Научная статья на тему 'Формирование контрольных сечений для определения параметров винтовых стружечных канавок многозубого фасонного инструмента'

Формирование контрольных сечений для определения параметров винтовых стружечных канавок многозубого фасонного инструмента Текст научной статьи по специальности «Механика и машиностроение»

CC BY
94
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНТРОЛЬНОЕ СЕЧЕНИЕ / ВИНТОВАЯ СТРУЖЕЧНАЯ КАНАВКА / CONTROL SECTION / HELICAL FLUTES

Аннотация научной статьи по механике и машиностроению, автор научной работы — Ушаков Михаил Витальевич, Воробьев Илья Александрович, Доронин Андрей Васильевич

Рассмотрены вопросы обеспечения требуемой формы профиля винтовой стружечной канавки на всей длине рабочей части многозубого фасонного инструмента. Предложен подход к заданию профиля винтовой стружечной канавки, расположенной на сложной производящей поверхности концевого инструмента, обеспечивающий постоянство геометрических параметров стружечной канавки в каждом контрольном сечении. Даны зависимости, устанавливающие связь системы координат инструмента и системы координат контрольного сечения.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Ушаков Михаил Витальевич, Воробьев Илья Александрович, Доронин Андрей Васильевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THE FORMATION OF THE CONTROL CROSS SECTIONS TO DETERMINE THE PARAMETERS OF HELICAL FLUTES END SHAPED TOOL

The questions provide the desired profileshape spiral flute on the entire length of the working part end shaped tool. An approach to the job profile of a helical flute, situated on a complex generating end surface of the tool, ensuring consistencv of geometrical parameters flute in each control section. The dependence of establishing communication tool coordinate svstem and the control secti on of the coordi nate svstem.

Текст научной работы на тему «Формирование контрольных сечений для определения параметров винтовых стружечных канавок многозубого фасонного инструмента»

УДК 624.92

ФОРМИРОВАНИЕ КОНТРОЛЬНЫХ СЕЧЕНИЙ ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВИНТОВЫХ СТРУЖЕЧНЫХ КАНАВОК МНОГОЗУБОГО ФАСОННОГО ИНСТРУМЕНТА

М.В. Ушаков, И. А. Воробьев, А.В. Доронин

Рассмотрены вопросы обеспечения требуемой формы профиля винтовой стружечной канавки на всей длине рабочей части многозубого фасонного инструмента. Предложен подход к заданию профиля винтовой стружечной канавки, расположенной на сложной производящей поверхности концевого инструмента, обеспечивающий постоянство геометрических параметров стружечной канавки в каждом контрольном сечении. Даны зависимости, устанавливающие связь системы координат инструмента и системы координат контрольного сечения.

Ключевые слова: контрольное сечение, винтовая стружечная канавка.

В процессе проектирования и изготовления многозубого фасонного инструмента (фрез, разверток и т.п.) необходим контроль линейных и геометрических параметров стружечных канавок в различных точках зуба, что связано с изменением их формы и размеров. Обычно контроль производится в нескольких так называемых контрольных сечениях.

Для вышеуказанного осевого инструмента обычно форма канавки задается параметрами g, h, гк и v (g - передний угол, h - глубина стружечной канавки, гк - радиус скругления дна стружечной канавки, v - угол развала канавки) g, h, r и v [1] (рис. 1).

Параметры gи v определяются из справочных рекомендаций, ориентируясь на условия процесса обработки, и постоянны для любого контрольного сечения:

h = 2 ■ r + Апер + 0.5...1,

где Апер - размер, предусматриваемый для переточек по задней поверхности;

r =

V

^ ■ k ° лзап

где £ - площадь срезаемого слоя; кзап - коэффициент заполнения стружечной канавки.

Обычно £ пропорциональна длине окружности торцового сечения производящей поверхности инструмента:

£ = а ■ 2 ■ р ■ г ■ ,

где а - толщина срезаемого за один оборот слоя припуска; п^ - число оборотов инструмента, совершаемого при срезании припуска.

Рис. 1. Одна из рекомендуемых форм стружечной канавки

Срезанный металл располагается в стружечной канавке касательно к ее поверхности, потому форма канавки должна задаваться в сечении, перпендикулярном этой поверхности или, как принято в [1], перпендикулярно режущей кромки (рис. 2).

Обычно производящая поверхность инструмента задается в осевой плоскости его системы координат (рис. 3).

В большинстве случаев профиль таких инструментов состоит не более чем из 3...4 участков, описываемых отрезками наиболее технологичных кривых, таких как отрезок прямой, дуга окружности, участок спирали и т.п. Обычно переход от одного участка к другому происходит плавно, без переломов, что соответствует равенству первых производных конца одного и начала другого участков. Участки задаются наборами параметров, однозначно описывающих каждый участок в системе координат инструмента (например, для дуги окружности: координаты точек начала и конца дуги, координаты центра дуги, форма дуги - выпуклая или вогнутая). Подобное задание позволяет определять радиус г осевого сечения производящей поверхности при любом заданном параметре 2 сечения:

г = Г(2). (1)

При формировании контрольного сечения одним из его элементов является линия сечения производящей поверхности, которая совместно с профилем стружечной канавки позволяет визуально судить о прочности инструмента. Кроме этого, при формировании стружечной канавки инструментом второго порядка ее контроль также проводится визуально (под

562

инструментальным микроскопом) за счет оценки «слепка канавки», либо оценки шлифа контрольной детали. Данное сечение также является основным при оценке качества обработки инструмента при моделировании процесса изготовления инструмента. Это требует установления взаимосвязи параметров канавки, представленных как в системе координат инструмента, так и в системе координат контрольного сечения.

