод важное место принадлежит адсорбционным технологиям. Для их реализации требуется наличие эффективных, доступных и дешевых сорбентов, которые целесообразнее всего получать с использованием отходов других производств. Рассмотрены возможности применения для извлечения соединений цинка и кадмия из водных растворов серосодержащих сорбентов, получаемых из лигнина - многотоннажного отхода лесохимии, хлорорганических отходов производства эпихлоргидрина и полисульфида

натрия. Экспериментально получены данные по влиянию величины рН на извлечение исследуемых ионов; начальной концентрации ионов на показатель адсорбции (построение изотерм адсорбции) и по кинетике адсорбции. Учитывая комплексно-координационный механизм сорбции ионов 2п2+ и С&2* серосодержащими сорбентами, в соответствие с которым термодинамические и кинетические зависимости могут отклоняться от классических закономерностей, для обработки экспериментальных данных использован метод регрессионного анализа. Получены нелинейные уравнения регрессии, которые удовлетворительно описывают наблюдаемые закономерности. Ключевые слова: водоочистка, сточные воды, цинк, кадмий, адсорбция, серосодержащий сорбент, лигнин.

Информация о статье: Дата поступления 8 мая 2018 г.; дата принятия к печати 25 ноября 2018 г.; дата онлайн-размещения 29 декабря 2018 г.

Для цитирования. Асламова В.С., Чернышева Е.А., Грабельных В.А., Леванова Е.П., Руссавская Н.В. Регрессионный анализ закономерностей извлечения ионов цинка и кадмия из водных растворов серосодержащим сорбентом на основе лигнина // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8, N 4. С. 174-183. DOI: 10.21285/2227-2925-2018-8-4-174-183

INTRODUCTION

While drinking water quality standards are generally becoming more stringent, the environmental burden of wastewater discharge into surface water reservoirs is constantly increasing. Under current conditions, one of the most significant environmental factors is the pollution of wastewater with heavy metals1 as a result of the increase in metal consumption on the part of major part of industries [1]. Among the heavy metals, zinc and cadmium compounds are a particular case in point. Firstly, these metals are the primary pollutants generated by the electroplating industry . Secondly, they are widely used in many other areas, such as the production of chemical current sources, pigments, catalysts, alloys and lubricant additives3. Thus, the development of methods for removing zinc and cadmium compounds from wastewater becomes one of the priorities of modern technological civilisation.

Currently, a large number of methods for extracting zinc and cadmium compounds from wastewater are known [2]. However, some of them require additional consumption of chemical rea-

Sotnikova E.V., Dmitrienko V.P. Technospheric toxicology. Textbook. SPb.: "Lan" publishing house, 2013. 400 p. [Sotnikova E.V., Dmitrienko V.P. Tekhnosfernaya toksikologiya. Uchebnoe posobie. St. Petersburg: Lan Publ., 2013, 400 p.]

2 Volosatov V.A. Handbook of electrochemical and electrophysical processing methods. L.: Mechanical Engineering, 1988. 719 p. 3. [Volosatov V.A. Spra-vochnik po elektrokhimicheskim i elektrofizicheskim metodam obrabotki]. Leningrad: Mashinostroenie Publ., 1988, 719 p.

3 Rosin I.V., Tomina L.D. General and inorganic chemistry. Modern course. Study guide for bachelors and specialists. Moscow: Publishing house Yurayt, 2012. 1338 p. [Rosin I.V., Tomina L.D. Ob-shchaya i neorganicheskaya khimiya. Sovremen-nyi kurs. Uchebnoe posobie dlya bakalavrov i spetsialistov. Moscow: Yurait Publ., 2012, 1338 p.]

