48 AZ9RBAYCAN KIMYA JURNALI № 4 2018 ISSN 2522-1841 (Online)
ISSN 0005-2531 (Print)
UDC 546.19.682.22.23
PHASE EQUILIBRIUM IN QUASI-TERNARY SYSTEM InAs2 SSe3-InAs2 S3Se-In3As2 S3Se3
R.S.Mahammadrahimova, I.I.Aliyev, O.M.Aliyev, K.N.Babanly
M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan
[email protected] Received 17.05.2018
Phase equilibrium in the systems InAs2S3Se-InAs2SSe3, InAs2SSe3-In3As2S3Se3, InAs2S3Se-In3As2S3Se3, InAs2S2Se2-In3As2S3Se3, (InAs2S3Se)0.70(In3As2S3Se3)0.30 (e4)-(InAs2SSe3)0.60(In3As2S3Se3)0.40 (e3) were studied using the methods of physico-chemical analysis (DTA, X-ray phase, MSA, measurement of microhardness and determination of density) and state diagram was plotted. It was established that except the latter, all are quasi-binary and belong to eutectic type. The system InAs2S3Se-InAs2SSe3 is characterized by the formation of a new quaternary compound InAs2S2Se2 melting congruently at 615 K. Liquidus surface projection of quasi-ternary system InAs2SSe3-InAs2S3Se-In3As2S3Se3 was constructed. Primary crystallization fields and coordinates of non- and monovariant equilibrium were determined.
Keywords: system, liquidus, solidus, quasi-ternary, eutectics.
Layered crystals of indium selenide, sesquialteral sulfides and arsenous selenide (As2S3, As2Se3) are prospective semiconducting compounds with photosensitive and acousto-optic properties [1-15]. Complexity of the composition of chalcogenides may considerably improve their physical characteristics. Therefore studying phase equilibrium in quasi-ternary system InAs2SSe3-InAs2S3Se-In3As2S3Se3 is of not only scientific, but also practical interest. We have earlier studied quasi-binary sections of quaternary system As-In-S-Se [16-19].
Compounds InAs2S3Se and In3As2S3Se3, found while studying quasi-binary section As2S3-InSe melt congruently at 643 and 1148 K correspondingly [20]. InAs2S3Se is crystallized in monoclinic syngony (a = 12.31, b = 11.43, c=6.62 A, P=107°, Z=3, p=4.66 g/cm3, H=1240 MPa), but In3As2S3Se3 is crystallized in tetragonal syngony (a=9.36, c=6.15 A, Z=2, p=4.75 g/cm3, #=850 MPa) [21].
The work is aimed at constructing liquidus surface projection of quasi-ternary system InAs2SSe3-InAs2S3Se-In3As2S3Se3 and studying physico-chemical properties of compounds and phases of variable composition.
Methods
We used high-purity reagents for synthesis: arsenic - B3, indium - In-000, sulphur "High Purity" 16-5, selenium "High Purity" B5. Quaternary alloys were synthesized from addition alloys InAs2SSe3, InAs2S3Se and
In3As2S3Se3, preliminarily produced from binary chalcogenides InSe, As2S3 and As2Se3 in evacuated and sealed quartz ampoules at 6001000 K depending on the composition. After completion of synthesis cast samples were annealed at 450-500 K for two weeks.
Annealed and homogenized alloys were studied using the methods of DTA (NTR-73 with accuracy of 3-5 K, chromel-alumel thermocouple; calcined Al2O3 was used as standard, heating rate is 9 grade/min), X-ray phase analysis (D2 PHASER BruKer, Cu^-radiation, Ni-filter), MSA (MIM-7, mixture of conc. KOH+C2H5OH=2:1 as an etching agent, etching time 10-15 s). Microhardness of phases was measured on micro hardness tester PMT-3 with accuracy of 5%, density of samples was determined using picnometer method.
Results and discussion
Phase diagram of the system InAs2S3Se-InAs2SSe3 constructed according to the data of physico-chemical analysis is presented in Figure 1. As Figure 1 shows, the section InAs2S3Se-InAs2SSe3 is quasi-binary section of quasi-ternary system InSe-As2S3-As2Se3 and is characterized by the formation of congruently melting compound of the composition InAs2S2Se2, as well as limited solubility based on primary compounds.
