Dynamics of transition processes and structure formation in critical heat-mass transfer regimes during liquid boiling and cavitation // Journal of Engineering Thermophysics. 2009. T. 18. № 1. c. 20-38.
6. Хауф В, Грнгуль У. Оптические методы в теплопередаче. М.: Мир. 1973, 240 с.
7. Покусаев Б.Г., Карлов С.П., Шрейбер И. Иммерсионная томография газожидкостной среды в зернистом слое. // Теор. основы хим. технологии. 2004. Т. 38. № 1. с. 3.
8. Казенин Д.А., Карлов С.П., Покусаев Б.Г., Скочилова Ю.Н. Некоторые современные оптические методы диагностики процессов в многофазных зернистых средах. // Теор. основы хим. технологии. 2007. Т. 41. № 6. с. 602.
9. Meissner S., Herold J., Kirsten L., Schneider C., Koch E. 3D optical coherence tomography as new tool for microscopic investigations of nucleate boiling on heated surfaces // International Journal of Heat and Mass Transfer 2012. V.55. P. 5565.
Гидродинамика свободно всплывающих газовых снарядов в наклонных трубах с зернистой насадкой
чл.-корр. РАН Покусаев Б.Г., к.т.н. Некрасов Д. А., Карпенко A.C., Храмцов Д.П.
Университет машиностроения artem-karpenko@list.ru Аннотация. Выполнены экспериментальные исследования гидродинамики свободно всплывающих газовых снарядов в наклонных трубах в системах (газ-жидкость) и (газ-жидкость-твердые частицы). Рабочими веществами являлись вода и этанол. Показано, что скорость всплытия в зависимости от угла наклона имеет немонотонный характер, а максимумы скоростей при добавлении твердой фазы смещаются в сторону больших углов наклона трубки относительно горизонта.
Ключевые слова: газовый снаряд, гидродинамика многофазных систем. Проблема исследования микроструктуры и динамики двухфазных газожидкостных потоков в зернистых и пористых средах остается актуальной для целого ряда отраслей современной техники, таких, как химические и биотехнологии, теплоэнергетика, нефте- и газодобыча. Одной из таких проблем является задача гидродинамики движения газовых снарядов в наклонных трубах. Не смотря на довольно значительное количество работ в этой области, начиная с ранних экспериментальных [1] и заканчивая целым рядом современных [2, 3], остается много неисследованных вопросов, связанных с динамикой движения и процессами массопереноса при свободном и вынужденном всплытии газовых снарядов в засыпках. Одними из немногих работ в этой области являются экспериментальные работы [4, 5], в которых представлены результаты по скорости всплытия как одиночных пузырьков, так и газовых снарядов в вертикальных трубах. При этом работы по исследованию гидродинамических процессов в системе газ-жидкость-твердые частицы в наклонных трубах практически отсутствуют.
Экспериментальный стенд для измерения скорости всплытия газовых пузырей
Скорость всплытия газовых пузырей исследовалась на экспериментальном стенде, показанном на рисунке 1(a). Стенд состоит из вращающегося на 360° штатива 1, установленного на подшипнике 2. Рабочий участок 3 крепится с двух сторон зажимами 4. На нижнем конце трубки закреплен U-образный резиновый шланг 5. Шприц 6 предназначен для подачи газа определенного объема. На расстоянии ~ 0,5 0,7 м установлена видеокамера в нормальной плоскости по отношению к штативу. На трубку нанесена измерительная шкала с ценой деления 10 см. Подсветка обеспечивается матовыми светодиодными экранами 7, расположенными в горизонтальной и вертикальной плоскостях. В качестве рабочего вещества использовались дистиллированная вода и этиловый спирт 96%. Эксперименты проводились на трубах с
Раздел 6. Инженерная экология и смежные вопросы, внутренним диаметром 11,8 мм и 24 мм. В качестве элементов засыпки использовались стеклянные шарики с диаметром 5, 7, 10 мм. На рисунке 1(6) изображена укладка засыпки из стеклянных шариков диаметром 10 мм в стеклянной трубке диаметром 24 мм.
