Научная статья на тему 'Фазовые переходы кубических нанокристаллов uo 2'

Фазовые переходы кубических нанокристаллов uo 2 Текст научной статьи по специальности «Физика»

CC BY
155
44
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОЛЕКУЛЯРНАЯ ДИНАМИКА / ДИОКСИД УРАНА / ПЛАВЛЕНИЕ НАНОКРИСТАЛЛОВ / MOLECULAR DYNAMICS / URANIUM DIOXIDE / MELTING POINT OF NANOCRYSTALLS

Аннотация научной статьи по физике, автор научной работы — Махмуд-ахунов Руслан Юсупович, Тихончев Михаил Юрьевич, Светухин Вячеслав Викторович

С помощью молекулярно-динамического моделирования проведено исследование фазовых переходов кубических нанокристаллов диоксида урана. Моделирование проведено на основе парных потенциалов с параметрами, зависящими от температуры. Рассмотрены процессы суперионного перехода и плавления. Рассчитаны соответствующие температуры для нанокристаллов в диапазоне размеров 2,2 5,5 нм.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Махмуд-ахунов Руслан Юсупович, Тихончев Михаил Юрьевич, Светухин Вячеслав Викторович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

PHASE TRANSIONS OF NANOCRYSTALS URANIUM DIOXIDE

In this paper simulated with molecular dynamics the phase transitions of nanoscale crystals of uranium dioxide. Simulation is carried out on the basis of pair potentials with parameters depending on the temperature. Superionic transition and melting are considered. For nanocrystals in size range 2.2 5.5 nm was calculated the phase transition temperature.

Текст научной работы на тему «Фазовые переходы кубических нанокристаллов uo 2»

УДК 538.95

ФАЗОВЫЕ ПЕРЕХОДЫ КУБИЧЕСКИХ НАНОКРИСТАЛЛОВ UO2

© 2013 Р.Ю. Махмуд-Ахунов, М.Ю. Тихончев, В.В. Светухин Ульяновский государственный университет Поступила в редакцию 26.11.2013

С помощью молекулярно-динамического моделирования проведено исследование фазовых переходов кубических нанокристаллов диоксида урана. Моделирование проведено на основе парных потенциалов с параметрами, зависящими от температуры. Рассмотрены процессы суперионного перехода и плавления. Рассчитаны соответствующие температуры для нанокристаллов в диапазоне размеров 2,2 - 5,5 нм. Ключевые слова: молекулярная динамика, диоксид урана, плавление нанокристаллов/

ВВЕДЕНИЕ

Диоксид урана является наиболее распространенным топливом в современных ядерных реакторах. Из таблеток диоксида урана формируются топливные сердечники тепловыделяющих элементов (твэл) [1]. Во время эксплуатации таблетки подвергаются воздействию высоких температур и давления, облучению, механическим нагрузкам. При номинальной мощности реактора температура на оси твэла может превышать 2000 К, а давление газообразных продуктов деления урана внутри герметичного твэла может достигать 80-100 атм [2].

Экспериментально процессы, происходящие в топливе при температурах близких к критическим, слабо изучены, поэтому моделирование служит хорошим источником для получения новой информации.

В данной работе с помощью молекулярно-динамического моделирования исследуются фазовые переходы наноразмерных кристаллов диоксида урана.

1. МЕТОД РАСЧЕТА

Моделирование проводилось с использованием программного комплекса DL_POLY [3]. В качестве модели был выбран кубический кристалл со свободными границами (нулевые граничные условия) Транслируемая ячейка была выбрана в виде кубического кристалла со структурой флюорита. Кристаллиты строились путем

Махмуд-Ахунов Руслан Юсупович, младший научный сотрудник НИТИ УлГУ. E-mail: [email protected] Тихончев Михаил Юрьевич, кандидат физико-математических наук, заведующий лабораторией компьютерного моделирования неорганических материалов. E-mail: [email protected]

Светухин Вячеслав Викторович, доктор физико-математических наук, профессор, директор НИТИ. E-mail: [email protected]

трансляции элементарной ячейки по трем направлениям. В табл. 1 приведены размеры моделируемых кристаллитов и соответствующее число атомов в них.