Compound InAs2S2Se2 divides the system InAs2SSe3-InAs2S3Se into two secondary systems: InAs2S3Se-InAs2S2Se2 and InAs2S2Se2- LnA^SSe^
T, K 1200
1000
800
InAs2SsSe 20
L+InAs2S2Se2 InAs2S2Se2+ß
1118
40 60
mol. %
80 InAs2SSe3
Fig.1. Phase diagram of the system InAs2S3Se-InAs2SSe3.
T, K 1200
400
InAs2SSe320
40 60
mol. %
1148
80 In3As2S3Se3
Fig.2. Phase diagram of the system InAs2SSe3-In3As2S3 Se3.
L
As Figure 1 shows, the secondary systems belong to eutectic type.
Coordinates of eutectic points are 45 mol% InAs2SSe3, 7=580 K and 60 mol% InAs2SSe3, 7=548 K. Solubility based on InAs2S3Se at 400 K is found to be 5 mol% InAs2SSe3, on the basis of InAs2SSe3 it is 10 mol% InAs2S3Se. Compound InAs2S2Se2 melts at 608 K congruently and is formed due to partial substitution of selenium in InAs2Se4 with sulphur atoms. Liquidus of the system InAs2S3Se-InAs2SSe3 consists of three branches of primary crystallization of phases. aphase (solid solutions based on InAs2S3Se), InAs2S2Se2 and P-phase (solid solutions based on InAs2SSe3).
System InAs2SSe3-In3As2S3Se3. Primary compounds melt congruently at 1118 and 1148 K, correspondingly. Compound In3As2S3Se3 is crystallized in tetragonal syngony with lattice parameters of a=9.36. c=6.16 Â, Z=2, p=4.75 g/cm3, compound InAs2SSe3 has a density of p=5.46 g/cm3, microhardness Hp=1040 MPa.
According to physico-chemical analysis T-x diagram of the system InAs2SSe3-In3As2S3Se3 (Figure 2) was constructed. It was defined that it belongs to eutectic type. Coordinates of eutectic point: 40 mol% In3As2S3Se3 and T=715 K.
Crystallization of alloys of the composition 45-100 mol% In3As2S3Se3 begins with
extraction of P-solid solution basis on the of In3As2S3Se3. Primary crystallization region of a - solid solutions on the basis of InAs2SSe3 corresponds to 0-45 mol% In3As2S3Se3. Lines of primary crystalization cross at 40 mol% In3As2S3Se3. Solubility on the base of InAs2SSe3 makes up 6 mol%, and on the basis of In3As2S3Se3 reaches 13 mol%.
According to the data of MSA and X-ray phase analysis in concentration range of 6-87 mol% In3As2S3Se3 two phases are crystallized (a and P).
The system InAs2S3Se-In3As2S3Se3 is
also quasi-binary and belongs to a simple eutectic type (Figure 3). Coordinates of eutectic point were defined by Tamman triangle construction: 30 mol. % In3As2S3Se3 and T=550 K. Solubility on the basis of InAs2S3Se at 400 K make up 5 mol% InAs2S3Se, but on the basis of In3As2S3Se3 solubility reaches 15 mol% InAs2S3Se. According to the data of X-ray phase analysis P-solid solutions are crystallized in tetragonal syngony. Lattice cell parameters of P-solid solutions in homogeneity region changes in the range of a = 9.36-9.54; c = 6.156-6.22 Â, Z=2, p=4.75-4.60 g/cm3, H^=850-975 MPa.
Section InAs2S2Se2-In3As2S3Se3 (Figure 4) is a quasi-binary section of quasi-ternary system InAs2SSe3-InAs2S3Se-In3As2S3Se3 and belongs to a simple eutectic type. Branches of
primary crystallization of a- and P-solid solutions cross at 25 mol% In3As2S3Se3 and at 540 K (e5). According to MSA data all alloys except 0-3 and 89-100 mol% In3As2S3Se3, are diphase ones.