Рисунок 1 - Экспериментальный стенд для измерения скорости всплытия газовых снарядов в наклонных трубах: 1 - штатив; 2 - подшипник; 3 - стеклянная трубка;
4 - зажим; 5 - прозрачный резиновый шланг; 6 - шприц; 7 - подсветка
Методика измерений
Для измерения скорости всплытия газового снаряда использовался времяпролетный метод, суть которого заключается в следующем: на трубку наносятся деления с определенным шагом, при прохождении каждого деления фиксируется время. После чего методом компьютерной обработки с раскадровкой рассчитывается скорость движения снаряда.
Шаг по углу наклона трубки относительно горизонта составляет 10°. В трубке с1 = 11,8 мм объем снаряда составлял 1 и 5 см3, а в трубке с1 = 24 мм - 10 и 20 см3. Длина измеряемого участка - 40 см.
Порядок проведения эксперимента
Перед опытом трубка заполняется жидкостью и устанавливается на нужный угол наклона. После чего в и - образный входной участок при помощи шприца вводится необходимый объем газа. Далее видеокамера включается в режим записи и снаряд запускается в основную часть трубки. Для стабилизации скорости предусмотрен входной участок длиной порядка 15 см. При прохождении снарядом начальной и конечной меток фиксируется время и 12. После чего при помощи компьютерной обработки видеофайла вычисляется экспериментальная скорость по формуле:
У = ■ (1)
По полученным результатам строятся графики в системе координат угол наклона скорость.
Экспериментальные результаты
На рисунке 2 приведены результаты по скорости всплытия газовых пузырей различного объема в отсутствии засыпки. Из графиков видно, что зависимости скорости от угла наклона
имеют экстремальный характер, при этом максимальные значения как для воды, так и этанола приходятся на угол ~ 30 40 градусов. Показано также, что скорость зависит и от объема пузыря для обеих жидкостей. Однако, когда сечения пузыря и трубки в плоскости перпендикулярной направлению движения начинают совпадать, дальнейшее увеличение объема пузыря не приводит к изменению скорости при прочих равных условиях и задачу можно рассматривать, как слив жидкости из трубы бесконечно большой длины. Данные по скоростям подъема хорошо соответствуют качественно и количественно результатам, полученным в [ 1, 6] для данного диапазона диаметров труб.
V, мм/с 160
150
140
130
120
110
100
90
80
10
20
30
40
50
60
70
Я0 90
а, град
Рисунок 2 - Экспериментальная зависимость скорости всплытия газового снаряда от угла наклона трубки диаметром 11,8 мм: 1 - этанол, пузырь 5 мл; 2 - этанол, пузырь 1 мл; 3 - вода, пузырь 5 мл; 4 - вода, пузырь 1 мл; точки - эксперимент, кривая - расчет по формуле (2)
На рисунке 2 представлены также расчетные значения скорости всплытия, полученные по следующей методике. Скорость рассчитывалась по представленной в [7] формуле:
У = Л-^Л •-(2)
2л-(1 +л-Е-эта )
где Я - радиус кривизны мм; В - константа (В = 25); а - угол наклона между осью трубы и горизонтом, град; - внутренний диаметр трубы, мм; g - ускорение свободного падения, м/с2; 1< = с/ Ар-g■d2 - безразмерный параметр. Для определения кривизны поверхности снаряда, всплывающего в наклонных трубах, использовались результаты цифровой видео- и фотосъёмок. Съёмка проводилась сразу в двух взаимно перпендикулярных плоскостях (главные нормальные сечения канала). Основные измерения кривизны проводились в трубе диаметром 11,8 мм. Кривизна поверхности определялась во всех точках поверхности раздела фаз однако, для дальнейшего анализа использовалось усреднённое значение кривизны в окрестности вершины пузыря — критической точки. Это связано с тем, что кривизна в окрестности критической точки наиболее полно отражает изменение формы снаряда в зависимости от угла наклона и диаметра канала, а также свойств жидкой и газовой фаз. Кривизна поверхности пузыря в окрестности критической точки определяется как средняя кривизна к.. ;
кт =(к1+к2)/2 = (1/^+1/1^/2, (3)
где: Яг, К^ - главные радиусы кривизны (к], к2 - кривизна линий сечения поверхности плоскостями главных нормальных сечений ху и хг, соответственно). Кривизна линий сечения поверхности снаряда плоскостями главных нормальных сече-
нии равна:
т
dx(t) d2y(t) dy{t) d2x(t)
dt dt
dt dt
dx(t) V Г
dt
+
л2
dt
3/2
(4)
где: x(7) и - параметрические функции, t - параметр.
