Научная статья на тему 'Free-living heterotrophic flagellates from freshwaters of Kyrgyzstan'

Free-living heterotrophic flagellates from freshwaters of Kyrgyzstan Текст научной статьи по специальности «Биологические науки»

CC BY
106
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
PROTISTS / SPECIES COMPOSITION / LAKE ISSYK-KUL / MIDDLE ASIA

Аннотация научной статьи по биологическим наукам, автор научной работы — Prokina K.I.

A total of 42 species and seven forms not identified to species level of heterotrophic flagellates were found in studied locations in Kirgizia. The following species were found most frequently: Ancyromonas sigmoides, Bodo saltans, Neobodo designis and Petalomonas poosilla. Distribution of species across locations is not uniform: maximum and minimum numbers of species were encountered in two bays of Lake Issyk-Kul. The similarity of studied biotopes by species composition was very low.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Free-living heterotrophic flagellates from freshwaters of Kyrgyzstan»

Труды ИБВВ РАН, вып. 85(88), 2019

Transactions of IBIW, issue 85(88), 2019

FREE-LIVING HETEROTROPHIC FLAGELLATES FROM FRESHWATERS

OF KYRGYZSTAN

K. I. Prokina1, 2

lPapanin Institute for Biology of Inland Waters Russian Academy of Sciences, 152742 Borok, Russia

2 Laboratory of Cellular and Molecular Protistology, Zoological Institute Russian Academy of Sciences, 199034 Saint Petersburg, Russia,e-mail: kristin892@mail.ru

A total of 42 species and seven forms not identified to species level of heterotrophic flagellates were found in studied locations in Kirgizia. The following species were found most frequently: Ancyromonas sigmoides, Bodo saltans, Neobodo designis and Petalomonas poosilla. Distribution of species across locations is not uniform: maximum and minimum numbers of species were encountered in two bays of Lake Issyk-Kul. The similarity of studied biotopes by species composition was very low.

Keywords: protists, species composition, Lake Issyk-Kul, Middle Asia

DOI: 10.24411/0320-3557-2019-10002

INTRODUCTION

Free-living heterotrophic flagellates are a polyphyletic group of single-cell eukaryotes that have one or more flagella during at least one of the stages of the life cycle [Patterson, Larsen, 1991]. These organisms are ubiquitous in waterbodies of different types. Having a number of important ecological functions they are an integral unit of microbial food web [Arndt et al., 2000]. The majority of heterotrophic flagellates consume bacteria facilitating recirculation and remineralization of biogenic elements as well as participating in the processes of purification of waterbodies from organic matter [Umorin, 1976; Zhukov, Mylnikov, 1983].

MATERIALS The northeastern part of Kyrgyzstan (Lake Issyk-Kul and its environs) was investigated: four small bays of Issyk-Kul Lake (sampling sites 2, 4, 5, 9), three mouths of watercourses flowing into Issyk-Kul Lake (sampling sites 1, 3, 7), two separate waterbodies (sampling sites 6, 8) and green moss in the Aksu valley (sampling site 10). In each of these locations, 1-3 samples were taken, which were subsequently summarized. Salinity in the Issyk-Kul Lake - 6.22%o [Isanova et al., 2017]. Detailed data on sampling sites is presented in the table and in figure 1.

Fig. 1. Map-scheme of sampling sites (numbering in accordance with the table).

Biogeography and ecology of heterotrophic flagellates are currently being actively studied, which is facilitated by the large amount of new data on the species composition and distribution of species [Mazei, Tikhonenkov, 2005; Lee, Patterson, 1998; Azovsky et al., 2016 etc.]. However, many regions remain unstudied. Also, we did not find data on the species composition of hetero-trophic flagellates on the territory of Kyrgyzstan.

Aim of the study - to determine the species composition and distribution patterns of hetero-trophic flagellates in the northeastern part of Kyr-gyzstan (Lake Issyk-Kul area) using methods of light microscopy.