Section (InAs2S3Se)0.70(In3As2S3Se3)0.30 (e4>-(InAs2SSe3)0.60((In3As2S3Se3)0.40 (e3) is non-quasi-binary, crosses crystallization fields of two secondary systems: InAs2S3Se-In3As2S3Se3-InAs2S2Se2 (1) and InAs2S2Se2-In3As2S3Se3-InAs2Se3S (II) (Figure 5). In the concentration range of 0-50 mol% In3As2S3Se3 the section crosses secondary system (1), on three sides
T, к 1200
1000
eutectic transformation takes place, therefore alloys of this ternary system harden at temperature of ternary eutectics 500 K by the reaction L ^ InAs2S3Se + InAs2S2Se2 + In3As2S3Se3.
The composition 50 mol% InAs2S2Se2 responds to the cross point of the section e3-e4 with quasi-binary section InAs2S2Se2-In3As2S3Se3. Then the section passes through ternary system InAs2S2Se2-In3As2S3Se3-InAs2Se3S, non-variant eutectic reaction occurs in this part of the section at 515 K:
L ~ InAs2SSe3+In3As2S3Se3+InAs2S2Se2.
1148
T, к 1200
1000
InAs2S3Se 20
40 60
mol %
80 In3As2S3Se3
1148
600
400
InAs2S2Se2 20
40 60
mol %
In3As2S3Se3
Fig.3. Phase diagram of the system InAs2S3Se-In3As2S3Se3.
Fig.4. Phase diagram of the system InAs2S2Se2-In3As2S3Se3.
T, к 700
600
500'
400
715
20 40 60 80
mol %
Fig.5. Phase diagram of the system e4-e3.
Liquidus of the section of this part of diagram consists of two primary crystallization branches of phases In3As2S3Se3 and InAs2SSe3.
Liquidus surface projection of subsystem InAs2S3Se-In3As2S3Se3-InAs2SSe3 was constructed according to state diagram (Figure 6). Liquidus surface projection of quasi-ternary system consists of 4 primary crystallization fields of phases. The most extensive regions of liquidus surface are the fields of In3As2S3Se3 (3), InAs2SSe3 (1) and InAs2S3Se (4).
In quasi-ternary system InAs2Se3Se-In3As2S3Se3-InAs2SSe3 there are 5 curves of monovariant equilibrium and 7 non-variant equilibrium points, two of which are the points of ternary eutectics 5 (Table).
Thus, liquidus surface projection of quasi-ternary system InAs2S3Se-In3As2S3Se3-InAs2Se3S was constructed for the first time. Formation of one ternary compound of anion-substituted type and solid solution regions based on primary components was established.
InAs2SSe3
Fig. 6. Liquidus surface projection of the InAs2S3Se-InAs2SSe3-In3As2S3Se3 quasi-ternary system. Primary crystallization regions: 1 - InAs2SSe3, 2 - InAs2S2Se2, 3 - In3As2S3Se3, 4 -InAs2S3Se.
Mono- and nonvariant equilibria in the InAs2S3Se-In3As2S3Se3-InAs2Se3S quasi-ternary system
Equilibrium curve and point Reaction Temprature, K
ei L ^ In As2S3Se + In As2S2Se2 580
e2 L ^ InAs2S3Se2 + InAs2Se3S 548
e3 L ^ InAs2Se3S + In3As2S3Se3 600
e4 L ^ InAs2S3Se + In3As2S3Se3 550
e5 L ^ InAs2S2Se2 + In3As2S3Se3 540
Ei L ^ InAs2S2Se2 + InAs2S3Se + In3As2S3Se3 500
E2 L ^ InAs2Se3S + In3As2S3Se3 + InAs2Se2Se2 515
e3E2 L ^ InAs2Se3S + In3As2S3Se3 600-515
e2E2 L ^ InAs2Se3S + InAs2S2Se2 548-515
E2e5Ei L ^ InAs2S2S e2 + In3As2S3Se3 515-540-500
e4Ei L ^ InAs2S3Se + In3As2S3Se3 550-500
eiEi L ^ InAs2S3Se + InAs2S2Se2 580-500
References
1. Kovaliuk Z.D., Katerenchuk V.N., Polutanskaia O.A., Sidor O.N. Sintez i opticheskie svoistva slois-tykh kristallov InSe // Tekhnologiia i konstruirova-nie v elektronnoi apparature. 2005. № 5. S. 47-50.
