Научная статья на тему 'FATTY ACID COMPOSITION OF OIL FROM GRAIN OF SOME TETRAPLOID WHEAT SPECIES'

FATTY ACID COMPOSITION OF OIL FROM GRAIN OF SOME TETRAPLOID WHEAT SPECIES Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
91
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TETRAPLOID WHEAT SPECIES / FATTY ACIDS / OIL QUALITY / GAS CHROMATOGRAPHY / ВИДИ ТЕТРАПЛОїДНОї ПШЕНИЦі / ЖИРНі КИСЛОТИ / ЯКіСТЬ ОЛії / ГАЗОВА ХРО МА ТОГРАФіЯ / ВИДЫ ТЕТРАПЛОИДНОЙ ПШЕНИЦЫ / ЖИРНЫЕ КИСЛОТЫ / КАЧЕСТВО МАСЛА / ГАЗОВАЯ ХРОМАТОГРАФИЯ

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Relina L.I., Suprun O.H., Boguslavskyi R.L., Didenko S. Yu., Vecherska L.A.

Although wheat has never been considered an oil crop, oil from wheat germs and bran is valuable because it contains important bioactive compounds. Most of studies in this area were conducted with traditional commercial wheat varieties. At the same time, the interest of breeders, producers and consumers is going back to ancient and underutilized wheats species. In this respect, we set the purpose to evaluate tetraploid wheat species ( Triticum. dicoccoides var. pseudojordanicum, Triticum dicoccum, Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticum polonicum var. pseudocompactum and Triticum aethiopicum var. densimenelikii) for fatty acid composition. Grain was harvested in 2015, 2016, 2017, 2018 and 2019. Fatty acid methyl esters were prepared by the modified Peisker method. Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and radium wheat variety Spadschina had the most beneficial unsaturated/ saturated ratios. As conclusion there was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels, and we observed no patterns in variability of fatty acid contents across the species under investigation. Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and durum wheat variety Spadschina had the most beneficial unsaturated/saturated ratios. There was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels. We observed no patterns in variability of fatty acid contents across the species under investigation.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «FATTY ACID COMPOSITION OF OIL FROM GRAIN OF SOME TETRAPLOID WHEAT SPECIES»

UDC 633.11:581.16 https://doi.org/10.15407/biotech13.02.056

FATTY ACID COMPOSITION OF OIL FROM GRAIN OF SOME TETRAPLOID WHEAT SPECIES

L. I. Relina

O. H. Suprun Plant Production Institute named after V. Ya. Yuriev

R. L. Boguslavskyi of the National Academy of Agrarian Sciences,

S. Yu. Didenko Laboratory of Genetics, Biotechnology and Quality,

L. A. Vecherska Kharkiv, Ukraine

O. V. Golik

E-mail: lianaisaakovna@gmail.com

Received 28.12.2019 Revised 27.03.2020 Accepted 30.04.2020

Although wheat has never been considered an oil crop, oil from wheat germs and bran is valuable because it contains important bioactive compounds. Most of studies in this area were conducted with traditional commercial wheat varieties. At the same time, the interest of breeders, producers and consumers is going back to ancient and underutilized wheats species. In this respect, we set the purpose to evaluate tetraploid wheat species (Triticum. dicoccoides var. pseudojordanicum, Triticum dicoccum, Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticumpolonicum var. pseudocompactum and Triticum aethiopicum var. densimenelikii) for fatty acid composition. Grain was harvested in 2015, 2016, 2017, 2018 and 2019. Fatty acid methyl esters were prepared by the modified Peisker method. Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and radium wheat variety Spadschina had the most beneficial unsaturated/ saturated ratios. As conclusion there was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels, and we observed no patterns in variability of fatty acid contents across the species under investigation.

Fatty acid composition was analyzed by gas chromatography. Six major fatty acids were found in grain of tetraploid wheat species, with linoleic acid being the most abundant. The ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was slightly lower than in the domestic emmer varieties. T. timofeevii, emmer varieties Holikovska and Romanivska and durum wheat variety Spadschina had the most beneficial unsaturated/saturated ratios.

There was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels. We observed no patterns in variability of fatty acid contents across the species under investigation.

Key words: tetraploid wheat species, fatty acids, oil quality, gas chromatography.

The consumption of vegetable oils, including human and pet food production, numerous industrial uses, perfumery/ cosmetic and pharmaceutical industries, fuel manufacturing, etc., has increased dramatically in the past century. Although wheat has never been considered an oil crop (oil from wheat germs makes up around 2.5% by weight of the kernel [1], oil from wheat germs and bran is valuable because it contains important bioactive compounds such as

octacosanol [2], tocopherols [3], carotenoids [4] and unsaturated fatty acids [3]. Wheat germ oil is in demand in the cosmetics industry. Wheat bran oil contains carotenoids [5] and tocopherols [6]. Most of studies in this area are conducted on traditional commercial wheat varieties. However, there is an opinion that the value of wheat oil reduced in the course of domestication, in particular, domestication of emmer [7]. At the same time, the interest of breeders, producers and consumers in the

21st century is going back to ancient wheats, spelt, emmer, einkorn, as well as to domestic, but underutilized species [8]. They are valuable especially for resistance to fungal diseases, unpretentiousness to cultivation conditions and grain quality. Grain quality parameters are primarily the protein content and composition; contents of antioxidants, vitamins and minerals; and these wheat species often outperform commercial varieties by these parameters. In the literature, there is very little information on the quality of ancient wheat oil. It was found that the lipid content in einkorn grain was 50% higher than that in wheat bread grain (4.2 and 2.8 g/100 g of dry weight, respectively) [9].