Рис. 2. Формирование контрольного сечения в системе координат ХУЮ инструмента

Рис. 3. Представление осевого сечения фрезы в виде отрезков элементарных математических кривых, описывающих профиль на определенных участках

563

Если предположить, что рассматривается осевое сечение стружечной канавки на расстоянии Li от торца инструмента (рис.4), то ему соответствует система координат Х2У^202:

[ X 2 = X, ^2 = У,

Z 2

: Z - Li.

Переход к системе координат XjYjZjOj, связанной с точкой пересечения режущей кромки торцовым сечением дает следующую связь:

f Xi = X2 - ri, <Yi = Y2, Zi = Z 2.

где r¡ - радиус торцового сечения производящей поверхности.

При известной зависимости (1) возможно определение угла каса-

dr

тельной к профилю производящей поверхности, как tgh = —, и система

dZ

координат X4Y4Z4O4, лежащая в плоскости, касательной к производящей поверхности в точке О4, опишется как

X4 = Xi • cosh - Zi • sinh, f Y4 = Yi, Z4 = Xi • sin h + Zi • cosh.

Если угол рпр наклона стружечной канавки задан относительно оси Z инструмента, то в плоскости, касательной в заданной точке к производящей поверхности, данный угол составит

tgp = tgp^ • cos h .

Систему координат, лежащую в плоскости, касательной к производящей поверхности и проходящую перпендикулярно направлению режущей кромки X5Y5Z505, можно отобразить как

X 5 = X4,

Y5 = Y4 • cos b - Z4 • sin b, Z5 = Y4 • sin b + Z4 • cos p.

Фактически системой контрольного сечения будет являться система координат, у которой центр будет лежать на оси Z:

ÍX6 = X 5 + U,

Y6 = Y5,

Z 6 = Z5,

v.

где U = •

cos h

Произведя подстановки, можно получить

X6 = (X - r¡) • cos h + (z - Li) • sin h + U, <Y6 = Y • cos b-[(X - ri )• sin h + (Z - Li )• cos h]-sin b, . (2)

Z6 = Y • sin p + [(X - ri )• sin h + (Z - Li )• cosh] cos b. Контрольное сечение будет соответствовать координатной плоскости

Z 6 = 0.

Рис. 4. Схема установления связи системы координат инструмента и контрольного сечения

При формировании линии пересечения производящей поверхности контрольным сечением необходимо воспользоваться зависимостями перехода из системы координат контрольного сечения в систему координат инструмента. Данные зависимости могут быть получены преобразованием зависимостей (2):

X 6 + K 3 - U

X = -3-+ r¡

cos h

Y = Y6 • cos p,

Z = L - Y6 • sinp (X6 -U)• tgh i cosh cosh

'Y6 • sinp (X6 -U)• tghл

(3)

K

3

V

• sin h.

У

cos h cos h

В контрольном сечении в пределах i-й и 4-й четвертей с шагом At задается угол t в пределах от -90 до +90° (рис. 5). Для каждого угла выстраивается радиальная линия:

X6 = Ясеч • cos t,

r6 = Ясеч • sin t, (4)

Y6 = Ясеч • sin t, Z 6 = 0,

где Ясеч =AP(J - i).

Рис. 5. Угловое положение точек сечения

Изменяя параметр Ясеч с шагом АЯ и подставляя полученные значения в зависимости (3) и (4), определяют параметры точек Z и

I 2 2"

Г =V X + У . Сравнивая данные параметры с параметрами осевого сечения (1) производящей поверхности, выбирают те Ясеч, у которых данные параметры совпадают. Данные Ясеч со своими углами ? формируют линию сечения производящей поверхности контрольным сечением.

Список литературы

1. Проектирование режущих инструментов / Семенченко И.И., Матюшин В.М., Сахаров Г.Н. М.: Машиностроение, 1962. 952 с.

Ушаков Михаил Витальевич, д-р техн. наук, проф., [email protected], Россия, Тула, Тульский государственный университет,

Воробьев Илья Александрович, канд. техн. наук, доц., imsilya@,mail.ru, Россия, Тула, Тульский государственный университет,

Доронин Андрей Васильевич, ведущий инженер, imsdaarambler.ru, Россия, Тула, АО ««Энергострой»

THE FORMA TION OF THE CONTROL CROSS SECTIONS TO DETERMINE THE PARAMETERS OF HELICAL FL UTES END SHAPED TOOL

M. V. Ushakov, I.A. Vorobev, A. V. Doronin

The questions provide the desired profile shape spiral flute on the entire length of the working part end shaped tool. An approach to the job profile of a helical flute, situated on a complex generating end surface of the tool, ensuring consistency of geometrical parameters flute in each control section. The dependence of establishing communication tool coordinate system and the control section of the coordinate system.

Key words: control section, helical flutes.

Ushakov Michael Vitalevich, doctor of technical sciences, professor, imstulgu@pochta. ru, Russia, Tula, Tula State University,

Vorobev Ilya Alexandrovich, candidate of technical sciences, docent, imsilya@,mail. ru, Russia, Tula, Tula State University,

Doronin Andrey Vasilyevich, lead engineer, imsdaaram bler. ru, Russia, Tula, AC «Energostroy».

i Надоели баннеры? Вы всегда можете отключить рекламу.