Научная статья на тему 'FEM MODELING OF EXTERNAL WALLS MADE OF AUTOCLAVED AERATED CONCRETE BLOCKS'

FEM MODELING OF EXTERNAL WALLS MADE OF AUTOCLAVED AERATED CONCRETE BLOCKS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
239
66
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
НАРУЖНЫЕ СТЕНЫ / БЛОКИ ИЗ АВТОКЛАВНОГО ГАЗОБЕТОНА / КОЭФФИЦИЕНТ РАВНОМЕРНОСТИ НАГРЕВА / СНИЖЕНИЕ ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ / МОДЕЛИРОВАНИЕ / МКЭ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Pukhkal V.A., Mottaeva A.B.

The FEM-analysis of factors influencing the heat transfer properties of external walls made of autoclaved aerated concrete blocks is presented. Using the ELCUT program, the external wall temperature fields made of autoclaved aerated concrete blocks were calculated for different values of thermal conductivity for laying cement mortar and laying with adhesive. The temperature field was calculated for a junction of a top floor slab with a two-layer external wall having a facing brick layer and no air cavity. The possibility of condensation of moisture on the surface of the ceiling is established. The values of heating performance uniformity of heat productivity, reduced thermal resistance and heat fluxes for external walls are determined. The calculated values of heating performance uniformity of heat output are obtained depending on the coefficient of thermal conductivity of autoclaved aerated concrete blocks. Further development of the research will be the use of data in calculating the payback period of energy efficiency measures for buildings.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «FEM MODELING OF EXTERNAL WALLS MADE OF AUTOCLAVED AERATED CONCRETE BLOCKS»

doi: 10.18720/MCE.81.20

FEM modeling of external walls made of autoclaved aerated concrete blocks

МКЭ-моделирование ограждающих стен, выполненных из автоклавного газобетона

V.A. Pukhkal,

St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia A.B. Mottaeva*,

Moscow State University of Civil Engineering, Moscow, Russia

Канд. техн. наук, доцент В.А. Пухкал,

Санкт-Петербургский государственный

архитектурно-строительный университет,

Санкт-Петербург, Россия

д-р экон. наук, профессор А.Б. Моттаева*,

Московский государственный

строительный университет, г. Москва,

Россия

Key words: external walls; autoclaved aerated concrete blocks; heating performance uniformity coefficient; reduced thermal resistance; modelling; FEM

Ключевые слова: наружные стены; блоки из автоклавного газобетона; коэффициент равномерности нагрева; снижение термического сопротивления; моделирование; МКЭ

Abstract. The FEM-analysis of factors influencing the heat transfer properties of external walls made of autoclaved aerated concrete blocks is presented. Using the ELCUT program, the external wall temperature fields made of autoclaved aerated concrete blocks were calculated for different values of thermal conductivity for laying cement mortar and laying with adhesive. The temperature field was calculated for a junction of a top floor slab with a two-layer external wall having a facing brick layer and no air cavity. The possibility of condensation of moisture on the surface of the ceiling is established. The values of heating performance uniformity of heat productivity, reduced thermal resistance and heat fluxes for external walls are determined. The calculated values of heating performance uniformity of heat output are obtained depending on the coefficient of thermal conductivity of autoclaved aerated concrete blocks. Further development of the research will be the use of data in calculating the payback period of energy efficiency measures for buildings.

Аннотация. Представлен МКЭ-анализ факторов, влияющих на теплопередающие свойства наружных стен, выполненных из блоков автоклавного газобетона. Используя программу ELCUT получены температурные поля внешней стены, выполненные из блоков автоклавного газобетона, рассчитывались при разных значениях коэффициентов теплопроводности для укладки цементным раствором и укладки клеящим раствором. Температурное поле было рассчитано для соединения верхней плиты перекрытия с двухслойной наружной стенкой, имеющей облицовочный кирпичный слой и воздушную полость. Установлена возможность конденсации влаги на поверхности потолка. Определены значения коэффициентов однородности теплопроизводительности, пониженного теплового сопротивления и тепловых потоков для наружных стен. Расчетные значения коэффициентов однородности теплопроизводительности получены в зависимости от коэффициента теплопроводности блоков автоклавного газобетона. Дальнейшим развитием исследований будет использования данных при расчете периода окупаемости мероприятий по энергоэффетивности зданий.

1. Introduction

1.1 Wall types with autoclaved aerated concrete blockwork applying

Unreinforced wall products of autoclaved aerated concrete (autoclaved aerated concrete blocks) is used as a structural and thermal insulation material in many countries with a cold climate.

