Научная статья на тему 'HEAT RESISTANT FLUID INSULATING COAT'

HEAT RESISTANT FLUID INSULATING COAT Текст научной статьи по специальности «Строительство и архитектура»

CC BY
185
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
energy efficiency / thermal insulation material / thermal conductivity / microsphere / thermal insulation paint / stationary method / non-stationary method / thermocouple sensors

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Boburjon Tolibjonovich Tojiboyev

The article describes the results of experimental studies on the analysis and improvement of existing methods for determining the thermal conductivity of liquid composite heat-insulating coatings.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «HEAT RESISTANT FLUID INSULATING COAT»

HEAT RESISTANT FLUID INSULATING COAT

Boburjon Tolibjonovich Tojiboyev

Ferghana polytechnic institute bobirjon1988@mail.ru

ABSTRACT

The article describes the results of experimental studies on the analysis and improvement of existing methods for determining the thermal conductivity of liquid composite heat-insulating coatings.

Key words and phrases: energy efficiency, thermal insulation material, thermal conductivity, microsphere, thermal insulation paint, stationary method, non-stationary method, thermocouple sensors

The issues of energy conservation and energy efficiency, including the construction and operation of buildings and structures, have become intertwined in the world today. This is the limitation of energy sources, the high cost of energy and is associated with a negative impact on the environment as a result of its production. Currently, the construction market offers a variety of thermal insulation materials. The currently available foam polystyrene, many new materials are being added to the range of mineral wool heaters designed for use in a variety of climates and construction conditions.

In recent years, thermal insulation paints based on hollow ceramics, glass and

polymer microspheres have attracted a lot of attention.

These insulating paints have low thermal conductivity and excellent waterproofing after drying and is a high-tech composite material that forms an ultra-

thin polymer coating that is resistant to anticorrosion (anti-slip).

Coating for thermal insulation, waterproofing, protection against erosion (corrosion) of heating and engineering networks, process pipes, thermal energy and capacity equipment and designed for thermal insulation and protection of facades and interiors of building structures, residential and industrial buildings.

This attention can be explained by the extremely low coefficient of thermal conductivity of these paints produced. For example, the coefficient of thermal conductivity of corundum brand paints 0,001Bt/m,0C [1], "Bronya" paint -0,001Bt/m0C [2] is formed. Of course, such a thermal conductivity is similar to conventional heaters (extruded polystyrene foam, mineral wool, etc.) has a relative advantage over heat-insulating paints, hence the coefficient of thermal conductivity of extruded polystyrene foam is equal with 0,030 Bt/m ♦ 0C .

Therefore, the value of the thermal conductivity of liquid thermal insulation coatings in consumers is also has also aroused interest among researchers, as a result of which many experiments have been conducted to determine the thermal properties and effectiveness of these dyes.

The coefficient of thermal conductivity of air under normal conditions is 0,026 Bt/m,0C, thermal conductivity of absolute vacuum 0 Bt/m ♦ 0C [3]. Air is the best natural heat retainer [4].

The Tomsk State Institute of Architecture and Construction conducted an experiment on the method of GOST 7076-99 [5]. As a result of the work performed, the thermal conductivity of the two dyes was determined - 0,086 Bt/m,0C Ba 0,091 Bt/m,0Q These results are much worse than the figures given by paint manufacturers.

[4].

The thermal conductivity of corundum paint was determined according to TU 5760-001-83663241-2008 by the method M-001-2003 [6], developed by the Research Institute of the Federal State Unitary Enterprise "Plumbers". The development of this method was due to the fact that ultra-thin liquid composite coatings based on glass, ayomosilicate, perlite and similar microspheres are not suitable for determining the thermal conductivity by stationary and nonstationary methods.[4,5].

Volgograd State University of Architecture and Construction was engaged in determining the thermal conductivity of corundum paint. The technical conclusion based on the test results includes methods for determining the thermal characteristics and the value of - 0,001 Bt/m ,0C is equal to the thermal conductivity of corundum paint [7].