Потенциал межатомного взаимодействия был выбран в форме Борна-Майера, что обеспечило минимальный набор параметров, некоторые из которых взяты в виде кусочно-линейных медленноменяющихся функций температуры:

Uf(ry,T)

1 z1(T)z,(T)e:

4nsn

+

+f(T)(bi +bJexp

ai +aj

b,+bj

CiCj

(1)

где первое слагаемое соответствует кулоновско-му взаимодействию, а второе и третье — потенциалу Борна-Майера [4]. Значения независимых от температуры параметров потенциала были взяты из работы [5]. Параметры 7(Т) и ^Т) задаются в виде кусочно-линейных функций:

zT=z

f(T) =f

1+a

T -T

где a=

T

9,6092-lCT3, T <T0 29,27444 -10Г3, T >T0 9,34793-lCT2, T <T0

z0 =1,192966 T0=2666K

(2)

гдев={' Лf =Q3540625, T0 =2627K

[2,59565-10-1, T >T0

Более подробно вопросы обоснования температурной зависимости указанных параметров потенциала рассмотрены в наших предыдущих работах [7, 8].

2. МЕТОДЫ ИДЕНТИФИКАЦИИ ТОЧКИ ПЛАВЛЕНИЯ

Для идентификации точки плавления в молекулярной динамике существует несколько методов. Наиболее распространенные следующие: анализ вида радиальной функции распределения

r

6

r

Таблица 1. Моделируемы кристаллы

Размер, эл ячеек 4x4x4 5x5x5 6x6x6 8x8x8 10x10x10

Размер, нм 2,2 2,7 3,3 4,4 5,5

Количество атомов 768 1500 2592 6114 12000

с

о

*

0.38-

0.37-

0.36-

0.35-

0.34-

0.33-

I ▲

ч

\

г

-1.198

-1.196

ш —*

со

.190 § со

■1.188 5

о'

■1.186

■1.184 1.182

1500

2000

2500

3000

Т, к

Рис. 1. Зависимость параметра ( и дробного заряда иона кислорода от температуры и кусочно-линейная аппроксимация с переходом вблизи точки 2670 К [6]

(РФР), метод структурного фактора; анализ изменения энтальпии (метод калориметрической кривой).

1) РФР вычисляется по формуле [9]: V N(Я, ЛЯ)

которая вычисляется как нормирован-

Е (Я) ="

(3)

N 4пЯ2ЛЯ '

где - N число частиц моделируемого кристалла N (Я, ЛЯ) - число частиц находящихся в сферическом слое шириной ЛЯ.

Вид РФР позволяет качественно оценить находится ли материал в расплавленном или кристаллическом состоянии. Для упорядоченного состояния кристалла РФР представляет собой последовательность резких четких пиков, положение которых соответствует закономерности расположения атомов. Следует отметить, что первый пик присутствует всегда, в любом фазовом состоянии, тогда как второй и последующие пики при высоких температурах становятся более пологими и полностью исчезают, когда кристалл переходит в расплавленное состояние.

2) Метод структурного фактора основан на анализе динамики изменения величины

ный квадрат модуля структурного фактора отдельно для подрешеток урана и кислорода в направлениях (001), (010) и (100) в соответствии с формулой [10]:

^ а(к)

1

И-

Г N

( N

Л2

X С°8(к • Гп)

V п = 1

+

X $1п( к ■

V п = 1

+

(4)

где индекс б - соответствует атомам урана или кислорода, N - количество атомов в системе, вектор к - вектор обратной решетки, гп - радиус-вектор атома системы.

При 0 К кристалл представляет собой идеальную структуру, структурный фактор которой равен единице. Напротив, при высоких температурах для расплавленного состояния квадрат

2

п

модуля структурного фактора стремиться к нулю, а его численные оценки колеблются в диапазоне 0,01-0,04.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3) В методе энтальпии фазовый переход идентифицируется по резкому скачку на температурной зависимости H(T). В нашей предыдущей работе [11], посвященной моделированию плавления диоксида урана эти методы рассмотрены более подробно.