2. Koziuhin S.A., Fairushin A.R., Voronkov E.N. Svoistva amorfnykh plenok halkogenidov mysh-iaka, modifitcirovannykh kompleksnymi soedine-niiami redkozemelnykh elementov // FTP. 2005. T. 39. № 8. S. 2012-2016.
3. Svechnikov S.V., Himinetc V.V., Dovgoshei N.I. Slozhnye nekristallicheskie halkogenidy i halko-galogenidy i ikh primenenie v optoelektronike. Kiev: Naukova dumka, 1992. 375 s.
4. Abdinov A.Sh., Eivazov T.Kh., Babaeva R.F. Vliianie legirovaniia redkozemelnymi elementami na ishodnuiu i sensibilizovannuiu IK-chuvstvi-telnost sloistykh kristallov selenida indiia // Pricl. Fizika. 2006. № 2. S. 62-65.
5. Sanchez-Royo J.F., Segura A., Lang O. Optical and photovoltaic properties of InSe thin films // J. Appl. Phys. 2006. V. 90. P. 2818-2823.
6. Madelung O. Semiconductors: Data handbook. Springer. 2004. 691 p.
7. Kim B.Y., Blake J.H., Engan H.E., Shaw H.J. Optical properties and photoconductivity of As2Se3:Sn // Opt. Lett. 1986. V. 11. No 2. P. 389-392.
8. Bolendziuk V.B., Kovaliuk Z.D., Pyrlia M.N., Barbutca S.G. Elektricheskie i opticheskie svoistva InSe i GaSe, interclirovannykh ionami Al3+ // Neorgan. materialy. 2013. T. 49. № 1. S. 22-27.
9. Krause J.T., Kurkjian C.R., Pinnov D.A., Sigety E.A. Low acoustic loss chalkogenids glasses a new category of materials for acoustic applications // J. Appl. Phys. Lett. 1970. V. 17. No 9. P. 367-368.
10. Shelonut D.V., Glushkov V.F. Akustoopticheskie harakteristiki halkogenidnykh stekol // Izv. AN SSSR. Neorgan. materialy. 1973. T. 9. № 7. S. 1149-1152.
11. Iaseniuk O.V. Opitcheskaia spektroskopiia halko-genidnykh stekol (As4S3Se3)1-xSnx. Avtoref. diss...
d-r fiz. nauk. Kishineu: Institut fiziki AN Moldovy. 2015. 45 s.
12. Filachev A.M., Taubkin I.I., Trishenkov M.A. Tver-dotelnaia fotoelektronika. Fotodiody. M.: Fizmat-kniga. 2011. 325 s.
13. Kovaliuk Z.D., Katerinchuk V.N., Politanskaia O.A., Leetovchenko P.G. Vliianie gamma-oblu-cheniia na svoistva InSe-fotodiodov // Pisma v Zhurn. Tekhn. Fiziki. 2005. T. 31. № 9. C. 1-5.
14. El-Nahass M.M., Abdul-Basit A., Darwish A.A., Bahlol M.H. Optical properties nanostructured InSe thin films // Optics Communications. 2012. V. 285. No 6. P. 1221-1224.
15. Reinfelde M., Teteris J. Photoconductivity of (As2S3)i-x(As2Se3)x // Optoelectronics and Advanced Materials. 2011. V. 13. No 11-12. P. 15311534.
16. Aliev I.I., Magammedragimova R.S., Farzaliev A.A., Veliev Dzh.A. Fazovaia diagramma so-stoianiia sistemy In3As2Se6-In3As2S3Se3 // Zhurn. neorgan. himii. 2009. T. 54. № 4. S. 691-694.
17. Aliev I.I., Magammedragimova R.S. Harakter vzaimodeistviia i stecloobrazovaniia v sisteme As2Se3-InAs2S3Se // Him. Problemy. 2006. № 3 . S. 500-503.