AND METHODS

The samples were collected by B.A. Levin within the joint expedition of the Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences and the Biological-Soil Institute of the National Academy of Sciences of the Kyrgyz Republic from July 23 to July 27, 2016. Water samples with a portion of the bottom soil from waterbodies were placed in plastic 15 ml tubes, moss particles were placed in plastic 50 milliliter tubes and filled with sterile water. Non-fixated samples were delivered to the laboratory at 4 ° C in the dark. In the chamber conditions, the samples were placed in Petri dishes, enriched with a suspension of Pseudomonas fluorescens Migula bacteria (0.15 ml of bacteria suspension per 5 ml of sample) and kept in a thermostat at 22 °C in the dark. Live flagellates were viewed for 10 days to identify hidden species diversity according to generally accepted methods [V0rs, 1992]. An AxioScope A1 light microscope (Carl Zeiss, Germany) with phase-contrast and DIC devices and water immersion objectives (total magnification * 1120) was used for the observations. Recording flagellates on video produced analog video demo AVT HORN MC1009/S, followed by digitization.

The method of single addition based on the calculation of the Bray-Curtis faunal similarity coefficient in the PAST program [Hammer et al., 2001] was used to build a dendrogram of species composition similarity of waterbodies.

Sampling sites for heterotrophic flagellates in Kyrgyzstan

A number of publications were used to identify species [Zhukov, Mylnikov, 1983; Larsen, Patterson, 1990; V0rs, 1992; Ekebom et al., 1995; Al-Quassab et al., 2002; Schroeckh et al., 2003; Howe et al., 2011].

№ Coordinates, N, E Location Microbiotope Altitude, m Water temperature, °C Number of species

1 42°27'03.4" 76°11'18.7" The mouth of the stream flowing into the Issyk-Kul Lake — 1569 14.2 4

2 42°34'41.6" 76°44'04.0" A small bay of Issyk-Kul Lake — — 20.8 1

3 42°39'21.2" 77°28'40.0" Mouth of the Chon-Aksu River — 1552 8.3 8

4 42°39'24.7" 77°27'37.8" A small bay one kilometer west of the mouth of the Chrn-Aksu River Sludge 1553 11.9 24

5 42°44'42.8" 78°18'27.1" Tup Bay Sludge — 16.9 5

6 42°42'54.0" 77°55'08.6" Separate water boby in the vicinity of the Kyzyl-Suu Bay of Issyk-Kul Lake Sand, detritus — — 8

7 42°12'33.2" 77°41'03.8" Mouth of the Dzhargylchak River — — — 6

8 42°10'33.3" 78°19'59.9" Karakul Lake in the vicinity of Issyk-Kul Lake — 1600 20.0 16

9 42°18'49.4" 76°27'53.9" Bay of Issyk-Kul Lake Sand, detritus — 19.0 3

10 42°29'35.8" 78°56'05.49" Valley of Aksu River Green moss 2680 — 7

RESULTS

A total of 42 species and 7 forms of heterotrophic flagellates belonging to 34 genera and four macrotaxonomic clusters. The modern generally accepted macrosystem of eukaryotes, which does not indicate the status of macro-taxa (marked with asterisks), is used in the study [Adl et al., 2012].

AMOEBOZOA Lühe, 1913 emend. Cavalier-Smith, 1998

*Eumycetozoa Zopf, 1884 emend Olive,

1975

**Incertae sedis Eumycetozoa Hyperamoeba flagellata Alexeieff, 1923. Lake Issyk-kul Bay (site 9).

OPISTHOKONTA Cavalier-Smith,

1987 emend. Adl et al., 2005

**Choanoflagellatea Cavalier-Smith, 1998 ***Craspedida Cavalier-Smith,

1997 emend. Nitsche et al., 2011

Codosiga botrytis (Ehrenberg, 1838) Kent, 1880 [bas.: Epistylis botrytis Ehrenberg, 1838]. At the mouth of the stream, which flows into Lake Issyk-Kul (site 1), at the mouth of the Chon-Aksu River (3), in Karakul Lake (8).