3. ОПИСАНИЕ РЕЗУЛЬТАТОВ

Для ионного кристалла диоксида урана характерно наличие суперионного перехода. Поскольку масса иона урана многократно превосходит массу иона кислорода, то кислород в решетке более подвижен. То есть подрешетка кислорода оказывает менее стабильной и для перевода её в расплавное состояние требуется меньше энергии. Явление расплавления анионный подрешетке на фоне относительно упорядоченной катионный подрешетки и называется суперионным переходом. Этот эффект был впервые обнаружен экспериментально Бредингом [12] позже подтвержден в других работах.

При исследовании фазовых переходов проводилось ступенчатое нагревание кристаллитов с шагом 100 К. На рис. 2 представлена зависимость структурного фактора от температуры для нанок-ристалла 5x5x5. При температуре 2000 К значение S(k) для кислородной подрешетки падает до значения порядка 0,03 относительных единиц. Это означает, что решетка расплавилась (суперионный переход). Для урановой подрешетки же S(k)

опускается до таких значений при температуре 2600 К, что соответствует плавлению. Об это свидетельствует и резкий скачок энтальпии (рис. 3), наблюдающийся при той же температуре.

Необходимо отметить, что при температуре 2100 К происходит трансформация нанокристал-ла: кубический кристалл, ограниченный плоскостями типа (100), принимает форму октаэдра (рис. 4). С этим связан скачок структурного фактора для ионов урана при данной температуре (рис. 2). Поверхность кристалла ограничена уже 4-мя плоскостями типа (111) и двумя типа (100). Вероятно, что при более длительной релаксации кристалл примет форму правильного октаэдра. Этот эффект также был зафиксирован в работе [13], где авторы, проводя МД моделирование нанокри-сталла, наблюдали подобную трансформацию для кристалла 8х8х8 при температуре 2200 К.

Применяя аналогичную методику и рассуждения были, найдены температуры фазовых переходов для кристаллов других размеров. Результаты приведены в табл. 2. Также для сравнения в таблице указаны результаты МД расчета, полученные в работе [14].

Поскольку шаг по температуре на всех зависимостях составлял 100 К, то в качестве оценки абсолютной погрешности было выбрано значение ±50 К. Приведенные экспериментальные значения критических температур относятся к макрокристаллам, а для нанокристаллов в литературе данных нет. Однако следует ожидать эффект снижения температуры плавления при переходе к наноразмерным системам.

5x5x5

1.1 1.00.9-0.£ 0.70.6-

g 0.5-

С/5

0.40.30.2 0.1 0.0-

\\

\ \

■ ч А — J

\ L 1

■ \ \

\

■ \ \ J к.

\ L -< к i vi t

■ \ j \

\ \

■ К1 \

1 \ \

- \ i V к

\ / \

■ \ i

I—1 к \

■ 1 \

\ \ / \

. J к

- - — — - 1

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 Temperature, К

Рис. 2. Зависимость структурного фактора от температуры для кислородной и урановой подрешетки нанокристалла UO2

-12.1 -12.2-12.3 -12.4 ■ о -12.5

> -12.6. (D

Р -12.7

X

-12.8 ■

-12.9 -13.0 -13.1

■ / ■

1

/

/

-■- н (1) I

1

II К

i

I-

1 ■

, 1 г-

1

г

1

1

■ 1

1 1

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 Temperature, К

Рис. 3. Зависимость энтальпии от температуры для нанокристалла 5x5x5

Рис. 4. Изменение формы нанокристалла от кубической к октаэдральной Таблица 2. Температуры фазовых переходов для кубических нанокристаллов

Размер, нм (число ионов) Суперионный переход T*,, К Плавление Тт, K

Данная работа Результаты работы [13]

2,2 (786) 1800 2300 2040

2,7 (1500) 2000 2600 2385

3,3 (2592) 2400 2700 2680

4,4 (6144) 2500 2800 2955

5,5 (12000) 2600 2800 3050

Эксперименты 2670 [6] 3150 ± 20, 3138 ± 15, 3113 ± 20 [6]

ЗАКЛЮЧЕНИЕ

С помощью метода молекулярной динамики были рассчитаны температуры фазовых переходов нанокристаллов в диапазоне размеров 2,2 -5,5 нм. С уменьшение размера происходит снижение температур суперионного перехода и плавления. Установлено, что вблизи точки плавления происходит трансформация нанокристаллов: кубический кристалл принимает форму октаэдра.