В настоящей работе для описания поверхности пузыря используются неравномерные рациональные билинейный сплайны (NURBS), которые хорошо зарекомендовали себя для описания сложных кривых и поверхностей [8].
Кроме того, в приближении эллиптичности поверхности снаряда в его поперечном сечении, программа позволяет восстановить его трёхмерную геометрию. В качестве примера на рисунке 3 представлена геометрия пузыря, всплывающего в трубе диаметром 24 мм, наклонённым под углом 20 градусов. Здесь же точками показан экспериментальный контур головки пузыря в плоскости х-у.
Рисунок 3 - Трёхмерная геометрия снаряда в наклонном канале, с! = 11,8 мм, а = 20 градусов; точки - эксперимент, плоскость х-у
На рисунке 4 приведены экспериментальные значения по скоростям в зависимости от угла для трубки с внутренним диаметром 24 мм. Из рисунка видно, что порядок скоростей выше, чем для трубки с1 = 11,8 мм. Заметим также, что вклад капиллярных сил здесь заметно меньше.
260 240 220 200 180 160 140
V, мм/с
0 10 20 30 40 50 60
70 80 90
а, град
Рисунок 4 - Скорость всплытия газового снаряда в зависимости от угла наклона: диаметр трубки - 24 мм, рабочее вещество: 1- этанол; 2 - вода
На рисунке 5 представлены экспериментальные результаты скорости всплытия газовых снарядов при различных углах наклона трубки диаметром 24 мм относительно горизонта в присутствии твердой фазы (стеклянные шарики диаметром 5 мм).
Видно, что характер зависимости скорости от угла наклона трубки так же, как в системе газ-жидкость, имеет немонотонный вид. Однако максимум скорости смещается в сторону больших углов ~ 60-70°. Важным результатом является также то, что с добавлением твердой фазы, скорость всплытия газового снаряда в воде становится выше, чем в этаноле.
По-видимому, это означает возрастающую роль капиллярных сил. Влияние капиллярных чисел в двухфазных системах достаточно хорошо разобрано в [7], там же выдвинуты гипотезы, объясняющие такой характер зависимости скорости от угла наклона. Основная идея в [7] состоит в том, что с изменением угла наклона трубки вместе со скоростью всплытия газовый снаряд меняет свою форму.
V, мм/с
330 305 280 255 230 205 180 155 130
а, град
0 10 20 30 40 50 60 70 80 90
Рисунок 5 - Скорость всплытия газового снаряда в зависимости от угла наклона в зернистом слое: диаметр трубки - 24 мм, рабочее вещество: 1 - вода; 2- этанол;
диаметр шариков 5 мм
На рисунках 6 и 7 приведены экспериментальные значения скоростей подъема в присутствии шариков диаметром 7 и 10 мм соответственно.
Из рисунка 6 видно, что, как и на предыдущем графике, скорость всплытия газового пузыря в воде выше, чем в этаноле.
V, мм/ с 295
270
245
220
195
170
10
20
30
40
50
60
70
80 90 а, град
Рисунок 6 - Скорость всплытия газового снаряда в зависимости от угла наклона в зернистом слое: диаметр трубки - 24 мм, рабочее вещество: 1 - вода; 2- этанол;
диаметр шариков 7 мм
Приведенные на рисунке 7 данные для диаметра засыпки 10 мм показывают, что значения скорости всплытия в этаноле становятся выше, чем в воде.
Из рисунка 8 видно, что значения максимальных скоростей в зависимости от диаметра шариков для воды монотонно убывают, и при этом для этанола значения скорости имеют максимум в районе = Ю мм, что объясняется различием физических свойств.
Выявленная особенность имеет важную роль для дальнейшего моделирования процессов абсорбции в системах такого рода.