The most used types of external walls made of autoclaved aerated concrete (AAC) blocks are shown in Figure 1:

- Type 1 - single-layer walls;

Пухкал В.А., Моттаева А.Б. МКЭ-моделирование ограждающих стен, выполненных из автоклавного газобетона // Инженерно-строительный журнал. 2018. № 5(81). С. 202-211.

- Type 2 - two-layer walls with a facing brick layer; the inner autoclaved aerated concrete layer serves as a thermal protection and bares the load. The outer facing layer protects the structure from atmospheric precipitation; the wall structure may involve an air cavity;

- Type 3 - three-layer walls with a facing brick layer; the inner autoclaved aerated concrete layer serves as a thermal protection and bares the load; thermal insulation is provided to increase the thermal protection properties; the outer facing brick layer protects from atmospheric precipitation; the wall structure may involve an air cavity;

Type 1.

Type 2.

Type 3.

Figure 1. External walls types with autoclaved aerated concrete blockwork applying 1 - autoclaved aerated concrete blocks; 2 - joints; 3 - facing brickwork layer; 4 - flexible

connections; 5 -thermal insulation

The peculiarity of external walls structural solutions, the quality and properties of the materials used, and the technology of building's erection have a significant effect on the physical processes of heat transfer in the structures of such walls and, accordingly, on their energy efficiency.

The main factors influencing the heating performance indicators are coefficient of thermal conductivity of autoclaved aerated concrete X, W/(m °C).

1.2 Coefficient of thermal conductivity of autoclaved aerated concrete

The thermal properties of autoclaved aerated concrete may vary depending on the materials used [1-5]. For a fixed composition of concrete, the coefficient is significantly dependent on humidity.

The fraction of pore volume in autoclaved aerated concrete products covers the range from 65 to 90 % [4] As a result, concrete easily absorbs water [6] and the thermal conductivity increases with increasing the moisture content [7, 8]. At the temperature below zero. one of the basic mechanisms of moving water for cellular concrete with a moisture content over 30 % by weight is non-isothermal liquid transport [9]. The moisture diffusivity of autoclaved aerated concrete is a function of both temperature and moisture content [10, 11].

The humidity and thermal conductivity of autoclaved aerated concrete given in the manufacturers' lists include mostly just the thermal conductivity in dry state and generic data for the specific heat capacity and water vapor diffusion resistance factor [12]. A Humidity of autoclaved aerated concrete products during the erection of buildings is 2-3 times higher [13, 14] than the design humidity in normative and reference documents used in the calculation of thermal insulation of buildings due to release moisture content of concrete is generally higher than 40 % [15]. Heat transfer through the exterior building envelope in real operating conditions is always unsteady [12]. Values of the thermal conductivity will reach the normalized values only in few years after the erection of the building [16, 17].

Russian Construction Rules SP 50.13330.2012 [18] use the coefficient of heating performance uniformity of the enclosing structure is the indicator of thermal properties of the entire enclosing structure:

Ro

r =—, (1)

T>COn

Rfi

.....

where R0 is reduced thermal resistance of the enclosing structure section (m2°C)/W,

R0 = —-— , (m2°C)/W, 0 m - (2)

Z

ч

1 R0,i

where A is a total area of indicative partition of the enclosing structure equal to sum of areas of separate sections, m2; Aj - area of ith section of indicative partition of enclosing structure, m2; Rqj - reduced thermal resistance of ith section of indicative partition of the enclosing structure (m2°C)/W;

Rq0" - thermal resistance of section of uniform enclosing structure (m2°C)/W.

Thermal resistance of the uniform enclosing structure

--1

aint ■ aext

where a^ - heat transfer coefficient of the inner surface of the enclosing structure W/(m2 °C);

Ron =_L + + — , (m2°C)/W, (3)

rv- ' ' A.rv 4 '

aext - heat transfer coefficient of external surface of enclosing structure W/(m2 °C); Sj - thickness of the ith layer of the enclosing structure, m;

A - thermal conductivity coefficient of the ith layer of the enclosing structure, W/(m °C);

m -, the number of sections of the building envelope with different reduced thermal resistance.

In works [5, 13, 19], a significant heating performance heterogeneity of autoclaved aerated concrete blockwork is indicated. According to the calculation results given in [20], an increase in the coefficient of thermal conductivity (density) of autoclaved aerated concrete blocks leads to an increase in the coefficient of thermotechnical uniformity coefficients. The results of the calculation differ from the values indicated in [19] up to 10 %. However, these data were obtained only for blockwork with cement-sand mortar having a density of 1,800 kg/m3 and a 10 mm thickness of horizontal and vertical joints. The work [21] gives data

only for joints on cement mortar; blockwork with adhesive solutions providing a joint thickness of 2 ± 1 mm is not considered.