gents, while others are associated with increased power consumption. Moreover, many of them are ineffective or remain in the development stage. Often, when the application of a single method appears to be insufficient, a combination of several methods is used [3, 4]. Usually, reagent-based or electrochemical methods are provided to extract high concentrations of zinc and cadmium from wastewater [3, 5]. However, the degree of purification that meets sanitary standards for wastewater discharges into water bodies cannot be achieved by these methods. For relatively low (but excessive with respect to the allowable standards) concentrations of contaminating heavy metals, the most acceptable method of purification is adsorption [6-8]. However, the wide expansion of sorption technology in wastewater treatment is hampered by the absence of cheap and accessible high efficiency sorbents [9]. Ion exchange sorbents (ion exchange resins) possess high efficiency and selectivity [10]. Nevertheless, they are expensive and generally not produced by Russian industrial sectors. Expensive synthetic polymeric chelating sor-bents, which absorb metals by means of a complex coordination mechanism, are used only in analytical chemistry [11, 12]. For these reasons, the use of production waste is a promising approach for creating low-cost, highly-effective sorbents. Works [13-15] provide us with examples of sorbent production from wood industry [13, 14], drilling [15] by-products and others. For example, lignin represents a large-tonnage waste of the wood chemical industry, the recycling of which is an important environmental task [16]. A sulphur-containing sorbent based on lignin and organo-chlorine wastes from the production of epichloro-hydrin and sodium polysulfide, which effectively extracts heavy metal ions (including zinc and cadmium) from aqueous solutions, has already been elaborated by the present authors (the procedure of elaboration is described in detail in [17]). This paper presents the formation scheme of a sorbent polymer molecule; the sorption activity is equal to

423 mg/g and 445 mg/g for zinc and cadmium, respectively.

The present work is aimed at obtaining experimental data and regression dependencies of the sorption process for the metals under study. Namely, the effect of pH on the sorption value and the dependence of the sorption value on the initial metal concentration in solution are considered. In addition, the sorption kinetics of zinc ions is examined by means of a regression study.

Based on the data obtained by regression analysis, mathematical models of the sorption process are constructed with the possibility of description and development of the optimal conditions for the functioning of individual devices [21]. Conventional approaches to the mathematical models of adsorption processes are used for sorbents that provide adsorption isotherms of the "classical" type4 [7] and do not contain extrema. However, the sorption of metal ions on the sorbent under study proceeds via a complex coordination mechanism [17], which causes an «anomalous» type of isotherms and kinetic curves with clearly revealed extremes [19, 20]. It is in such cases that the development of regression models is most appropriate.

EXPERIMENTAL PART

The method of obtaining the sorbent and experimental studies on the extraction of heavy metals from aqueous solutions are described in detail in [17, 20]. The concentration of metals in solution before and after sorption was determined with a ZOMZ KFK-3 spectrophotometer using the dithi-zone method [21]. Here, the adsorption value A, mg/g is calculated using the formula:

A =

_V (C0 - Ck )

m

where V is the volume of the solution under study, ml; C o and Ck are the initial and final concentrations of zinc or cadmium ions in the solution, mg/ml; m is the mass of the sorbent used in the experiment, g. At least three experiments were carried out to determine the sorption value for every pH and concentration of Zn and Cd in the solution. Each point on the graph corresponds to an arithmetic mean of three experiments, provided that the experimental results deviate by no more than 10%. In cases where the specified deviation was exceeded, additional experiments were carried out.

The concentration of H+ ions in the solution (pH) was estimated using a pH-meter (pH 410) and adjusted by the addition of a 0,1 N solution of HCl or NaOH.

Statistical processing of experimental data is

Voyutsky S.S. The course of colloid chemistry. Moscow: Chemistry, 1975. 512 pp. [Voyutskii S.S. Kurs kolloidnoi khimii. Moscow: Khimiya Publ., 1975, 512 p.]

performed using Statgraphics Plus software. The type of the regression model is chosen according to the highest value of the coefficient of determination (R2, %), which shows what percentage of experimental data is described by this regression. The corrected coefficient of determination is also calculated (R2c, %) in order to assess the strength of relationship between the dependent and independent variable. Additionally, the values of mean squared a and absolute A errors as well as Durbin-Watson criterion (DW) are obtained due to their function as indicators of the absence of autocorrelation in experimental data.

DISCUSSION OF THE RESULTS

Figure 1 demonstrates the effect of pH on the extraction of Zn (Fig. 1, a) and Cd (Fig. 1, b) from aqueous solution. The points correspond to experimental data, with the regression line reflecting the dependence of the pH effect described by model (1) for Zn, and model (2) for Cd. The goodness of fit of the models are presented in Table.