Monosiga ovata Kent, 1880. Lake Karakul (site 8).

Salpingoeca amphoridium James-Clark, 1868. Lake Karakul (site 8).

AND DISCUSSION

SAR (group including Stramenopiles, Alveolata, Rhizaria)

*Stramenopiles Patterson, 1989 emend. Adl et al., 2005

**Bicosoecida Grasse, 1926 emend. Karpov, 1998

Caecitellus parvulus (Griessmann, 1913) Patterson et al., 1998 [bas.: Bodo parvulus Griessmann, 1913]. At the mouth of the stream, which flows into Lake Issyk-Kul (site 1). **Chrysophyceae Pascher, 1914 Spumella sp. In a waterbody close to Kyzyl-Suu bay of Lake Issyk-Kul (site 6), in the mouth of Dzhargylchak River (7), in Lake Karakul (8). *Rhizaria Cavalier-Smith, 2002 **Cercozoa Cavalier-Smith, 1998 emend. Adl et al., 2005

***Cercomonadidae Kent, 1880 emend. Mylnikov et Karpov, 2004

Cercomonas directa Brabender et al., 2012. In Tyup bay of Lake Issyk-Kul (site 5), in a waterbody close to Kyzyl-Suu bay of Lake Issyk-Kul (6).

Cercomonas sp. 1. In a bay of Lake Issyk-Kul (site 4).

Cercomonas sp. 2. In moss in the valley of River Aksu (site 10).

***Glissomonadida Howe et Cavalier-Smith, 2009

Allantion tachyploon Sandon, 1924. In a bay of Lake Issyk-Kul (site 2).

Allapsa sp. In a bay of Lake Issyk-Kul (site 4).

Sandona sp. In a bay of Lake Issyk-Kul (site 9).

Teretomonas rotunda Howe et al., 2009. In a bay of Lake Issyk-Kul (site 4).

***Tremula Howe et al., 2011 Tremula vibrans (Sandon, 1927) Cavalier-Smith in Howe et al., 2011 [bas.: Cercobodo vibrans Sandon, 1927; syn.: Cercomonas vibrans (Sandon, 1927) Karpov et al., 2006]. In a bay of Lake Issyk-Kul (site 4).

***Granofilosea Cavalier-Smith et Bass,

2009

Massisteria marina Larsen et Pattersen, 1990. In a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (site 6).

***Thecofilosea Cavalier-Smith,

2003 emend. Cavalier-Smith, 2011

****Cryomonadida Cavalier-Smith, 1993 Protaspa simplex (V0rs, 1992) Cavalier-Smith in Howe et al., 2011 [bas.: Protaspis simplex V0rs, 1992]. In the mouth of Chon-Aksou River (site 3), in a bay of Lake Issyk-Kul (4), in Lake Karakul (8).

Incertae sedis Cercozoa Microcometes paludosa Cienkowsky, 1876. In a bay of Lake Issyk-Kul (site 9). **Incertae sedis Rhizaria Helkesimastix faecicola Woodcock et Lapage, 1915. In Lake Karakul (site 8).

EXCAVATA Cavalier-Smith, 2002 emend. Simpson, 2003

*Discoba Simpson in Hampl et al., 2009 **Jakobida Cavalier-Smith, 1993 emend. Adl et al., 2005

***Histionidae Flavin et Nerad, 1993 Histiona aroides Pasher, 1942. In a bay of Lake Issyk-Kul (site 4).

Reclinomonas americana Flavin et Nerad, 1993. In moss in the valley of Aksu River (site 10).

**Discicristata Cavalier-Smith, 1998 ***Heterolobosea Page et Blanton, 1985 ****Tetramitia Cavalier-Smith, 1993 emend. Cavalier-Smith in Cavalier-Smith et Nikolaev, 2008

Percolomonas simils Lee et al., 2003. In Lake Karakul (site 8).