Due to the fact that the thermal conductivity of cement mortars and adhesives is significantly higher than the thermal conductivity of autoclaved aerated concrete products, their effect must be considered when designing the external wallis [15]. The thermotechnical uniformity coefficients of autoclaved aerated concrete walls depends on the thickness and thermal conductivity of mortar joints in stationary and non-stationary conditions [15].

The use of polyurethane foam adhesive to bond the concrete blocks in the masonry walls is technically and economically feasible [19, 22].

Plastering of type 1 external walls (Figure 1) made of autoclaved aerated concrete blocks is performed directly on autoclaved aerated concrete laying (when homogeneous walls provide the required parameters of thermal protection) or on thermal insulation fixed on laying (two-layer structure). Both thick-layered (with an average layer thickness of more than 7 mm) and thin-layered plasters (with an average layer thickness of 7 mm or less) are implemented. External finishing of walls made of autoclaved aerated concrete blocks is obligated, because when there is no finishing, walls have high air permeability.

Different surface coatings [23] and exterior plaster [24-26] can contribute to moisture and thermal performance of external walls made of autoclaved aerated concrete.

1.3Aims and objectives of the study

In [27-29] A.S.Gorshkov and others developed a mathematical model for estimating the discounted payback period of investments for reducing energy resources needed in building's development. The model allows to perform quickly and efficiently a comparison of various energy-saving solutions based on economic viability.

In order to use this model, in the case of autoclaved aerated concrete blocks, detailed initial data are required. This data must include the heat transfer performance uniformity factors and the coefficient of thermal conductivity with taking into account the influences of mortar joints, surface coatings and exterior plaster, floor slabs perforations, etc.

For fast calculations of all these parameters, a model based on the finite element method (FEM) was proposed.

In 2018 the first results of FEM analysis of data on the effect of joints of the autoclaved aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out [21] with the use of "ELCUT" software.

The task of this research is the further development of the approach and its comparison with experimental data.

2. Materials and Methods

The coefficient of thermal conductivity of autoclaved aerated concrete is taken as a function of density. Data for thermal insulation material (of grade with an average density of not higher than D400), structural and thermal insulation material (of grade with an average density above D400 and below D700) and structural material (of grade with an average density of D700 and above) are given in Table 1.

Table 1. Coefficient values of thermal conductivity of autoclaved aerated concrete blocks

Bulk humidity of the material Thermal conductivity coefficient, À, W/(m°C), a grade of the autoclaved aerated concrete block

D200 D300 D400 D500 D600 D800 D1000 D1200

In dry condition (recommended by [30]) 0.048 0.072 0.096 0.120 0.140 0.190 0.240 0.280

4% [30] 0.056 0.084 0.113 0.141 0.160 0.223 0.282 0.329

5% [30] 0.059 0.088 0.117 0.147 0.183 0.232 0.293 0.342

8% [31] - - 0.140 - 0.220 0.330 0.380 -

12% [31] - - 0.150 - 0.260 0.370 0.430 -

According to Russian State Standard SP 50.13330.2012 while designing structures, the coefficient of thermal conductivity of autoclaved aerated concrete blocks is taken when bulk humidity is 12% [18].

The coefficient of heating performance uniformity of the enclosing structure can be determined on the basis of calculation of the temperature field of the structure.

In this case, the calculations are performed according to the dependencies:

- - reduced thermal resistance of a non-uniform section of the enclosing structure

R = ¿int ~ W , (m2 °C)/W,, (4)

q0

where q0 - heat flow rate of non-uniform section of enclosing structure, W/m2;

- thermal resistance of a uniform section of enclosing structure, (m2°C)/W

RC0n - tntC0ft-, (m2°C)/W, (5)

qo

where q0on - heat flow rate for uniform section of enclosing structure, W/m2;

- heating performance uniformity coefficient of enclosing structure

qcon

r = q0— (6)

q0

Let us consider as an example a two-dimensional temperature field of a single-layer external wall structure made of autoclaved aerated concrete blocks (St. Petersburg, Russian Federation):

- design temperature of outside air is -26 ° C;

- design temperature of inside air is +20 ° C;

- the outer wall is made of 375 mm thick autoclaved aerated concrete blocks of density grade D300;

- the thickness of the horizontal and vertical joints of the laying: with cement mortar - 10 mm; with adhesive solution - 2 mm.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

For the block laying, a cement-sand mortar and adhesive cement with density of 1800 kg/m3 are

used.

The coefficients of thermal conductivity of materials are determined for the operating conditions of the enclosing structure:

- for blocks (Ab, W/(m °C)) - when bulk humidity of the material is 12 %,

- for cement-sand mortar and adhesive cement (Am, W/(m °C)) - when bulk humidity of the material is 4 % [20].