The technical conclusion of NIIMosstroy, based on the results of thermal engineering tests in accordance with GOST 26254-84 [8], states that the value of the thermal conductivity of corundum-facade thermal insulation coating is 0,12 Bt/m ♦ 0C and concluded that this material was unsuitable for thermal insulation of external walls

[9].

A study conducted by the Siberian State Academy of Automobile Construction showed that the heat loss in a steel pipe coated with corundum paint is 20-30% less than in an unpainted pipe [10].

The discrepancies between the results obtained can be explained primarily by the lack of normative methods for determining the thermal conductivity of new ultra-thin coatings obtained on the basis of microspheres.

The structure of all such paints consists of grids of hollow microspheres interconnected with acrylic film-forming substances. Therefore, determining the true thermal conductivity of liquid thermal insulation coatings is one of the urgent tasks at the present time.

The Youth Center for Innovative Technologies of the Fergana Polytechnic Institute is conducting research to improve the method of determining the thermal conductivity of ultra-thin thermal insulation coatings.

Based on the analysis of currently available methods in the development of the method, from the standard method of determining the thermal conductivity of liquid thermal insulation coatings [5] using a heat meter with a layer of material with a clear coefficient of thermal conductivity.

Such a substitution does not contradict the theory of the study of thermal processes. [11].

1- Fig. Schematic of the equipment for determining the thermal conductivity of

liquid thermal insulation coating.

1 stationary heat flow source; 2 is a layer of concrete material with a thickness and thermal conductivity (plexiglass 5=3,2 mm, X=0,19 Bt/(m°C); 3- thermal insulation coating layer; 4 heat insulator (foam); 5- "refrigerator" (water-filled capacity); 6-thickness a = 0,2 mm. made of wire «chromel copel» thermocouples; 7-switch; 8-equipment for measuring thermocouple readings

Procedure for determining the thermal conductivity of thermal insulation coating: The thermal conductivity of the liquid thermal insulation coating was calculated according to the following formula:

d

X =

AT

(1)

- 2R

Here du - thickness of the sample at the time of testing, m; ATu - the temperature difference at the surfaces of the test sample, 0C; qu - the density of the stationary heat flux passing through the test sample, Bt/m ; Rl - the thermal resistance of the copper plate coated with the test sample (paint), (M2«°C)/BT

The density of the stationary heat flux passing through the sample, qu, is given by the following formula:

q =

^2mmnaM (t1 ^2 )

s

Bm / M2

(2)

2KamnaM

here X and S - orgstekloni coefficient of thermal conductivity and thickness t1, t2 - the temperature at the boundaries of "heat source - orgsteklo layer" and "orgsteklo layer -test specimen", respectively. Thickness S = 0,5mm. the thermal conductivity of a copper plate X = 384 Вт/(м *°C)is equal with it.

During the study, the readings of the three thermocouple sensors were measured at intervals of 5 minutes for 0.5 h to "heat up" all its parts to stabilize the performance of the equipment and to stabilize the heat flow transmission. From the graph given in Figure 2, it can be seen that the equipment readings became stationary after 15 minutes.

To calculate the individual error of the thermocouple sensors, the temperature of each sensor immersed in a Dewar vessel filled with melted ice was measured before the start of the experiments, and the temperature deviation from 0 ° C was taken into account during the experiments.

Initial tests were performed to determine the reliability of the thermal conductivity measuring equipment of the thermal insulation paint.

Instead of the 3rd layer in the device (Fig. 1), an orgsteklo plate similar to the 2nd layer in terms of size, thickness and thermal conductivity was placed and its thermal conductivity was measured.

Time, minutes

2- picture. Indicators of the sensors of the three thermocouples of the equipment

The measurement results are the thermal conductivity of the tested orgsteklo plate X=0,186 Вт/(м ♦ °C) showed that In this case, the error of the method of determining the thermal conductivity:

A = 0,19 0,186 100 = 2,1% This error indicates that the error is not greater than the

0,19 &

error given in GOST [5] (± 3%) and indicates the correctness of the selected study scheme.