***Euglenozoa Cavalier-Smith, 1981 emend. Simpson, 1997

****Euglenida Bütschli, 1884 emend. Simpson, 1997

*****Heteronematina Leedale, 1967

Anisonema trepidium Larsen, 1987. In a bay of Lake Issyk-Kul (site 4), in the mouth of Dzhargylchak River (7).

Entosiphon sulcatum (Dujardin, 1841) Stein, 1878 [bas.: Anisonema sulcata Dujardin, 1841]. In a bay of Lake Issyk-Kul (site 4).

Heteronema globulifera (Ehrenberg, 1838) Stein, 1878 [bas.: Trachelius globulifer Ehrenberg, 1838]. In a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (site 6).

Heteronema hexagonum (Playfair, 1921) Skuja, 1948 [bas.: Anisonema hexagonum Playfair, 1921. In a bay of Lake Issyk-Kul (site 4).

Notosolenus apocamptus Stokes, 1884. In a bay of Lake Issyk-Kul (site 4).

Notosolenus similis Skuja, 1939. At the mouth of the Chon-Aksu River (site 3), in a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (site 6).

Petalomonas labrum Lee et Patterson, 2000. Lake Karakul (site 8).

Petalomonas minuta Hollande, 1942. In a bay of Lake Issyk-Kul (site 4), Lake Karakul (8).

Petalomonas ornata Skvortzov, 1957. In the mouth of Dzhargylchak River (site 7).

Petalomonas poosilla (Skuja, 1948) Larsen et Patterson, 1990 [bas.: P. pusilla Skuja, 1948]. At the mouth of the stream, which flows into Lake Issyk-Kul (site 1), at the mouth of the Chon-Aksu River (3), in a bay of Lake Issyk-Kul (4), Lake Karakul (8).

Petalomonas tricarinata Skuja, 1939. In a bay of Lake Issyk-Kul (site 4).

Petalomonas sp. 1. Lake Karakul (site 8).

Petalomonas sp. 2. Lake Karakul (site 8).

Ploeotia obliqua (Klebs, 1893) Schroeckh et al., 2003 [bas.: Entosiphon obliquum Klebs, 1893]. In a bay of Lake Issyk-Kul (site 4).

****Kinetoplastea Honigberg, 1963

*****Metakinetoplastina Vickerman in Moreira et al., 2004

******Neobodonida Vickerman in Moreira et al., 2004

Neobodo curvifilus (Griessmann, 1913) Moreira et al., 2004 [bas.: Bodo curvifilus Griessmann, 1913]. In the mouth of Chon-Aksou River (site 3).

Neobodo designis (Skuja, 1948) Moreira et al., 2004 [bas.: Bodo designis Skuja, 1948]. In the mouth of Chon-Aksou River (site 3), in two bays of Lake Issyk-Kul (4, 5), in a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (6), in the mouth of Dzhargylchak River (7), Lake Karakul (8).

Rhynchomonas nasuta (Stokes, 1888) Klebs, 1893 [bas.: Heteromita nasuta Stokes,

1888]. At the mouth of the stream, which flows into Lake Issyk-Kul (site 1), in a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (6), Lake Karakul (8).

******Parabodonida Vickerman in Moreira et al., 2004

Parabodo caudatus (Dujardin, 1841) Moreira et al., 2004 [bas.: Amphimonas caudata Dujardin, 1841; syn.: Diplomastix caudata Kent, 1880; Bodo caudatus (Dujardin, 1841) Stein, 1878]. In moss in the valley of Aksou Rver (site 10).

******Eubodonida Vickerman in Moreira et al., 2004

Bodo saltans Ehrenberg, 1838 [syn.: Pleuromonas jaculans Perty, 1852]. In two bays of Lake Issyk-Kul (sites 4, 5), in a waterbody close to Kyzyl-Suu Bay of Lake Issyk-Kul (6), in the mouth of Dzhargylchak River (7), in moss in the valley of Aksou River (10).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

*****Incertae sedis Kinetoplastea

Bordnamonas tropicana Larsen et Patterson, 1990. In a bay of Lake Issyk-Kul (site 4).