Blockwork joint thickness is taken:

- with adhesive solution: horizontal and vertical - within 2 ± 1 mm;

- with cement mortar: horizontal - not less than 10 mm and not more than 15 mm; vertical - from 8 to 15 mm.

Calculation of the temperature field and heat fluxes of the external wall structure is carried out in the program of simulation of two-dimensional thermal fields by the ELCUT finite element method which is widely used in thermal fields calculation in constructions [32-36].

3. Results and Discussion

3.1. Results of calculation The temperature fields of the external wall were calculated using ELCUT program within the range of values of the thermal conductivity coefficient of autoclaved aerated concrete blocks from 0.088 (D300 block) to 0.6 W/(m^°C). The example of calculation results is presented in Figure 2 in the form of fields of heat flows under design conditions.

According to the calculation data, the heat flow through the enclosing structure and its thermal resistance are determined depending on the coefficient of thermal conductivity of autoclaved aerated concrete blocks (Table 2). In comparison, data on a uniform structure are given (without regard to joints).

The temperature field of the junction of the top floor slab with the wall is calculated when the thermal insulating insert is placed along the entire length of the structure (plane problem - Figure 3). A two-layer external wall with a facing brick layer without an air cavity has been set. The grade of autoclaved aerated concrete block is D400. The calculation did not take into account the heterogeneity of the blockwork of autoclaved aerated concrete, which corresponds to the laying with adhesive solution applying. The values of thermal conductivity coefficients of autoclaved aerated concrete blocks are Ab=0.117 W/(m°C). The calculation is carried under the outside air temperature, which was -24 °C. The graph of the variation of the ceiling surface temperature is shown in Figure 4.

a) cement mortar blockwork b) adhesive solution blockwork

Figure 2. The example of heat flow calculation for external wall made of autoclaved aerated

concrete blocks of density grade of D300

Table 2. Heat flow through the autoclaved aerated concrete blockwork and the thermal resistance of the structure

Thermal conduction coefficient of a block, Xb , W/(m°C) Heat flow rate, qt, W/m2 Thermal resistance, (m2°C)/W

Uniform structure laying Uniform structure laying

With cement mortar With adhesive solution With cement mortar With adhesive solution

0.088 10.408 14.302 11.255 4.420 3.216 4.087

0.117 13.676 17.581 14.513 3.364 2.616 3.170

0.147 16.978 20.870 17.804 2.709 2.204 2.584

0.183 20.837 24.700 21.650 2.208 1.862 2.125

0.208 23.454 27.291 24.257 1.961 1.686 1.896

0.3 32.661 36.391 33.431 1.408 1.264 1.376

0.4 41.974 45.590 42.713 1.096 1.009 1.077

0.5 50.637 54.153 51.351 0.908 0.849 0.896

0.6 58.717 62.150 59.410 0.783 0.740 0.774

t, °C

20

19 18 17

V,

V

800 x, mm

Figure 4. The graph of ceiling surface temperature changing (x - distance from the corner, mm)

Figure 3. Temperature field of the junction of the top floor slab with an external wall made of autoclaved aerated concrete blocks of D400 grade of density and a brick facing layer

3.2. Discussion

As it follows from the calculations performed, an increase in the coefficient of thermal conductivity (density) of autoclaved aerated concrete blocks leads to a decrease in the coefficient of heating performance uniformity (Table 2). The correlation between thermal conductivity coefficients of the joint material and of autoclaved aerated concrete blocks significantly affects the values of the heating performance uniformity coefficients of the blockwork with given thickness of joints (Figure 5).

Figure 5. Dependence of the coefficient of heating performance uniformity on the ratio of the coefficients of thermal conductivity of the junction material and autoclaved aerated concrete

blocks

1 - laying with using cement mortar with joint thickness of 10 mm; 2 - laying with using adhesive

solution with joint thickness of 2 mm

During investigating the temperature field of the junction of top floor slab with the external wall made of autoclaved aerated concrete blocks of D400 density grade and the facing brick layer, the minimum

16

15

14

13

12

10

0

200

300

400

500

600

700

surface temperature of the ceiling in the corner was determined equaling +11.3 °C (Figure 4). In this case, under internal air temperature of +20 °C and relative humidity of 58%, condensate falls out on the surface of the ceiling.

For junctions of intermediate floor slabs with an external wall, the minimum temperatures on the inner surface of the wall and the floor depend primarily on the thickness of the wall and the presence of perforation, or other thermal protective measures.

To further improve the laying of autoclaved aerated concrete blocks, it is required to develop adhesive solutions that are characterized by low values of the thermal conductivity coefficients [19, 22], while ensuring the required adhesion between the blocks and not impairing the performance of the enclosing structures in strength, stability, crack resistance, fire resistance, etc.