In recent years, in the Fergana Polytechnic Institute in cooperation with the company "Ferganaazot" has created hollow microspheres and significant research has been conducted on liquid heat-resistant insulation coatings created using various

binders (analog of our heat-saving coating). Uzbekistan www.scientificprogress.uz Page 527

The effectiveness of thin-layer thermal insulation coatings used in heat supply systems was determined, the technical and economic efficiency of the use of these

coatings was evaluated.

The Center for Energy Saving Technologies is in the BAM workshop the effectiveness of the application of energy-saving coatings on the heating steam supply

pipeline fl76 mm zadvijka to the station consumers was evaluated.

EJ1 Мах 77,6 СС

Min 56,5 °С

Е12 Мах 354,8 СС

Min 326,2 °С

EJ3 Мах 159,7 °С

Min 99,1 °С

EJ4 Мах 163,9 °С

Min 126,5 °С

EJ5 Мах 152,4 °С

Min 111,0 °С

3- Figure. Photo of paint coating

The inspection was outdoors. The coating is laid in 3 layers. The final thickness

was 3 mm. Total coating consumption was 0.9 liters.

Data for calculation:

Д pipe = 76mm.; The wall = +410°С (without insulation)

The wall - +18,40C (with coating)

2

F- the area of the valve surface = 0,3 m

For heat-insulated plots 1,58 Вт/м K For non-heat insulated plots 12 Bt/m K According to calculations, the heat loss from an uninsulated gate valve is 108.9 Kcal/ h, insulated - 9.13 Kcal/h.

The efficiency calculation showed that the coating allows to reduce the heat loss from the surface of the valve with a diameter of 76 mm from 108.9 to 9.13 (Kcal/h).

REFERENCES:

1. Маткаримов, Ш. А., Зияев, А. Т., Тожибоев, Б. Т., & Кучкаров, Б. У. (2020). ПОКРЫТИЕ ЗАДВИЖЕК И ЗАПОРНОЙ АРМАТУРЫ ТЕПЛОВЫХ СЕТЕЙ ЖИДКИМ ТЕПЛОИЗОЛЯЦИОННЫМ ПОКРЫТИЕМ. Universum: технические науки, (12-5 (81)).

2. Халилов, Ш. З., Тожибоев, Б. Т., & Кучкаров, Б. У. (2020). ПРИЧИНА СКАЧКОВ ПРИ ТРЕНИИ. Журнал Технических исследований, 3(1).

3. Tojiboyev, B. T. (2020). EUPHEMISM AND GENDER: LINGUOCULTURAL EUPHEMISMS AMONG MALES AND FEMALES IN UZBEK AND ENGLISH LANGUAGE. INTERNATIONAL JOURNAL OF DISCOURSE ON INNOVATION, INTEGRATION AND EDUCATION, 1(5), 8-11.

4. Qo'chqarov, B. U., Tojiboyev, B. T., & Axtambayev, S. S. (2021). Experimental determination of the gas consumption sent to the device for wet dusting in the humid mode. Экономика и социум, (6-1), 226-229.

5. Халилов, Ш. З., Тожибоев, Б. Т., Умаров, Э. С., & Кучкоров, Б. У. (2019). Прием и хранение зерновой смеси, поступающей после комбайнов. Журнал Технических исследований, (2).

6. Tojiboyev, B. T., & Mo, A. A. O. G. L. (2021). LIQUID COMPOSITION HEAT INSULATING COATS AND METHODS FOR DETERMINATION OF THEIR HEAT CONDUCTIVITY. Scientific progress, 2(6), 1628-1634.

7. Tojiboyev, B. T., & Alijon o'g'li, M. B. (2020). SOME QUESTIONS OF SUFFIXATION, IMPACT AND ALTERNATION BY THE BACKGROUND IN BORROWED WORDS WITH THE VALUE OF A FACE IN RUSSIAN. INTERNATIONAL JOURNAL OF DISCOURSE ON INNOVATION, INTEGRATION AND EDUCATION, 1(5), 71-77.

8. Kizi, D. N. O. M. (2021). Poetic use of euphemistic meaning and their sociolinguistics analysis. ACADEMICIA: AN INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL, 11(2), 1124-1131.