Incertae sedis EUKARYOTA

Pseudophyllomitus apiculatus (Skuja, 1948) Lee, 2002 [bas.: Phyllomitus apiculatus Skuja, 1948]. In the mouth of Chon-Aksou River (site 3), in a bay of Lake Issyk-Kul (4), in moss in the valley of Aksou River (10).

*Ancyromonadida Cavalier-Smith, 1998

Ancyromonas sigmoides Kent, 1880 [syn.: Planomonas mylnikovi Cavalier-Smith in Cavalier-Smith et al., 2008]. In two bays of Lake Issyk-Kul (sites 4, 5), Lake Karakul (8), in moss in the valley of Aksou River (10).

*Apusomonadida Karpov et Mylnikov,

1989

Amastigomonas caudata Zhukov, 1975. In two bays of Lake Issyk-Kul (sites 4, 5).

Amastigomonas griebensis Mylnikov, 1999. In a bay of Lake Issyk-Kul (site 4).

Amastigomonas marina (Mylnikov, 1989) Mylnikov, 1999 [bas.: Cercomonas marina Mylnikov, 1989]. In a bay of Lake Issyl-Kul (site 4).

Amastigomonas muscula Mylnikov, 1999. In the mouth of Chon-Aksou River (site 3).

*Cryptophyceae Pascher, 1913 emend. Adl et al., 2012

**Goniomonas Stein, 1878

Goniomonas amphinema Larsen et Patterson, 1990. In a bay of Lake Issyk-Kul (site 4), in the mouth of Dzhargylchak River (7), Lake Karakul (8).

Goniomonas truncata (Fresenius, 1858) Stein, 1878 [bas.: Monas truncata Fresenius,

1858]. In a bay of Lake Issyk-Kul (site 4), in moss in the valley of Aksou River (10).

The maximum species richness is recorded in Excavata - 23 species, and SAR (a group comprising 3 large taxa - Stramenopiles, Alveolata, Rhizaria) - 14 species. The minimal number of species is found in Opisthokonta (3 species), and Amoebozoa (1 species). The flagellates of uncertain systematic position include 8 species. The most common species in the samples were: Neobodo designis (6 locations), Bodo saltans (5), Ancyromonas sigmoides and Petalomonas poosilla (4 locations each). The same species are most common in other freshwater habitats we studied [Prokina, Philippov, 2017 (Prokina, Philippov, 2017); Prokina et al., 2017a, 2017b; Prokina, Mylnikov, 2018]. The most rare (found in only one sampling site) - 33 species.

All of the identified species are probably new to the country, since we did not find data on the species composition of heterotrophic flagellates of Kyrgyzstan.

The maximum (site 4 - 24 species) and minimum (site 2 - 1 species) species diversity is recorded in the bays of Lake Issyk-Kul. In other cases, the total species richness of the studied bio-topes is 3-16 species. The average number of species per location is 8.2, the distribution of species is non-uniform (see table).

In Lake Issyk-Kul (sites 2, 4, 5, 9), 29 species of heterotrophic flagellates were found. Among them are unique (found only here) -18 species (62.1%): Allantion tachyploon, Allapsa sp., Amastigomonas caudata, A. griebensis, A. marina, Bordnamonas tropicana,

Cercomonas sp. 1, Entosiphon sulcatum, Heteronema hexagonum, Histiona aroides, Hyperamoeba flagellata, Microcometes paludosa, Notosolenus apocamptus, P. tricarinata, Ploeotia obliqua, Sandona sp., Teretomonas rotunda, Tremula vibrans. The average number of species in each location is 8.25.

In the streams flowing into the Lake Issyk-Kul (sites 1, 3, 7), 15 species were recorded. Of these, 4 species (26.7%) are unique: Amastigomonas muscula, Caecitellus parvula, Neobodo curvifilus, Petalomonas ornata. The average number of species in each location is 6.