4. Conclusions

1. Design values of heating performance of buildings' external walls can be determined using the program of simulation of thermal fields by the ELCUT finite element method.

2. Thermal state of the external enclosing structures made of autoclaved aerated concrete was calculated and the design values of the coefficients of heating performance uniformity for laying with the use of cement mortar and adhesive solution were obtained depending on the ratio of the thermal conductivity coefficients of junction material and autoclaved aerated concrete blocks.

3. It was established that it is necessary to model thermal fields of junctions of building structural elements made of autoclaved aerated concrete blocks in order to test them for condensation of moisture on the surface.

Reference

1. Tasdemir, C., Sengul, O., Tasdemir, M.A. A comparative 1. study on the thermal conductivities and mechanical properties of lightweight concretes. Energy and Buildings. 2017. Vol. 151. Pp. 469-475. DOI:10.1016/j.enbuild.2017.07.013

2. Qu, X., Zhao, X. Previous and present investigations on the 2. components, microstructure and main properties of autoclaved aerated concrete - A review. Construction and Building Materials. 2017. Vol. 135 Pp. 505-516. DOI:10.1016/j.conbuildmat.2016.12.208

3. Walczak, P., Szymanski, P., Rozycka, A. Autoclaved 3. Aerated Concrete based on Fly Ash in Density 350kg/m3as

an Environmentally Friendly Material for Energy - Efficient Constructions. Procedia Engineering. 2015. Vol. 122. Pp. 39-46. D0I:10.1016/j.proeng.2015.10.005

4. Schober, G. Poros ity in autoclaved aerated concrete 4. (AAC): A review on pore structure, types of porosity, measurement methods and effects of porosity on properties. Cement, Wapno, Beton, (SPEC.ISSUE). 2011.

Pp. 39-43.

5. Grinfeld, G.I. Perfomance characteristics of autoclaved 5. aerated concrete with density 400 kg/cub.m. Construction

of Unique Buildings and Structures. 2013. No. 5(10). Pp. 28-57.

6. Agata, S., Jarostaw, S. Mathematical description of 6. sorption isotherms of autoclaved aerated concrete. Energy Procedia. 2015. Vol. 78. Pp. 1437-1442. D0I:10.1016/j.egypro.2015.11.167

7. Korniyenko, S.V, Vatin, N.I., Gorshkov, A.S. Heat and 7. power characteristics analysis carried out for the residential building made of autoclaved aerated concrete blocks. Construction of Unique Buildings and Structures. 2016. No. 12(51). Pp. 45-60. D0I:10.18720/CUBS.51.4

8. Jin, H.-Q., Yao, X.-L., Fan, L.-W., Xu, X., Yu, Z.-T. 8. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content. International Journal

of Heat and Mass Transfer. 2016. Vol. 92. Pp. 589-602. D0I:10.1016/j.ijheatmasstransfer.2015.08.103

9. Krutilin, A.B., Rykhlionak, Y.A., Liashkevich, V.V. Thermophysical characteristics of low density autoclaved 9. aerated concrete and their influence on durability of

Литература

Tasdemir C., Sengul O., Tasdemir M.A. A comparative study on the thermal conductivities and mechanical properties of lightweight concretes // Energy and Buildings. 2017. Vol. 151/ Pp. 469-475.

DOI:10.1016/j.enbuild.2017.07.013

Qu X., Zhao X. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete - A review // Construction and Building Materials. 2017. Vol. 135 Pp. 505-516. DOI:10.1016/j.conbuildmat.2016.12.208

Walczak P., Szymanski P., Rozycka A. Autoclaved Aerated Concrete based on Fly Ash in Density 350kg/m3as an Environmentally Friendly Material for Energy - Efficient Constructions // Procedia Engineering. 2017. Vol. 122. Pp. 39-46. D0I:10.1016/j.proeng.2015.10.005

Schober G. Poros ity in autoclaved aerated concrete (AAC): A review on pore structure, types of porosity, measurement methods and effects of porosity on properties // Cement, Wapno, Beton, (SPEC.ISSUE). 2011. Pp. 39-43.

Гринфельд Г.И. Эксплуатационные характеристики автоклавного газобетона марки по средней плотности D400 // Строительство уникальных зданий и сооружений. 2013. № 5 (10). С. 28-57.

Agata S., Jarostaw S. Mathematical description of sorption isotherms of autoclaved aerated concrete // Energy Procedia. 2015. Vol. 78. Pp. 1437-1442. D0I:10.1016/j.egypro.2015.11.167

Корниенко С.В., Ватин Н.И., Горшков А.С. Анализ теплоэнергетических характеристик жилого здания из газобетонных блоков // Строительство уникальных зданий и сооружений. 2016. № 12(51). С. 45-60. D0I:10.18720/CUBS.51.4

Jin H.-Q., Yao X.-L., Fan L.-W., Xu X., Yu Z.-T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content // International Journal of Heat and Mass Transfer. 2016. Vol. 92. Pp. 589-602.