9. Qizi, D. N. O. M. (2020). Euphemisms dedicated to the theme of animals in the English and Uzbek languages. Вестник науки и образования, (10-3 (88)), 49-51.

10. Akramova, N. M., & Dekhkonboy, N. O. (2019). Phraseological euphemisms in modern English. Проблемы современной науки и образования, (12-2), 110-112.

11. Akramova, N. M. (2019). Dekhkonboy Nabirasi O. Phraseological euphemisms in modern English. Problemy Nauki, (12-2), 145.

12. Muzaffarovna, A. N., & Omongul, D. N. (2019). Phraseological euphemisms in modern English. Проблемы современной науки и образования, (12-2 (145)).

13. Рубидинов, Ш. F. У. (2021). Бикрлиги паст валларга совук ишлов бериш усули. Scientific progress, 1(6), 413-417.

14. Тешабоев, А. Э., Рубидинов, Ш. F. У., Назаров, А. F. У., & Fайратов, Ж. F. У. (2021). Машинасозликда юза тозалигини назоратини автоматлаш. Scientific progress, 1(5).

15. Nomanjonov, S., Rustamov, M., Rubidinov, S., & Akramov, M. (2019). STAMP DESIGN. Экономика и социум, (12), 101-104.

16. Юсупов, С. М., Fайратов, Ж. F. У., Назаров, А. F. У., & Юсуфжонов, О. F. У. (2021). КОМПАЗИЦИОН МАТЕРИАЛЛАРНИ БОРЛАШ. Scientific progress, 1(4).

17. Рубидинов, Ш. F. У., & Акбаров, К. И. У. (2021). МАШИНАСОЗЛИКДА СОЧИЛУВЧАН МАТЕРИАЛЛАРНИ ТАШИШДА ТРАНСПОРТЕР ТИЗИМЛАРИНИНГ АДАМИЯТИ. Scientific progress, 2(2), 182-187.

18. Рубидинов, Ш. F. У., & Fайратов, Ж. F. У. (2021). ШТАМПЛАРНИ ТАЪМИРЛАШДА ЗАМОНАВИЙ ТЕХНОЛОГИЯ ХРОМЛАШ УСУЛИДАН ФОЙДАЛАНИШ. Scientific progress, 2(5), 469-473.

18. Юлчиева, С. Б., Мухамедбаева, З. А., Негматова, К. С., Мадаминов, Б. М., & Рубидинов, Ш. Г. У. (2021). ИЗУЧЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПОРФИРИТОВЫХ ЖИДКОСТЕКОЛЬНЫХ КОМПОЗИЦИЙ В АГРЕССИВНОЙ СРЕДЕ. Universum: технические науки, (8-1 (89)), 90-94.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

19. Рубидинов, Ш. Г. У., & Fайратов, Ж. Г. У. (2021). КУП ОПЕРАЦИЯЛИ ФРЕЗАЛАБ ИШЛОВ БЕРИШ МАРКАЗИНИНГ ТАНА ДЕТАЛЛАРИГА ИШЛОВ БЕРИШДАГИ УНУМДОРЛИГИНИ ТАХЛИЛИ. Oriental renaissance: Innovative, educational, natural and social sciences, 1(9), 759-765.

20. Юсуфжонов, О. F., & Fайратов, Ж. F. (2021). ШТАМПЛАШ ЖАРАЁНИДА ИШЧИ ЮЗАЛАРНИ ЕЙИЛИШГА БАРДОШЛИЛИГИНИ ОШИРИШДА МОЙЛАШНИ АДАМИЯТИ. Scientific progress, 1(6), 962-966.

21. Рустамов, М. А. (2021). МЕТОДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ПОВЫШЕНИЯ ПРОЧНОСТИ ЗУБЧАТЫХ КОЛЕС. Scientific progress, 2(6), 721728.

22. Fayzimatov, S., & Rubidinov, S. (2021). DETERMINATION OF THE BENDING STIFFNESS OF THIN-WALLED SHAFTS BY THE EXPERIMENTAL METHODOLOGICAL METHOD DUE TO THE FORMATION OF INTERNAL STRESSES. International Engineering Journal For Research & Development, 6(2), 55.

