Научная статья на тему 'GLASSFORMATION IN THE SYSTEM As2S3–Pr6O11'

GLASSFORMATION IN THE SYSTEM As2S3–Pr6O11 Текст научной статьи по специальности «Химические науки»

CC BY
141
134
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
glassformation / As2S3 / stoichiometric composition / Raman spectra / diffractogram. / стеклообразование / As2S3 / стехиометрический состав / Раман-спектр / дифрактограмма.

Аннотация научной статьи по химическим наукам, автор научной работы — I. B. Bakhtiyarli, G. M. Fatullayeva, O. Sh. Kerimli

Boundaries of glassformation in the system As2S3–Pr6O11 were studied using methods of physicochemical analysis (X-ray analysis, Raman spectra, Scanning electron microscope). It was established that in glassformation region the range of concentration covers from As2S3–Pr6O11 it is 13 mol%. Samples in the region of glassformation are stable at 300 K to air, water and organic solvents. Samples decompose in mineral acids and alkalies. In the region of glassformation at a temperature of 300 K were studied samples of density and microhardness.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СТЕКЛООБРАЗОВАНИЕ В СИСТЕМЕ As2S3–Pr6O11

Методами физико-химического анализа (РФА, Раман-спектр, СЕМ) определены границы области стеклообразования в системе As2S3–Pr6O11. Установлено, что в области стеклообразования концентрации со стороны As2S3–Pr6O11 доходят до 13 мол.%. Стекла разлагаются в минеральных кислотах и щелочах. Они устойчивы при 300 К к воздуху, воде и органическим растворителям. Изучены плотность и микротвердость образцов стекол при температуре 300 К.

Текст научной работы на тему «GLASSFORMATION IN THE SYSTEM As2S3–Pr6O11»

96

AZ9RBAYCAN KIMYA JURNALI № 1 2018

UDC 546(65.21^19,22)

GLASSFORMATION IN THE SYSTEM As2S3-Pr6O11

I.B.Bakhtiyarli, G.M.Fatullayeva, O.Sh.Kerimli

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

gulnarfatullayeva@gmail.com Received 25.07.2017

Boundaries of glassformation in the system As2S3-Pr6O11 were studied using methods of physico-chemical analysis (X-ray analysis, Raman spectra, Scanning electron microscope). It was established that in glassformation region the range of concentration covers from As2S3-Pr6O11 it is 13 mol%. Samples in the region of glassformation are stable at 300 K to air, water and organic solvents. Samples decompose in mineral acids and alkalies. In the region of glassformation at a temperature of 300 K were studied samples of density and microhardness.

Keywords: glassformation, As2S3, stoichiometric composition, Raman spectra, diffractogram.

Introduction

Glasses prepared on the basis of arsenic sulphide are used in electrophotographic cylinders for getting flawless images and "vidicon" tubes. Photoresistors prepared on the surface of organic polymers on the basis of these glasses are very sensitive to long-wave rays. Photothermoplastic bearers are used for preparation of holographic memory and taking high-quality microfilms. Even Japan scientists Y.Onmachi, N.Uchido suggested to use these glasses for modulation of laser rays and ultra sounds [1-5]. In this connection studying the properties of obtained samples, detection of glas-formation fields in the system As2S3-Pr6O11 arouse great interest.

Experimental part

In our experiments As2S3 and Pr6O11 were used as primary components. As2S3 was synthesized using ampoule method from elements (As-000, sulphur - "high purity"). As2S3 is crys-

tallized in monoclinic syngony and crystal-lographic data of parameter of unit cell equals to a=11.47, ¿=9.57, c=4.24 A; p=90.27°; Z=4; space group P2/n [6]. Pr6O11 is crystallized in monoclinic syngony and crystallographic data equals to a=6.6850, b=11.6004, c=12.8271 A; P=99.970; Z=4; space group P2/c [7]. Degree of frequency of both oxides was "high purity".