Az„ = 70,643 - 0,539 x pH.

(1)

ACd = 83,571 + 3,048 x pH -1,583 x pH2 + 0,083 x pH3.

(2)

The goodness of fit of the obtained regressions to the experimental data can be inferred from Fig. 2, where the comparison of experimental data Ae with the adsorption values Ap calculated according to model (1) for Zn (Fig. 2, a) and model (2) for Cd (Fig. 2, b) is presented.

Considering the acid-base character of the studied cations [4], the pH effect on amphoteric zinc was studied up to pH = 5, and cadmium up to pH = 7, bearing in mind that above these values a precipitation of zinc and cadmium hydroxides, respectively, is possible. As a result, the most efficient extraction of zinc and cadmium cations is exhibited in sufficiently acidic media at pH 0,5-3,0 for Zn, and 1-5 for Cd.

The obtained dependences (1) and (2) correspond well to the known behaviour of Zn and Cd ions in aqueous solutions and make it possible to determine the adsorption value at any pH within the specified limits.

Fig. 3 shows the approximations of the thermo-dynamic data for the adsorption of Zn (Fig. 3, a) and Cd (Fig. 3, b) ions. The adsorption time comprises 3 hours. The values of pH are equal to 1,0 and 2,0 for Zn and Cd, respectively.

As can be seen from Fig. 3, the adsorption isotherms of Zn2+ and Cd2+ cations at 20 °C do not contain any extrema. This corresponds to the coordination of ions at the most active sorbent centres that, in turn, correlate well with the formation of hexa-coordinated complexes [17, 20]. In general, for both cations, the value of adsorption is higher than the same at higher temperature values (with the exception for Zn at 60 °C, see Fig. 7, b).

V.S. Aslamova, E.A. Chernysheva, V.A. Grabelnykh, E.P. Levanova, N.V. Russavskaya

At 40 °C, the adsorption isotherm is described by regression (5) and (6) for zinc and cadmium ions, respectively. The goodness of fit of the models are presented in Table

А60 = 0,1089 х Co - 0,00013 x C2

(8)

Ao = 0.0 3О x C + 0,34 x 1 0 4 x C2.

(5)

X C03 -1,054 X10 "9 X C04 + 2,738 x 10 "13 x C0E

(6)

For 40 °C, the shape of the adsorption isotherm for cadmium ions varies significantly. As can be seen from Figure 5b, extrema appear on the isotherm, which are caused by the desorption on the less active centres of the sorbent and their subsequent coordination on the more active centres.

The regressions (7) and (8) describe the adsorption isotherms at a temperature of 60 °C for Zn and Cd ions, respectively (see Fig. 7), with the goodness of fit of the models presented in Table.

Ao = О. О О 8 x C + 0.8 x 10~

x C2.

(7)

A comparison of experimental data and the same calculated by equations (5) and (6) are presented in Figure 6.

Fig. 8 depicts the comparison of experimental data and that calculated by equations (7) and (8).

The adsorption isotherm for Zn2+ at 60 °C shows slightly larger values of sorption than at 20 and 40 °C (see Fig. 7, a). Such a tendency is likely to correspond to the participation of lignin fragments in the process of sorption as an accompaniment of the coordination on sulphur atoms. Because Zn2+ cations are referred to stronger acids than cadmium cations3, they are capable of coordinating residues of lignin at the oxygen positions (rigid basic centres) that obtain a higher reactivity with the temperature increased.

For Cd2+ cations, at this temperature, both a decrease in the adsorption value and its extremum dependence on the initial concentration are observed (Fig. 7, b). This corresponds to the "softer" nature of Cd ions and their lack of coordination in the oxygen positions of lignin.

A

85

75

65

55

ч N .