23. Мирзаходжаев, Ш. Ш., Тожибоев, Б. Т., & Ахмедов, Р. Р. (2019). ХАРАКТЕРИСТИКА ОПЫТНОГО ОБРАЗЦА КОМБИНИРОВАННОГО ФРОНТАЛЬНОГО ПЛУГА С АКТИВНЫМИ РАБОЧИМИ ОРГАНАМИ.

In КОНЦЕПЦИИ УСТОЙЧИВОГО РАЗВИТИЯ НАУКИ В СОВРЕМЕННЫХ УСЛОВИЯХ (pp. 46-48).

24. Эргашев, Н. А., Маткаримов, Ш. А., Зияев, А. Т., Тожибоев, Б. Т., & Кучкаров, Б. У. (2019). Опытное определение расхода газа, подаваемое на пылеочищающую установку с контактным элементом, работающим в режиме спутникового вихря. Universum: технические науки, (12-1 (69)).

25. Mukhammadjonov, M. S., Tursunov, A. S., & Abduraximov, D. R. (2020). Automation of reactive power compensation in electrical networks. ISJ Theoretical & Applied Science, 05 (85), 615-618.

26. Мухаммаджонов, М. Ш. У. (2019). Исследование использования асинхронных машин при уменьшении энергетических потерь. Проблемы современной науки и образования, (12-1 (145)).

27. Mukhammadyusuf, M., Sherzod, P., & Behzod, A. (2020). Study of compensation of reactive power of short-circuited rotor of asynchronous motor. ACADEMICIA: An International Multidisciplinary Research Journal, 10(5), 625-628.

28. Таиров, Ш. М., & Абдуллаев, Б. Б. У. (2020). Чрезвычайные и критические изменения климата в странах центральной Азии. Universum: технические науки,

(2-1 (71)).

29. Рубидинов, Шохрух Гайратжон Угли, and Камолиддин Инхомали Угли Акбаров. "МАШИНАСОЗЛИКДА СОЧИЛУВЧАН МАТЕРИАЛЛАРНИ ТАШИШДА ТРАНСПОРТЕР ТИЗИМЛАРИНИНГ А^АМИЯТИ." Scientific progress 2.2 (2021): 182-187.

30. Рубидинов, Шохрух Гайратжон Угли, and Жасурбек Гайратжон Угли Гайратов. "ШТАМПЛАРНИ ТАЪМИРЛАШДА ЗАМОНАВИЙ ТЕХНОЛОГИЯ ХРОМЛАШ УСУЛИДАН ФОЙДАЛАНИШ." Scientific progress 2.5 (2021): 469473.

31. Акрамов, М. М. (2021). ПОВЫШЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ СТАЛЬНЫХ ДЕТАЛЕЙ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИОННОЙ ОБРАБОТКЕ. Scientific progress, 2(6), 129-133.

32. Акрамов, М. М. (2021). ДЕТАЛЛАРНИНГ ЮЗАЛАРИНИ КИМЁВИЙ-ТЕРМИК ИШЛОВ БЕРИШГА КАРАТИЛГАН ТАКЛИФЛАР. Scientific progress, 2(6), 123-128.

33. Akramov, M. M. (2021). METALLARNI KORROZIYALANISHI VA ULARNI OLDINI OLISH SAMARODORLIGI. Scientific progress, 2(2), 670-675.

34. Medatovna, K. Z., & Igorevich, D. D. (2021). Welding Equipment Modernization. International Journal of Human Computing Studies, 3(3), 10-13.

35. Рубидинов, Шохрух Гайратжон Угли, and Жасурбек Гайратжон Угли Гайратов. "КУП ОПЕРАЦИЯЛИ ФРЕЗАЛАБ ИШЛОВ БЕРИШ МАРКАЗИНИНГ ТАНА ДЕТАЛЛАРИГА ИШЛОВ БЕРИШДАГИ УНУМДОРЛИГИНИ ТАХЛИЛИ." Oriental renaissance: Innovative, educational, natural and social sciences 1.9 (2021): 759-765.

i Надоели баннеры? Вы всегда можете отключить рекламу.