V, мм/с
• • -
260
240
220
>00
♦
г
♦
♦
♦
♦
а, град
0 10 20 30 40 50 60 70 80 90 Рисунок 7 - Скорость всплытия газового снаряда в зависимости от угла наклона в зернистом слое: диаметр трубки - 24 мм, рабочее вещество: 1 - вода; 2- этанол;
диаметр шариков 10 мм
V, мм/с 320
300
280
260
240
220
200 180
10
15
1 йш,мм 20
Рисунок 8 - Максимальные значения скоростей газожидкостного потока в зернистой среде. Диаметр трубки - 24 мм. Рабочее вещество: 1- этанол; 2 - вода
Выводы
Исследована гидродинамика всплытия газового пузыря в наклонных трубах различного диаметра. Показано, что в системе (газ-жидкость) скорость всплытия газового снаряда не зависит от объема газа с момента, когда снаряд заполняет все сечение трубки. Видно, что в системе (газ-жидкость-твердые частицы) скорость выше, чем в системе (газ-жидкость). Выявлено также, что максимум скорости в присутствии засыпки смещается в сторону больших углов. Скорость всплытия газового снаряда в двухфазной системе при использовании этанола в качестве рабочего вещества выше, чем при использовании дистиллированной воды. В трехфазных системах эта закономерность наблюдается только в тех случаях, когда диаметр шариков менее ~ 8 мм. При дальнейшем увеличении диаметра шариков максимумы скоростей монотонно убывают, при этом скорость всплытия снаряда становится выше в этаноле.
Работа выполнена при поддержке РФФИ (проекты 11-08-00368-а, 12-08-00734-а, 12-08-31243 мол_а).
Литература
1. Zukoski Е Е. Motion of long bubbles in closed tubes // J. Fluid Mech. 1966. V. 25. № 4. P. 821.
2. Taha Т., Cui Z. F. CFD modelling of slug flow in vertical tubes // Chem. Eng. Sci. 2006. V. 61. P. 676.
3. Абиев Р.Ш. Моделирование гидродинамики снарядного режима течения газожидкостной системы в капиллярах // ТОХТ. 2008. Т. 42. № 2. с. 115.
4. Покусаев Б.Г., Зайцев А.А., Зайцев В.А. Процессы переноса в снарядном режиме течения трёхфазных сред // ТОХТ. 1999. Т. 33. № 6. с. 595
5. Покусаев Б.Г. Процессы переноса в многофазной среде//ТОХТ, 2007. Т. 41. № 1. с. 35.
6. Серавин А.С., Карпенко А.С. Измерение скорости движения газовых снарядов в наклонных трубах // Химическое и нефтегазовое машиностроение. 2010. № 11. с. 4 - 5.
7. Покусаев Б.Г., Казенин Д.А., Карлов С.П., Ермолаев B.C. Скорость движения газового снаряда в наклонных трубах // ТОХТ. 2011. Т. 45. № 5. с. 550.
8. Piegl L., Tiller W. The NURBS Book. 2nd ed. Springer-Verlag Berlin. 1997.
Определение полей скоростей, давления и температуры в конвергентном канале центробежного экструзионного гранулятора
к.т.н. доц. Мишта П.В, Мишта Е.А., к.т.н. доц. Щербакова Н.Л.
ФГБОУВПО Волг1 ТУ + 7-84422-248028, mapl avslii.ni Аннотация. На основе системного подхода рассмотрен процесс течения неньютоновской жидкости в конвергентном криволинейном канале многосекционного ЦЭГ и разработана модель многосекционного центробежно-экструзионного гранулятора. Рассмотрен процесс течения неньютоновской среды, реологические свойства которой описываются «степенным» законом Оствальда - де Виля, во вращающемся конвергентном криволинейном канале.
Ключевые слова: центробежное поле, неньютоновская жидкость, грануляция, проницаемость, центробежный экструзионный гранулятор.
Рассмотрим физическую модель многосекционного центробежно-экструзионного гранулятора (ЦЭГ) (рисунок 1).
гР
Рисунок 1 - Схема многосекционного ЦЭГ
Рисунок 2 - Схема секции ЦЭГ