0

pH

a b

Fig. 1. pH dependence of Zn (a) and Cd (b) extraction in aqueous solution Рис. 1. Зависимость извлечения Zn (а) и Cd (b) от рН водного раствора

75 b

Fig. 2. Comparison of calculated values Ac with experimental data Ae for Zn2+ (a) and Cd2+ (b) ions

Рис. 2. Сопоставление расчетных значений Ар с данными Аэ: Zn2+ (a), Cd2+ (b)

4

а

The regression dependence of the final concentration of zinc ions Ck, mg/l in solution on the time of adsorption t, min (kinetic curve pattern) with initial concentration C0 = 1 g/l, m = 0,242 g, V = 24 ml and 20 °C are described by equation (9) with the goodness of fit listed in the table and presented in Fig. 9, a. In Fig. 9, b, the comparison of the final concentration of zinc ions Ckc calculated by the formula (9) with experimental values Cke is presented.

C = 981,725 - 31,645 x t09 +1,087 x t1'5.

(9)

As can be seen from Fig. 9, a, for the first 30

minutes, zinc concentration in the solution decreases by more than 2 times when using a sorbent. However, after 90-100 minutes, zinc concentration in the solution increases again, and then begins to gradually decrease. This may possibly be determined by the course of desorption at the less active centres of the sorbent that are occupied in the first minutes of the process. The obtained regression dependence (9) provides the determination of the adsorption rate at any given time. The value of this rate can, in turn, be used in technological calculations.

The extraction of Cd2+ ions at 20 °C, which proceeds very rapidly (=10 min), is presented in Fig. 10.

A 20 so

40 30 20 10 0

/ У

.-■г"

A 20

30

20

10

У

/

/

200

400 600

800

Co

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

200 400 600 800 1000 CQ

a b

Fig. 3. Adsorption isotherms at 20 °С for zinc (a) and cadmium ions (b) Рис. 3. Изотермы адсорбции при температуре 20 °С ионов цинка (а) и кадмия (b)

Аэ

40 30 20 10

у

Л У

10

20

30

40

Ар

b

Fig. 4. Comparison of calculated values Ac with experimental data Ae at 20 °C for Zn (a) and Cd (b) ions.

Рис. 4. Сравнение расчетных значений Ар с экспериментальными Аэ при 20 °С: а - для ионов цинка, b - для ионов кадмия.

А40

60

40

20

О

у.

о

200 400 600 800 Cq

a b

Fig. 5. Adsorption isotherms at a temperature of 40 °С for zinc (a) and cadmium (b) ions Рис. 5. Изотермы адсорбции при температуре 40 °С ионов цинка (а) и кадмия (b)

а

40

a

b

Fig. 6. Comparison of calculated values Ac with experimental data Ae at 40 °C for zinc (a) and cadmium (b) ions

Рис. 6. Сравнение расчетных значений Ар с экспериментальными Аэ при 40 °С: а - для ионов цинка, b - для ионов кадмия

Або 20 15 10

5 0

_"

\

/ \

\

/

О

200

400

600

a b

Fig. 7. Adsorption isotherms at 60 °С for zinc (a) and cadmium (b) ions

Рис. 7. Изотермы адсорбции при температуре 60 °С ионов цинка (а) и кадмия (b)

Со

b

Fig. 8. Comparison of calculated values Ac with experimental data Ae at 60 °С for (a) zinc and (b) cadmium ions

Рис. 8. Сравнение расчетных значений Ар с экспериментальными Аэ при 60 °С: а - для ионов цинка, b - для ионов кадмия

Fig. 9 a. Dependence of the final concentration of zinc ions Ck on the adsorption time t

Рис. 9 а. Зависимость Ck ионов цинка от времени адсорбции t

Fig. 9 b. Comparison of calculated final concentration of zinc ions Ckc with experimental data Cke

Рис. 9 b. Сравнение расчетных Ckp с экспериментальными данными Ck3

a

Fig. 10. Dependence of the sorption activity of the sorbent on the adsorption time during the extraction of Cd2+ ions (C 0= 740 mg/l, m = 0,5 g, V = 50 ml)

Рис. 10. Зависимость сорбционной активности сорбента при извлечении ионов Ы+ от времени адсорбции (С0=740 мг/л, т = 0,5 г, V = 50 мл)