18. Aliev I.I., Farzaliev A.A., Magammedragimova R.S., Aliev I.G. Metastabilnye geterogennye siste-my As2Se3-TlAs2S2Se2 (InAs2S2Se2) // Tezisy docl. Vserossiiskoi konf. "Himiia tverdogo tela i fun-ktcionalnye materialy". Ekaterinburg. 2008. S. 9.
19. Zargarova M.I., Mamedov A.N., Azhdarova D.S., Akhmedova (Veliev) Dzh.A., Abilov Ch.I. Spravochnik: Neorganicheskie veshchestva, sinte-zirovannye i issledovannye v Azerbaidzhane. Baku. Elm, 2004. 462 s.
20. Rustamov P.G., Safarov M.G., Aliev I.I. Sistema As2S3-InSe // Zhurn. neorgan. himii, 1980. T. 25. № 4. C. 1073-1077.
21. Aliev I.I. Fiziko-himicheskie osnovy polucheniia novykh materialov v sistemakh halkogenidov myshiaka s halkogenidami kadmiia, indiia i talliia. Diss. dokt. him. nauk. Baku: INFKH. 1992. 380 s.
InAs2SSe3-InAsS3Se-In3As2S3Se3 KBAZiÜCLÜ SiSTEMiNDO FAZA TARAZLIGI
R. S.Mahammadrahimova, LLOliyev, Ö.M.OHyev, K.N.Babanli
Fiziki-kimyavi analiz metodlan (DTA, RFA, MSA, mikrobarkliyin va sixligin ölgülmasi) ila InAs2S3Se-InAs2SSe3, InAs2SSe3-In3As2S3Se3, InAsS3Se-In3As2S3Se3, InAs2S2Se3-In3As2S3Se3, (InAs2S3Se)o.7o(In3As2S3Se3)o.3o (e4)-(InAs2SSe3)o.6o(In3As2S3Se3)o.4o (e3) sistemlarinda faza tarazligi öyranilmi§ va hal diaqrami qurulmu§dur. Müayyan edilmi§dir ki, sonuncu istisna olmaqla, hamisi kvazibinar olub, evtektik tiplidirlar. InAs2S3Se-InAs2SSe3 sistemi 615 K temperaturda konqruyent ariyan va tarkibi InAs2S2Se2 olan yeni dördlü birla§manin amala galmayi ila xarakteriza olunur. InAs2SSe3-InAsS3Se-In3As2S3Se3 kvaziüglü sisteminin likvidus sathinin proyeksiyasi qurulmu§, fazanin ilkin kristalla§ma sahalari, mono- va nonvariant tarazliqlarin koordinatlari tayin edilmi§dir.
Agar sözlar: sistem, likvidus, solidus, kvaziüglü, evtektika.
ФАЗОВЫЕ РАВНОВЕСИЯ В КВАЗИТРОИНОИ СИСТЕМЕ InAs2SSe3-InAs2S3Se-In3As2S3Se3
Р.С.Магомедрагимова, И.И.Алиев, О.М.Алиев, К.Н.Бабан. ii>i
Методами физико-химического анализа (ДТА, РФА, МСА, измерением микротвердости и определением плотности) изучены фазовые равновесия в системах InAs2S3Se-InAs2SSe3S, InAs2SSe3-In3As2S3Se3, InAs2S3Se-In3As2S3Se3, InAs2S2Se2-In3As2S3Se3, (InAs2SзSе)o.7o(InзAs2SзSeз)o.зo (е4)-(InAs2SSeз)o.6o((InзAs2SзSeз)o.4o (e3) и построены диаграммы состояния. Установлено, что кроме последнего, все они квазибинарные и относятся к эвтектическому типу. Система InAs2S3Se-InAs2SSe3 характеризуется образованием нового четверного соединения InAs2S2Se2, плавящегося конгруэнтно при температуре 615 К. По полученным данным построена проекция поверхности ликвидуса квазитройной системы InAs2SSe3-InAs2S3Se-In3As2S3Se3. Определены поля первичной кристаллизации и координаты моно- и нонвариантных равновесий.
Ключевые слова: система, ликвидус, солидус, квазитройная, эвтектика.