In two separate waterbodies located in close proximity to the Lake Issyk-Kul (sites 6 and 8), 21 species were found. Of these, 9 species (42.9%) are unique: Helkesimastix faecicola, Heteronema globulifera, Massisteria marina, Monosiga ovata, Percolomonas similis, Petalomonas labrum, Petalomonas sp. 1, Petalomonas sp. 2, Salpingoeca amphoridium.

The average number of species in each location is 12.

Seven species of heterotrophic flagellates were associated with green moss (site 10). Of these, 3 soecies (42.9%) are unique: Cercomonas sp. 2, Parabodo caudatus, Reclinomonas americana.

Thus, the maximum number of species, as well as the largest number of unique species, was identified in Issyk-Kul Lake (29 species in total, of which 62.1% are unique). However, more samples were studied in this lake than in other bio-topes; therefore, we also compared the average number of species for each location within a certain type of biotope, and the maximum value was found in watercourses flowing into Lake Issyk-Kul (12 species on average in each site).

When comparing the species composition of heterotrophic flagellates of Lake Issyk-Kul and the neighboring waterbodies, no regularity was found: 7-8 common species were recorded between these types of water bodies. Only one species - Bodo saltans was found in all 4 types of biotopes.

Fig. 2. Dendrogram of the similarities (%) of types of biotopes by species composition. Abbreviations: w.b -water bodies; w.c - water courses.

The dendrogram of species composition similarity also shows minimal similarity between individual samples (in all cases clusters with a similarity of less than 50%), and between individual types of biotopes (only waterbodies and streams are grouped into a cluster with a similarity of 50%) (Fig. 2, 3).

CONCLUSION

Forty-nine species of heterotrophic flagellates have been found in the investigated locations of Kyrgyzstan, all of them are new to the country. The distribution of species over locations is extremely uneven: the maximum and minimum

number of species are recorded in two bays of Lake Issyk-Kul. The studied locations are characterized by extremely low species composition similarity.

The author are grateful to B.A. Levin (IBIW RAS) for sampling and A.P. Mylnikov (IBIW RAS) for advice on the species identification. This work was supported by the Russian Foundation for Basis Research (grants 17-04-005656, 18-504-51028 NIF_a, 15-29-02518 ofi_m).

REFERENCES

Adl S.M., Simpson A.G.B., Lane C.E., Lukes J., Bass D. et al. 2012. The revised classification of eukaryotes // Journal

of Eukaryotic Microbiology. V. 59. P. 429-493. DOI: 10.1111/j.1550-7408.2012.00644.x Al-Quassab S., Lee W.J., Murray S., Simpson A.G.B., Patterson D.J. 2002. Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia // Acta Protozoologica. V. 41. P. 91-144. Arndt H., Dietriech D., Auer B., Cleven E.-J., Grafenhan T., Wietere M., Mylnikov A.P. 2000. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: The flagellates: Unity, diversity and evolution. (Eds: Leadbeater B.S.C. and Green J.C.). Taylor and Francis, London and New York. pp. 240-268. Azovsky A.I., Tikhonenkov D.V., Mazei Yu.A. 2016.An estimation of the global diversity and distribution of smallest eukaryotes: biogeography of marine benthic heterotrophic flagellates // Protist. V. 167. P. 411 -424. http ://dx. doi.org/10.1016/j .protis.2016.07.001 Ekebom J., Patterson D.J., V0rs N. 1995. Heterotrophic flagellates from coral reef sediments (Great Barier Reef, Australia) // Archiv für Protistenkunde. V. 146. P. 251-272. Hammer 0., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data

analysis // Palaeontologia Electronica. V. 4. № 1. 9pp. Howe A.T., Bass D., Scoble J.M., Lewis R., Vickerman K., Arndt H., Cavalier-Smith T. 2011. Novel cultured protists identity deep-branching environmental DNA clades of Cercozoa: new genera Tremula, Micrometopion, Minimassisteria, Budifila, Peregrinia // Protist. V. 162. P. 332-372. doi:10.1016/j.protis.2011.06.002 Isanova G., Asankulov T., Temirbaeva K. 2017. Mnogoletnaya dinamika gidrokhimii ozera Issyk-Kul [Long-term dynamics of hydrochemistry of the Issyk-Kul Lake] // Vestnik. Seriya geograficheskaya. № 2 (45). S. 86-91. [In Russian]

Larsen J., Patterson D.J. 1990. Some flagellates (Protista) from tropical marine sediments // Journal of Natural History. V. 24. P. 801-937.