Table

The goodness of fit of the models

Таблица

Критерии адекватности регрессионных моделей

Formula number R 2, % R 2 c, % DW a A

(1) 95,50 94,38 2,52 0,23 0,16

(2) 91,40 82,81 2,77 4,82 2,71

(3) 95,00 94,00 3,46 5,75 3,65

(4) 99,19 99,08 1,82 1,28 0,98

(5) 94,02 92,82 2,09 6,84 4,85

(6) 91,82 83,63 2,37 2,97 1,56

(7) 97,56 97,07 3,21 5,47 3,53

(8) 97,44 96,80 2,59 1,57 0,97

(9) 95,23 92,04 1,95 92,81 92,15

CONCLUSION

The obtained data substantiate the possibility of efficient extraction of zinc and cadmium ions from aqueous solutions using a sulphur-containing lignin-based sorbent. The extraction patterns are well matched with regression models that can also be used to mathematically describe the adsorption isotherms and the kinetic curve pattern. As a re-

sult, the most effective sorption occurs at 20 °C and pH ranges of 0,5-3,0 and 1-5 for Zn and Cd, respectively. However, the possibility to increase the temperature for zinc ions is acceptable. The resulting regression equations provide the sufficient scientific background for the design of wastewater treatment plants aimed at the extraction of zinc and cadmium compounds.

1. Davydova S.L., Tagasov V.I. Tyazhelye metally kak supertoksikanty XXI veka [Heavy metals as supertoxicants of XXI century]. Moscow: Publishing house of PFUR, 2002, 140 p.

2. RodionovA.I., Klushin V.N., Sester V.G. Tek-

hnologicheskie protsessy ekologicheskoi bezopas-nosti [Technological processes of ecological safety]. Kaluga: N. Bochkareva Publ., 2000, 800 p.

3. Vinogradov S.S. Ekologicheski bezopasnoe gal'vanicheskoe proizvodstvo [Ecologically safe gal

vanic production]. Moscow: Globus Publ., 2002, 352 p.

4. Kolesnikov V.A., Varaksin S.O. Complex technologies of plating factories waste water purification. Vodoochistka [Water purification]. 2012, no. 7, pp. 43-47. (In Russian)

5. Rodionov A.I., Klushin V.N., Torocheshni-kov N.S. Tekhnika zashchity okruzhayushchei sredy [Environmental protection technology]. Moscow: Khimiya Publ., 1989, 512 p.

6. Smirnov A.D. Sorbtsionnaya ochistka vody [Sorption purification of water]. Leningrad: Khimiya Publ., 1982, 168 p.

7. Kel'tsev N.V. Osnovy adsorbtsionnoi tekhniki [Basics of adsorption technique]. Moscow: Khimiya Publ., 1984, 592 p.

8. Shi-syan' V.V., Gumarov R.Kh, Agzamkho-dzhaevv A.A. Coal sorbents for waste water purification. Ekologiya proizvodstva /Ecology of production]. 2012, no. 2, pp. 66-68. (In Russian)

9. Shumyatskii Yu.I. Promyshlennye adsor-btsionnye protsessy [Industrial adsorption processes]. Moscow: KolosS Publ., 2009, 183 p.

10. Dabrowski A., Hubicki Z., Podkoscielny P., Robens E. Selective removal of the heavy metal ions from waters and wastewaters by ion-exchange method. Chemosphere. 2004, vol. 56, no. 1, pp. 91-106.

11. Miasoedova G.V., Savvin S.B. Khelatoob-razuyushchie sorbenty [Chelating-forming sorbents]. Moscow: Nauka Publ., 1984, 171 p.

12. Barba P., Lieser K.H. Analitic Sorbents wilh isothiourea Fragments. // Zeitsrift fur analiticshe Chemie. 1977, bdl. 279, n. 2, s. 257-261. (In German)

13. Fogel A.A., Somin V.A., Komarova L.F. Investigation of the Sorption Properties of Materials Based on Wastes from Wood Production and Mineral Raw Materials. Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustainable Development]. 2011, no. 4 (19), pp. 461-465. (In Russian)

14. Somin VA., Fogel A.A., Komarova L.F. Metal ions removal from water by sorbents obtained from

waste wood and minerals. Ekologiya i promyshlen-nost' Rossii [Ecology and industry of Russia]. 2014, no. 2, pp. 56-60. (In Russian)