D0I:10.1016/j.ijheatmasstransfer.2015.08.103

Крутилин А.Б., Рыхленок Ю.А., Лешкевич В.В. Теплофизические характеристики автоклавных ячеистых бетонов низких плотностей и их влияние на

exterior walls of buildings. Magazine of Civil Engineering. 2015. No. 2(54). Pp. 46-55. D0l:10.5862/MCE.54.5

10. Kornienko, S.V., Vatin, N.I., Gorshkov, A.S. Assessment of moisture conditions of walls with fasade's thermoinsulation composite systems with external mortar layers. Construction of Unique Buildings and Structures. 2016. No. 6(45). Pp. 34-54.

11. Koci, J., Korecky, T., Cerny, R. Identification of Moisture Diffusivity of Autoclaved Aerated Concrete in the Form of Smooth Two-Variable Function. Energy Procedia. 2017. Vol. 132. Pp. 219-224. D0I:10.1016/j.egypro.2017.09.758

12. Jerman, M., Keppert, M., Vyborny, J., Cerny, R. Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials. 2013. Vol. 41 Pp. 352-359. D0I:10.1016/j.conbuildmat.2012.12.036

13. Vatin, N.I., Gorshkov, A.S., Kornienko, S.V., Pestryakov, I.I. The consumer properties of wall products from AAC. Construction of Unique Buildings and Structures. 2016. No. 1(40). Pp. 78-101.

14. Jerman, M., Cerny, R. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings. 2012. Vol. 53. Pp. 39-46. D0I:10.1016/j.enbuild.2012.07.002

15. Gorshkov, A.S., Rymkevich, P.P., Vatin, N.I. Simulation of non-stationary heat transfer processes in autoclaved aerated concrete-walls. Magazine of Civil Engineering. 2014. No. 8(52). D0I:10.5862/MCE.52.5

16. Vatin, N., Gorshkov, A., Rymkevich, P., Nemova, D., Tarasova, D. Nonstationary thermal conductionthrough the building envelope. Applied Mechanics and Materials. 2014. Vol. 670-671 Pp. 365-369. D0I:10.4028/www.scientific.net/AMM.670-671.365

17. Gorshkov, A.S., Sokolov, N.A. Inconsistency in Russian and international standards in the determination of the design values of thermal conductivity of building materials and products. Magazine of Civil Engineering. 2013. No. 7(42). D0I:10.5862/MCE.42.2

18. Russian State Standard SP 50.13330.2012 Buildings Heat Insulation.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

19. Grinfeldi, G.I., Gorshkov, A.S., Vatin, N.I. Tests results strength and thermophysical properties of aerated concrete block wall samples with the use of polyurethane adhesive. Advanced Materials Research. 2014. Vol. 941 -944 Pp. 786-799. D0I:10.4028/www.scientific.net/AMR.941-944.786

20. Gorshkov, A.S., Gladkikh, A.A. Vliianie rastvornykh shvov kladki na parametry teplotekhnicheskoi odnorodnosti sten iz gazobetona [Influence of mortar joints on the parameters of heat transfer performance uniformity of walls made of aerated concrete]. Magazine of Civil Engineering. 2010. No. 3(13). Pp. 39-42.

21. Pukhkal, V., Murgul, V. Effect of aerated concrete blockwork joints on the heat transfer performance uniformity. E3S Web of Conferences. 2018. Vol. 33. Pp. 02002. D0I:10.1051 /e3sconf/20183302002

22. Gorshkov, A.S., Vatin, N.I. Properties of the wall structures made of autoclaved cellular concrete products on the polyurethane foam adhesive. Magazine of Civil Engineering. 2013. No. 5(40). Pp. 5-19. D0I:10.5862/MCE.40.1

23. Kus, H., Nygren, K., Norberg, P. In-use performance assessment of rendered autoclaved aerated concrete walls by long-term moisture monitoring. Building and Environment. 2004. Vol. 39(6). Pp. 677-687. D0I:10.1016/j.buildenv.2003.12.006

24. Koci, V., Madera, J., Cerny, R. Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life. Energy and Buildings. 2012. Vol. 47. Pp. 84-90. D0I:10.1016/j.enbuild.2011.11.030

долговечность наружных стен зданий // Инженерно-строительный журнал. 2015. № 2(54). С. 46-55. D0I:10.5862/MCE.54.5

10. Корниенко С.В, Ватин Н.И, Горшков А.С, Оценка влажностного режима стен с фасадными теплоизоляционными композиционными системами // Строительство уникальных зданий и сооружений. 2016. № 6(45). С. 34-54.