Lee W.J., Patterson D.J. 1998. Diversity and geographic distribution of free-living heterotrophic flagellates-analysis by

PRIMER. Protist. V. 149. № 3. P. 229-244. Lee W.J., Patterson D.J. 2000. Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia //

Journal of Natural History. V. 34. P. 483-562. Mazei Yu.A., Tikhonenkov D.V., Mylnikov A.P. 2005. Vidovaya struktura soobschestva i obiliye geterotrophnykh zhgutikonostsev v malykh presnykh vodoyomakh [The species structure of community and abundance of heterotrophic flagellates in small freshwater bodies] // Zoologicheskii Zhurnal. T. 84. № 9. S. 1027-1040. [In Russian] Patterson, D.J., Larsen, J. 1991. Biology of free-living heterotrophic flagellates. Oxford, University Press. 503 p. Prokina K.I., Mylnikov A.P. 2018. Geterotrophnyie zhgutikonostsy presnovodnykh i morskikh mestoobitanii Yuzhnoi Patagonii i Ognennoi Zemli (Chili) [Heterotrophic flagellates from freshwater and marine habitats of South Patagonia and Tierra del Fuego, Chile]. // Zoologicheskii Zhurnal. T. 97. № 6 (in press). [In Russian] DOI: 10.1134/S0044513418120097 Prokina K.I., Mylnikov A.P., Galanina O.V., Philippov D.A. 2017a. First report on heterotrophic flagellates in the mires

of Arkhangelsk region, Russia // Biology Bulletin. V. 44. № 9. P. 1067-1078. DOI: 10.1134/S1062359017090096 Prokina K.I., Mylnikov A.P., Zelalem W. 2017b. First data on heterotrophic flagellates and helozoans of Ethiopia // Biology Bulletin. V. 44. № 8. P. 896-912. DOI: 10.1134/S106235901708012X

Труды ИБВВ РАН, вып. 85(88), 2019

Transactions of IBIW, issue 85(88), 2019

УДК 574.52:593.17(282.247.415)

СВОБОДНОЖИВУЩИЕ ИНФУЗОРИИ ГЛУБОКОВОДНОЙ ЧАСТИ КАМСКИХ ВОДОХРАНИЛИЩ

С. В. Быкова

Институт экологии Волжского бассейна РАН 445003, г. Тольятти,10, Самарская обл., e-mail: svbykova@rambler.ru

Изучен видовой состав (113 видов) и распределение свободноживущих инфузорий глубоководной зоны водохранилищ Камского каскада в летнюю межень 2014 и 2016 гг. Показано незначительное снижение видового разнообразия сверху вниз по течению р. Камы; проведено его сравнение с показателями видового разнообразия в водохранилищах Волжского каскада. Проанализирован состав структурообразующих видов (из отр. Tintinnida, отр. Choreotrichida и п/кл. Scuticociliatia), их распределение по акватории отдельных водохранилищ и вдоль продольной оси каскада. Численность инфузорий на участке от пос. Пыскор до Атабаево варьировала в пределах 119-4892 тыс. экз./м3, биомасса - от 1.4 до 186 мг/ м3 продукция - от 1.1 до 134 мг/ м3. Максимальные показатели отмечались в районе устья р. Белой, минимальные - на глубоководных станциях с дефицитом кислорода в придонных слоях. Рассмотрено пространственное распределение количественных показателей сообщества инфузорий по морфологическим районам водохранилищ. Формирование резких градиентов абиотических факторов (в частности, содержания кислорода) приводит к синхронизации параметров сообщества инфузорий и их высокой вариабельности (амплитуде колебаний). Дана сапробиологическая оценка водохранилищ по инфузориям-индикаторам сапробности среды: вода в водохранилищах относится к ß-a-мезосапробной зоне. Наибольшие индексы сапробности характерны станций в районе сброса сточных вод и станции с большими глубинами в приплотинных участках водохранилищ.