In the studied system synthesis of samples consisting of primary componentswas weighted in accordance with stoichiometric composition, crushed into powder in agate mortar, and then quartz ampoule was placed in glassy carbon crucible. Ampoule was pumped out till the pressure of 0.133 Pa and sealed in torch flame. Synthesis was performed in stages. First quartz ampoule was kept 3 h at 875 K. Then temperature was increased up to 1050 K, synthesis was continued 4. Next tempering was conducted in an open air [8]. One of the obtained samples is shown in Figure 1.

Fig.1. (As2S3)0.90(Pr6On)0.10 - photo of transparent glass. АЗЕРБАЙДЖАНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ № 1 2018

Synthesized samples were studied using the modern complex methods of physico-chemical analysis - X-ray analysis on automatic X-ray diffractometer "D2 PHASER" firm of "BRUKER", spectral analysis was carried out on spectrometer Nanofinder 30 3D Raman microscope Tokyo INSTRUMENTS, INC Japan, Density of alloys was determined using pycno-metric method (filler - toluene) at 300 K. Measurement of microhardness was carried out by microhardness tester PMT-3.

Results

Boundaries of glassformation field in the system As2S3-Pr6O11 were determined using the

complex methods of physico-chemical analysis. It was established that in glass formation field concentration range covers from the side of As2S3-Pr6On 13 mol%. As to us, decrease of glass formation field Pr6O11 comparing to lantan-oxide is related to crystalline structure of oxide, i.e. the change of coordination number of lanthanides. That's why properties of lanthanide compounds are more sensitive to the change of coordination numbers relative to ionic radius. The reason of non-transparency of a glass is the formation of primary centers of crystallization in the composition, which was confirmed by the results of X-ray phase analysis and SEM (Figures 2, 3).

Fig.2. Diffractogram of alloys and primary components in the system As2S3-Pr6O11.

- m

• i ■

10

1 I '

20

' I 1

30

| Cneicrp 3 B«.% a

As 47.0 0.9 S 253 05 Vr 17.5 13 0 10.2 12

• I '

35

Fig. 3. Image of glass on Scanning Electron Microscope and chemical quantitative composition. AZERBAIJAN CHEMICAL JOURNAL № 1 2018

98

I.B.BAKHTIYARLI et al.

Color of samples in glassformation field changes from light red to dark brown. When heating glasses are dissolved in chromic mixture. They are stable at room temperature on air, in water and organic solvents. They decompose in mineral acids and alkalies. Dependence of density and microhardness on the composition of glass samples is shown in Table.

Dependence of density and microhardness on the composition in glasses, composition of (As2S3)x(Pr6On)100-x

Composition, mol Density, g/cm3 Microhardness, mPa

(As2S3)(i.95(Pr60n )o.05 3.52 l450

(As2S3) 0.90(Pr6Oll)0.10 3.6l l552

(AS2S3)o..85(Pr60„)o.l5 3.7l l6l0

(As2S3)0..80(Pr6011 )0.20 3.82 l67l

(AS2S3)0.75(Pr60ll)0.25 3.93 l737

Raman spectrum of glass of (As2S3)0.90(Pr6O11)010 with excitation of longwave laser 532 nm. It was revealed that glasses of the composition (As2S3)090(Pr6O11)010 are

stable to the effect of laser rays. As Figure 4 shows, in spectra which characterize the bond As-S and Pr-O and intensive strengthening bands relative to primary components on waves of length 180, 226, 340 cm-1 and energy slip of long waves upward leads to strengthening of covalence and, this proves hardening of the communication.

Thus, boundaries of glassformation in system As2S3-Pr6O11 were studied using methods of physico-chemical analysis (X-ray analysis, Raman spectra, Scanning electron microscope). It was established that in glass formation region the range of concentration covers from As2S3-Pr6O11 it is 13 mol%. Samples in the region of glassformation are stable at 300 K to air, water and organic solvents. They decompose in mineral acids and alkalies. In the region of glassformation at a temperature of 300 K there have been studied samples of density and microhardness.

Fig. 4. Raman spectrum of glasses of the composition (As2S3)0.90(Pr6O11)010.

АЗЕРБАЙДЖАНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ № 1 2018

References

1. Vinogradova G.Z. Stecloobrazovanie i fazovye ravnovesiia v halkogenidnykh sistemakh. M.: Nauka. 1984, 176 s.

2. Ovshinsky S.R. Reversible Electrical Switching Phenomena in Disordered Structures // Phys. Rev. Lett. 1968. V. 21. No 20. P. 1450.

3. Zakery A., Elliot S.R. Optical spectroscopy of chalcogenide glasses (As4S3Se3)1-xSnx // J. Non-Crystalline Solids. 2003. V. 330 (1-3). P.1-12.

4. Tsendin K.D., Bogoslovskiy N.A. Physics of Switching and Memory Effects in Chalcogenide Glassy Semiconductors // Semiconductors. 2012. V. 46. No 5. P. 559-590.

5. Venger E.F., Melnichuk A.V., Stronskii A.V. Fotostimulirovannye protcessy v halkogenidnykh

stecloobraznykh poluprovodnikakh i ikh prakti-cheskoe primenenie. Kiev: Akademperiodika, 2007. 283 c.

6. Lavrentev A.A, Gabrelian B.V., Nikiforov I.Ia., Vorzhev V.B. Elektronno-energeticheskaia struk-tura poluprovodnikovykh sulfidov As2S3, AsSI, AgAsS2 i TiS2 // Zhurn. struktur. himii. 2005. T. 46. № 5. S. 835-842.

7. Glushkova V.B. Polimorfizm okislov redkoze-melnykh elementov. L.: Nauka, 1967. 33 s.

8. Bakhtiiarly I.B., Abdullaeva A.S., Fatullaeva G.M., Kerimli O.Sh., Mirzoeva A.A. Fiziko-Himi-cheskie svoistva stecloobrazuiushchikh rasplavov Nd2S3-Ga2S3-EuS i La2O3-As2S3-Eu2O3 // Mate-rialy mezhdunarodnoi nauchn. konf. Tomsk: Izdatelskii Dom TGU, 2015. T. 1. 234 s.

As2S3-Pr6On SiSTEMiNDO SÜSaaMOLOGOLMa

LB.Baxtiyarli, G.M.Fatullayeva, O.§.Karimli

Fiziki-kimyavi analizin kompleks metodlan (RFA, Raman spektri, SEM) ils As2S3-Pr6On sisteminda çûçaamalagalma sahasinin sarhadi müayyan edilmiçdir. Malum olmuçdur ki, sistemin As2S3-Pr6On tarafinda 13 mol % qatiliq intervalinda çûçaamalagalma sahasi mûayyanlaçdirilmiçdir Alinan çûçalar mineral turçu va qalavilarin tasirindan parçalanirlar. 300 K temperaturunda havanin, suyun, üzvi halledicilarin tasirina qarçi davamlidir. §ûçaamalagalma sahasindaki nümunalarin 300 K temperaturda sixligi va mikrobarkliyi ôyranilmiçdir.

Açar sözlzr: §щээтэ^эЫэ, As2S3, stexiometrik tarkib, Raman spektr, difraktoqramm.

СТЕКЛООБРАЗОВАНИЕ В СИСТЕМЕ As2S3-Pr6O11

И.Б.Бахтиярлы, Г.М.Фатуллаева, О.Ш.Керимли

Методами физико-химического анализа (РФА, Раман-спектр, СЕМ) определены границы области стекло-образования в системе As2S3-Pr6O1^ Установлено, что в области стеклообразования концентрации со стороны As2S3-Pr6O11 доходят до 13 мол.%. Стекла разлагаются в минеральных кислотах и щелочах. Они устойчивы при 300 К к воздуху, воде и органическим растворителям. Изучены плотность и микротвердость образцов стекол при температуре 300 К.

Ключевые слова: стеклообразование, As2Sз, стехиометрический состав, Раман-спектр, дифрактограмма.

AZERBAIJAN CHEMICAL JOURNAL № 1 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.