Работа выполнена при поддержке Минобрна-уки в рамках государственного задания на 20122014 гг., федеральной целевой программы «Науч -ные и научно-педагогические кадры инновационной России на 2009-2013 годы»и «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы», а также при частичной поддержке гранта РФФИ: проект № «12-08-97076-р_поволжье_а».

СПИСОК ЛИТЕРАТУРЫ

1. Кесслер Г. Ядерная энергетика [пер. с англ.]. М.: Энер-гоиздат, 1986. 264 с.

2. Дементьев Б.А. Ядерные энергетические реакторы: Учебник для вузов. М.: Энергоатомиздат, 1990. 352 с.

3. The DL POLY 4 User Manual [Электронный ресурс]. URL: ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY _4.0/DOCUMENTS/USRMAN4.03.pdf (дата обращения: 21.03.1012).

4. Born M, Mayer J.E. // Z. Phys. 1932. Bd 75. S. 1-18.

5. Evalution of Thermal Conductivity Hyperstoihiometric UO2+x by Molecular Dynamics Simulation/ S. Yamasaki, T. Arima, K. Idemitsu and others //

International Journal of Thermophysics. 2007. V.28. №2. P. 661-673.

6. Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors. IAEA (2006) [Электронный ресурс]. URL: http:// www.pub.iaea.org/MTCD/publications/PDF/ te_1496_web.pdf (дата обращения 01.03.1012).

7. Построение температурно-зависимого потенциала межчастичного взаимодействия для диоксида урана/ Нагорное, Ю. C. Махмуд-Ахунов, Ю.М. Тихончев и др./ Известия высших учебных заведений. Поволжский регион. Физико-математические науки// 2010. №3. С.156-164.

8. О температурной зависимости межатомного при молекулярно-динамическом моделировании свойств диоксида урана/ Ю.С. Нагорное, Р.Ю. Махмуд-Аху-нов, В.В. Сеетухин и др. // Вопросы атомной науки и техники. Серия: Математическое моделирование физических процессов. 2010. Вып.10. C. 27-34.

9. MD simulations of melting in 2D LJ systems. [Электронный ресурс]. URL: http://fliiby.com/file/65867/ j9jh9eokml.html (дата обращения: 10.06.1012)

10. Radial distribution function - Wikipedia. [Электронный ресурс]. URL: http://en.wikipedia.org/wiki/ Radial_distribution_function (дата обращения 12.05.1012).

11. Моделирование поверхностных свойств нанокрис-таллического диоксида урана методом молекулярной динамики/ Р.Ю. Махмуд-Ахунов, М.Ю. Тихончев, В.В Сеетухин // ЖТФ. 2013. Т.83. Вып. 8. С. 8 - 13.

12. Dworkin A.S., Bredig M.A. // Journal of Physical Chemistry 72, 1277 (1968).

13. Boyarchenkov A.S, Potashnikov S.I, Nekrasov K.A., Kupryazhkin A.Ya. Molecular dynamics simulation of UO2 nanocrystals surface // Journal of Nuclear Materials. 2012. V. 421, Issues 1-3. P. 1-8.

14. Boyarchenkov A.S, Potashnikov S.I., Nekrasov K.A., Kupryazhkin A.Ya. Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions// Journal of Nuclear Materials. 2012. V. 427, Issues 1-3. P. 311-322.

PHASE TRANSIONS OF NANOCRYSTALS URANIUM DIOXIDE

© 2013 R.Y. Makhmud-Akhunov, M.Y. Tihonchev, V.V. Svetuhin Ulyanovsk State University

In this paper simulated with molecular dynamics the phase transitions of nanoscale crystals of uranium dioxide. Simulation is carried out on the basis of pair potentials with parameters depending on the temperature. Superionic transition and melting are considered. For nanocrystals in size range 2.2 - 5.5 nm was calculated the phase transition temperature.

Key words: molecular dynamics, uranium dioxide, melting point of nanocrystalls.

Ruslan Makhmud-Akhunov, Associate Research Fellow at the Technological Research Institute. E-mail: [email protected] Mikhail Tikhonchev, Candidate of Physics and Mathematics, Head at the Non-Organic Materials Behaviour Modelling Laboratory. E-mail: [email protected] Viacheslav Svetukhin, Doctor Physics and Mathematics, Professor, Director. E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.