Ключевые слова: инфузории, планктон, Камский каскад водохранилищ, видовой состав, пространственное распределение.

DOI: 10.24411/0320-3557-2019-10003

В основе любых масштабных мероприятий по сохранению природных ресурсов бассейна Волги (федеральной целевой программы «Возрождение Волги» [Постановление правительства..., 1998 (Postanovlenie Pravitel'stva ..., 1998)] или приоритетного проекта «Оздоровление Волги» [Паспорт приоритетного..., 2017 (Pasport prioritetnogo ., 2017)]) лежат знания о "незначительных" с точки зрения глобальности поставленных проблем элементах биоты -простейших. В то время как роль последних в трансформации вещества и энергии в экосистемах давно доказана [Мордухай-Болтовская, Сорокин, 1965 (Morduhaj-Boltovskaya, Sorokin, 1965); Мамаева, Копылов, 1978 (Mamaeva, Kopylov, 1978); Мамаева, 1986 (Mamaeva, 1986); Оболкина, 2015 (Obolkina, 2015); Berninger et al., 1986; Porter et al., 1986; Beaver, Crisman, 1989; Berninger et al., 1991; Foissner et al., 1999 и др.], бесспорным остается и то, что инфузории остаются наименее изученными по сравнению с ихтиофауной, зоо- и фитопланктоном. Особенно это касается главного притока Волги - р. Камы. Все исследования инфузорий Волжского бассейна сводились, в основном, к исследованиям в волжских водохранилищах [Волга и ее жизнь, 1978 (Volga i ee zhizn', 1978); Мамаева, 1979 (Mamaeva, 1979), Жариков, Ротарь, 1994 (Zharikov Rotar, 1994)]. Наиболее изученной считается фауна Рыбинского (Верхняя Волга) [Экологические про-

блемы..., 2001 (Ehkologicheskie-problemy..., 2001)] и Куйбышевского водохранилищ (Средняя Волга) [Жариков, Ротарь, 1992 (Zharikov, Rotar, 1992); Ротарь, 1995 (Rotar, 1995)]. Можно считать, что первые сведения о простейших р. Камы были получены в результате обследования р. Исеть, Чусовского залива и Камской ветви Куйбышевского водохранилища [Белихов, 1964 (Belihov, 1964)]. Позже З.М. Мыльникова [1990 (Mylnikova, 1990)] выявила восемь массовых видов свободноживу-щих инфузорий в Воткинском и Нижнекамском водохранилищах. В 2003 г. были опубликованы сведения Т.А. Кондратьевой [2003 (Kondratieva, 2003)] о составе инфузорий р. Меши - притока Камы, впадающего в Камский плес Куйбышевского водохранилища. Новый этап в изучении фауны и особенностей развития инфузорий в водохранилищах Камского каскада начался с 2009 г., когда сотрудниками лаборатории экологии простейших и микроорганизмов ИЭВБ РАН были организованы исследования в прибрежной зоне р. Камы, начиная от пос. Чепец на незарегулиро-ванном участке реки вплоть до ее устья [Жариков, Быкова, 2012 (Zharikov, Bykova, 2012); Быкова, 2013 (Bykova, 2013); Быкова, Жариков, 2014 (Bykova, Zharikov, 2014)]. Кроме того, в 2014 г. силами Пермского отделения ГосНИОРХа [Мелехин, 2016 (Melekhin, 2016)] проведено исследование инфузорий русловой

i Надоели баннеры? Вы всегда можете отключить рекламу.