15. Alykov N.M., Pavlova A.V., Abuova G.B., Nguen Kkhan' Zui, Utyubaeva N.V. Adsorption of Ions of Iron, Cobalt, Nickel, Zinc, Cadmium, Chromium, Lead, Mercury from Water by OBR-1 Sorbent. Ekologiya i promyshlennost' Rossii [Ecology and industry of Russia]. 2011, no. 9, pp. 26-28. (In Russian)

16. Chudakov M.I. Promyshlennoe ispol'zo-vanie lignina [Industrial use of lignin]. Moscow: Khimiya Publ., 1983, 212 p.

17. Chernysheva E.A., Grabel'nykh V.A., Leva-nova E.P., Russavskaya N.V., Rozentsveig I.B., Kor-chevin N.A. New Approach to the Realization of Adsorption Properties of Lignin: Preparation of Sulphur-Containing Sorbents for Heavy Metal Ions Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustainable Development]. 2017, vol. 25, no. 3, pp. 327-332. (In Russian)

18. Zakgeim A.Yu. Vvedenie v modelirovanie khimiko-tekhnologicheskikh protsessov [Introduction to the modeling of chemical-technological processes]. Moscow: Khimiya Publ., 1982, 288 p.

19. Derbisher E.V., Ovdienko E.N., Gabitov R.I., Derbisher V.E., Chertkova M.V. Water post-treatment using polymeric carbon acids hydra-zides. Vodoochistka [Water purification]. 2011, no. 6, pp. 17-22. (in Russian)

20. Chernysheva E.A., Grabel'nykh V.A., Leva-nova E.P., Korchevin N.A. Using of sulfur-containing lignin based sorbent for extraction of mercury from aqueous solutions. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya [Izvestiya Vuzov. Applied chemistry and biotechnology]. 2017, vol. 7, no. 3, pp. 169-177. (In Russian)

21. Marchenko Z. Fotometricheskoe opre-delenie elementov [Photometric definition of elements]. Moscow: Mir Publ., 1971, 376 p.

1. Давыдова С.Л., Тагасов В.И. Тяжелые металлы как супертоксиканты XXI века. М.: Изд-во РУДН, 2002. 140 с.

2. Родионов А.И., Клушин В.Н., Сестер В.Г. Технологические процессы экологической безопасности. Калуга: Изд-во Н. Бочкаревой, 2000. 800 с.

3. Виноградов С.С. Экологически безопасное гальваническое производство / дод ред. В.Н. Кудрявцева. М.: Глобус, 2002. 352 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Колесников В.А., Вараксин С.О. Комбинированные технологии очистки сточных вод гальванических производств // Водоочистка. 2012. N 7. С. 43-47.

5. Родионов А.И., Клушин В.Н., Торочеш-ников Н.С. Техника защиты окружающей среды. М.: Химия, 1989. 512 с.

6. Смирнов А.Д. Сорбционная очистка воды. Л.: Химия, 1982. 168 с.

7. Кельцев Н.В. Основы адсорбционной тех-

ЖИЙ СПИСОК

ники. М.: Химия, 1984. 592 с.

8. Ши-сянь В.В., Гумаров Р.Х, Агзамход-жаевв А.А. Угольные адсорбенты для очистки сточных вод // Экология производства. 2012. N 2. С. 66-68.

9. Шумяцкий Ю.И. Промышленные адсорбционные процессы. М.: КолосС, 2009. 183 с.

10. Dabrowski A., Hubicki Z., Podkoscielny P., Robens E. Selective removal of the heavy metal ions from waters and wastewaters by ionexchange method // Chemosphere. 2004, vol. 56, no. 1, pp. 91-106.

11. Мясоедова Г.В., Саввин С.Б. Хелато-образующие сорбенты. М.: Наука, 1984. 171 с.

12. Barba P., Lieser K.H. Analitic Sorbents wilh isothiourea Fragments. // Zeitsrift fur analiticshe Chemie. 1977, bd. 279, n. 2, s. 257-261.

13. Фогель А.А., Сомин В.А., Комарова Л.Ф. Изучение сорбционных свойств материалов на

основе отходов производства древесины и минерального сырья // Химия в интересах устойчивого развития. 2011. N 4 (19). С. 461-465.