11. Koci J., Korecky T., Cerny R. Identification of Moisture Diffusivity of Autoclaved Aerated Concrete in the Form of Smooth Two-Variable Function // Energy Procedia. 2017. Vol. 132. Pp. 219-224. D0I:10.1016/j.egypro.2017.09.758

12. Jerman M., Keppert M., Vyborny J., Cerny R. Hygric, thermal and durability properties of autoclaved aerated concrete // Construction and Building Materials. 2013. Vol. 41. Pp. 352-359. D0I:10.1016/j.conbuildmat.2012.12.036

13. Ватин Н.И., Горшков А.С., Корниенко С.В., Пестряков И.И., Потребительские свойства стеновых изделий из автоклавного газобетона // Строительство уникальных зданий и сооружений. 2016. № 1(40). С. 78-101.

14. Jerman M., Cerny R. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials // Energy and Buildings. 2012. Vol. 53. Pp. 39-46. D0I:10.1016/j.enbuild.2012.07.002

15. Горшков А.С., Рымкевич П.П., Ватин Н.И. Моделирование процессов нестационарного переноса тепла в стеновых конструкциях из газобетонных блоков // Инженерно-строительный журнал. 2014. № 8(52). С. 38-48. D0I:10.5862/MCE.52.5

16. Vatin N., Gorshkov A., Rymkevich P., Nemova D., Tarasova D. Nonstationary thermal conductionthrough the building envelope // Applied Mechanics and Materials. 2014. Vol. 670-671. Pp. 365-369. D0I:10.4028/www.scientific.net/AMM.670-671.365

17. Горшков А.С., Соколов Н.А. Несоответствие российских и международных стандартов при определении расчетных значений теплопроводности строительных материалов и изделий // Инженерно-строительный журнал. 2013. № 7(42). С. 7-14. D0I:10.5862/MCE.42.2

18. СП50.13330.2012 Тепловая защита зданий.

19. Grinfeldi G.I., Gorshkov A.S., Vatin N.I. Tests results strength and thermophysical properties of aerated concrete block wall samples with the use of polyurethane adhesive // Advanced Materials Research. 2014. Vol. 941 -944 Pp. 786-799. D0I:10.4028/www.scientific.net/AMR.941 -944.786

20. Горшков А.С., Гладких А.А. Влияние растворных швов кладки на параметры теплотехнической однородности стен из газобетона // Инженерно-строительный журнал. 2010. № 3(13). С. 39-42.

21. Pukhkal V., Murgul V. Effect of aerated concrete blockwork joints on the heat transfer performance uniformity // E3S Web of Conferences. 2018. Vol. 33 Pp. 02002. D0I:10.1051/e3sconf/20183302002

22. Горшков А.С., Ватин Н.И. Свойства стеновых конструкций из ячеистобетонных изделий автоклавного твердения на полиуретановом клею // Инженерно-строительный журнал. 2013. № 5(40). С. 5-19. D0I:10.5862/MCE.40.1

23. Kus H., Nygren K., Norberg P. In-use performance assessment of rendered autoclaved aerated concrete walls by long-term moisture monitoring // Building and Environment. 2004. Vol. 39(6). Pp. 677-687. D0I:10.1016/j.buildenv.2003.12.006

24. Koci V., Madera J., Cerny R. Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life // Energy and Buildings. 2012. Vol. 47. Pp. 84-90. D0I:10.1016/j.enbuild.2011.11.030

25. Paruta, V.A. Fracture mechanics of system 'aerated concrete masonry - Plaster covering'. Magazine of Civil Engineering. 2014. No. 3(47). Pp. 48-55. D0l:10.5862/MCE.47.5

26. Vatin, N., Gorshkov, A., Nemova, D., Gamayunova, O., Tarasova, D. Humidity conditions of homogeneous wall from gas-concrete blocks with finishing plaster compounds. Applied Mechanics and Materials. 2014. Vol. 670-671 Pp. 349-354. D0I:10.4028/www.scientific.net/AMM.670-671.349

27. Vatin, N.I., Nemova, D.V., Kazimirova, A.S., Gureev, K.N. Increase of energy efficiency of the building of kindergarten. 2014. D0I:10.4028/www.scientific.net/AMR.953-954.1537

28. Vatin, N., Gorshkov, A., Nemova, D., Tarasova, D. Energy efficiency of facades at major repairs of buildings. Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 991-996. D0I:10.4028/www.scientific.net/AMM.633-634.991

29. Gorshkov, A.S., Vatin, N.I., Rymkevich, P.P., Kydrevich, 0.0. Payback period of investments in energy saving. Magazine of Civil Engineering. 2018. No. 2(78). Pp. 65-75. D0I:10.18720/MCE.78.5