14. Сомин В.А., Фогель А.А., Комарова Л.Ф. Очистка воды от ионов металлов на сорбентах из древесных отходов и минерального сырья // Экология и промышленность России. 2014. N 2. С.56-60.

15. Алыков Н.М., Павлова А.В., Абуова Г.Б., Нгуэн Кхань Зуй, Утюбаева Н.В. Адсорбция из воды ионов железа, кобальта, никеля, цинка, кадмия, хрома, свинца, ртути сорбентом ОБР-1 // Экология и промышленность России. 2011. N 9. С. 26-28.

16.Чудаков М.И. Промышленное использование лигнина. М.: Химия, 1983. 212 с.

17. Чернышева Е.А., Грабельных В.А., Ле-ванова Е.П., Руссавская Н.В., Розенцвейг И.Б., Корчевин Н.А. Новый подход к реализации ад-

Contribution

Aslamova V.S., Chernysheva E.A., Grabelnykh V.A., Levanova E.P., Russavskaya N.V. carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Aslamova V.S., Chernysheva E.A., Grabelnykh V.A., Levanova E.P., Russavskaya N.V. have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare no conflict of interests regarding the publication of this article.

AUTHORS' INDEX Affiliations

Vera S. Aslamova

Dr. Sci. (Engineering), Professor

Irkutsk State University of Railway Transport

е-mail: aslamovav@yandex.ru

Evgeniya A. Chernysheva

Postgraduate Student

Irkutsk State University of Railway Transport e-mail: chernyscheva.evgeniya.a@mail.ru

Valentina A. Grabel'nykh

Ph.D. (Chemistry), Researcher

A.E. Favorsky Irkutsk Institute of Chemistry

SB RAS

e-mail: venk@irioch.irk.ru

Ekaterina P. Levanova

Ph.D. (Chemistry), Senior Researcher A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

e-mail: venk@irioch.irk.ru

сорбционных свойств лигнина: получение серосодержащих сорбентов для ионов тяжелых металлов // Химия в интересах устойчивого развития. 2017. Т. 25, N 3. С. 327-332.

18. Закгейм А.Ю. Введение в моделирование химико-технологических процессов. М.: Химия, 1982. 288 с.

19. Дербишер Е.В., Овдиенко Е.Н., Габитов Р.И., Дербишер В.Е.,Черткова М.В. Доочистка воды с применением полимерных гидразидов карбоно-вых кислот // Водоочистка. 2011. № 6. С. 17-22.

20. Чернышева Е.А., Грабельных В.А., Ле-ванова Е.П., Корчевин Н.А. Применение серосодержащего сорбента на основе лигнина для извлечения ртути из водных растворов //Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. № 3. С. 169-177.

21. Марченко З. Фотометрическое определение элементов / дер. с англ. М.: Мир. 1971. 376 с.

Критерии авторства

Асламова В.С., Чернышева Е.Е., Грабельных В.А., Леванова Е.П., Руссавская Н.В. выполнили экспериментальную работу, на основании полученных результатов провели обобщение и написали рукопись. Асламова В.С., Чернышева Е.Е., Грабельных В.А., Леванова Е.П., Руссавская Н.В. имеют на статью равные права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

СВЕДЕНИЯ ОБ АВТОРАХ Принадлежность к организации

Вера С. Асламова

Д. т. н., профессор

Иркутский государственный университет

путей сообщения

е-mail: aslamovav@yandex.ru

Евгения А. Чернышева

Аспирант

Иркутский государственный университет путей сообщения

е-mail: chernyscheva.evgeniya.a@mail.ru

Валентина А. Грабельных

К.х.н., научный сотрудник Иркутский институт химии им. А. Е. Фаворского СО РАН е-mail: venk@irioch.irk.ru

Екатерина П. Леванова

К.х.н., старший научный сотрудник Иркутский институт химии им. А. Е. Фаворского СО РАН е-mail: venk@irioch.irk.ru

Natalya V. Russavskaya

Dr. Sci. (Chemistry), Professor

Irkutsk State University of Railway Transport

e-mail: chem2007@mail.ru

Наталья В. Руссавская

Д.х.н, профессор

Иркутский государственный университет путей сообщения e-mail: chem2007@mail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.