30. Russian state standard G0ST 31359-2007 Cellular autoclave curing concretes. Specifications.

31. Russian regional guidance documents RMD 23-16-2012.

32. Dudin, M.0., Vatin, N.I., Barabanshchikov, Y.G. Modeling a set of concrete strength in the program ELCUT at warming of monolithic structures by wire. Magazine of Civil Engineering. 2015. No. 2(54). Pp. 33-45. D0I:10.5862/MCE.54.4

33. Portnyagin, D.G. Improving the thermal performance of the building envelopes with the use of foam glass-ceramics. Magazine of Civil Engineering. 2015. No. 8(60). Pp. 56-67. D0I:10.5862/MCE.60.7

34. Konesev, S., Khazieva, R., Konev, A., Kondratyev, E. The research of heating efficiency of different induction heating systems. MATEC Web of Conferences. 2017. Vol. 113. D0I:10.1051/matecconf/201711301002

35. Larionov, A., Minnullina, A. Analysis of heat-conducting inclusions in exterior walls of residential building. I0P Conference Series: Earth and Environmental Science. 2017. No. 1(90). D0I:10.1088/1755-1315/90/1/012188

36. Khalimov, 0., Shibaeva, G., Portnyagin, D., Ibe, K. The improvement of aseismic horizontal frame's thermal insulations. Journal of Physics: Conference Series. 2018. Vol. 365(4). D0I:10.1088/1757-899X/365/4/042071

25. Парута В.А. Механика разрушения системы «газобетонная кладка - штукатурное покрытие» // Инженерно-строительный журнал. 2014. № 3(47). С. 48-55. D0l:10.5862/MCE.47.5

26. Vatin N., Gorshkov A., Nemova D., Gamayunova O., Tarasova D. Humidity conditions of homogeneous wall from gas-concrete blocks with finishing plaster compounds // Applied Mechanics and Materials. 2014. Vol. 670-671. Pp. 349-354. D0I:10.4028/www.scientific.net/AMM.670-671.349

27. Vatin N.I., Nemova D.V., Kazimirova A.S., Gureev K.N. Increase of energy efficiency of the building of kindergarten. 2014. D0I:10.4028/www.scientific.net/AMR.953-954.1537

28. Vatin N., Gorshkov A., Nemova D., Tarasova D. Energy efficiency of facades at major repairs of buildings // Applied Mechanics and Materials. 2014. Vol. 633-634. Pp. 991-996. D0I:10.4028/www.scientific.net/AMM.633-634.991

29. Горшков А.С., Ватин Н.И., Рымкевич П.П., Кудревич О.О. Период возврата инвестиций в энергосбережение // Инженерно-строительный журнал. 2018. № 2(78). С. 65-75. D0I:10.18720/MCE.78.5

30. ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия.

31. РМД 23-16-2012 Санкт-Петербург. Рекомендации по обеспечению энергетической эффективности жилых и общественных зданий

32. Дудин М.О., Ватин Н.И., Барабанщиков Ю.Г. Моделирование набора прочности бетона в программе ELCUT при прогреве монолитных конструкций проводом // Инженерно-строительный журнал. 2015. № 2(54). С. 33-45. D0I:10.5862/MCE.54.4

33. Портнягин Д.Г. Повышение теплозащиты узлов ограждающих конструкций зданий с применением пеностеклокристаллического материала // Инженерно-строительный журнал. 2015. № 8(60). С. 56-67. D0I:10.5862/MCE.60.7

34. Konesev S., Khazieva R., Konev A., Kondratyev E. The research of heating efficiency of different induction heating systems // MATEC Web of Conferences. 2017. Vol. 113. D0I:10.1051/matecconf/201711301002

35. Larionov A., Minnullina A. Analysis of heat-conducting inclusions in exterior walls of residential building // I0P Conference Series: Earth and Environmental Science. 2017. Vol. 90(1). D0I:10.1088/1755-1315/90/1 /012188

36. Khalimov 0., Shibaeva G., Portnyagin D., Ibe K. The improvement of aseismic horizontal frame's thermal insulations // Journal of Physics: Conference Series. 2018. Vol. 365(4). D0I:10.1088/1757-899X/365/4/042071

Viktor Pukhkal,

+7(921) 741-42-01; pva1111@rambler. ru Angela Mottaeva*,

+7(926)203-52-86; angela-1309. m@yandex.ru

Виктор Алексеевич Пухкал,

+7(921)741-42-01;

эл. почта: pva1111@rambler.ru

Анджела Бахауовна Моттаева*, +7(926)203-52-86; эл. почта: angela-1309.m@yandex.ru

© Pukhkal V.A.,Mottaeva A.B., 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.