It should be noted that this comparison cannot be considered quite correct, since ploidy of these wheat species is different (einkorn is diploid, and bread wheat is hexaploid), yet such a comparison can be valuable for evolutionists and producers. It was demonstrated that grain of Triticum monococcum L. ssp. monococcum was rich in polyunsaturated fatty acids [10]. Linoleic acid (polyunsaturated omega-6 fatty acid) was one of the predominant acids among 14 identified fatty acids in T. monococcum grain [11].

In this respect, it is expedient to evaluate underutilized tetraploid wheat species for oil quality, in particular, to focus on breeding accessions of wild emmer Triticum dicoccoides var. pseudojordanicum, domestic emmer Triticum dicoccum as well as its tetraploid relatives: Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticum polonicum var. pseudocompactum and Triticum aethiopicum var. densimenelikii.

Purpose — to study the fatty acid composition of oil from grain of T. dicoccoides var. pseudojordanicum, T. dicoccum, T. timofeevii, T. persicum var rubiginosum, T. durum var. falcatamelanopus, T. polonicum var. pseudocompactum and T. aethiopicum var. densimenelikii, T. dicoccum var. serbicum and T. dicoccum var. atratum.

Materials and Methods

Domestic emmer (T. dicoccum) varieties were kindly provided by the Laboratory of Wheat Breeding and Physiology of the Plant Production Institute (PPI) named after V. Ya. Yuriev of the National Academy of Agrarian Sciences of Ukraine. Accessions of T. dicoccoides var. pseudojordanicum (IR00517, Israel), T. timofeevii (UA0300107,

Georgia), T. persicum var rubiginosum (UA 0300066), T. durum var. falcatamelanopus (IR 00137, Syria), T. polonicum var. pseudocompactum (UA 0300337), T. dicoccum var. serbicum (UA0300183, Russia), T. aethiopicum Jakubz. var. densimenelikii (violet grain) (UA0300480), T. dicoccum var. atratum (UA0300485, Hungary), T. dicoccum var. atratum (UA0300214, USA), and T. dicoccum var. atratum (UA0300081, Poland) were kindly provided by the National Center for Plant Genetic Resources of Ukraine. Wheat was grown in the PPI's experimental plots in compliance with conventional farming techniques. Grain was harvested in 2015, 2016, 2017, 2018 and 2019. Two samples of freshly-harvested (to avoid the storage effect) grain were analyzed for each year. Whole kernels were milled on a laboratory mill LZM.

Fatty acid methyl esters were prepared by the modified Peisker method [12]. Chloroform (Thermo Fisher Scientific Inc., UsA) — methanol (Honeywell Research Chemicals, Romania) — 96% sulfuric acid (Dneprochem, Ukraine) mixture in a ratio of 100:100:1 was used for methylation. 30-50 pl of lipid extract was placed in a glass ampoule; 2.5 ml of methylation mixture was added, and the ampoule was sealed. Ampoules were incubated in a thermostat at 105 °C for 3 hours. After methylation, ampoules were opened, the contents were transferred to test tubes, a pinch of powdered zinc sulfate (ChemElements, Ukraine) was added, and then 2 ml of distilled water and 2 ml of hexane (MOL Group, Hungary) were poured to extract methyl esters. After thoroughly stirring and settling, the hexane extracts were filtered and analyzed by gas chromatography [13].

Fatty acid composition was determined using a gas chromatograph Selmikhrom 1 (OAO SELMI, Ukraine) equipped with a flame ionization detector (FID). The stainless steel column, 2.5 m lengthx4 mm i.d., was packed with a stationary phase, Inerton AW-DMCS (0.16-0.20 mm) (Lachema, Czechia) processed with 10% diethylene glycol succinate (BOC Sciences, USA). 2 |l of hexane solution of fatty acid methyl esters was injected. Gas chromatography was operated under the following conditions: nitrogen flow 30 ml/min; hydrogen flow 30-35ml/min; air flow 300 ml/min; column temperature 180 °C; injector temperature 230 °C and FID temperature 220 °C. The fatty acids were identified by comparing the retention times of the peaks with those of reference fatty acid methyl esters (Sigma-Aldrich, USA).

The percentages of fatty acid methyl esters were calculated by internal normalization.

The data were statistically processed in STATGRAPHICS PLUS, using ANOVA method. The results in the Table are presented as mean ± standard deviation (SD) and reported to three significant figures. Graphs were plotted in Statistica 10.

Results and Discussion

As we had expected, 6 major fatty acids were detected in all wheat species. They are listed in order of decreasing amounts as follows: linoleic (C18:2) > oleic (C18:1) >palmitic (C16:0) > linolenic (C18:3) > stearic (C18:0) > palmitoleic (C16:1). This distribution did not vary from year to year and is slightly different from the ranking reported by Narducci V. et al for durum wheat [14]: linoleic (C18:2) > palmitic (C16:0) « oleic (C18:1) > linolenic (C18:3) > stearic (C18:0) > palmitoleic (C16:1). We also detected trace amounts of 3 minor fatty acids: eicosanoic acid (C20:0), eicosenoic acid (C20:1) and behenic acid (C22:1). Their contents were 0.1% in most of the species under investigation (below 0.5% in all the species) and characterized by wide variability. At the same time, the palmitoleic oleic acid content was much less variable in most of the species under investigation, although it never exceeded 1% and was 0.1%, too, in many cases. Fig. 1 shows a typical chromatogram of one of the best (in terms of unsaturated fatty acid content) wheat accessions.

Bottari et al. [15] obtained more than 60 peaks by gas chromatography and mass spectrometry and identified fatty acids with even numbers of carbon atoms from C12 to C30 as well as with odd numbers of carbon atoms C15 and C17. The database of the United States Department of Agriculture (USDA) also reports small levels of C14:0 in durum wheat kernels (0.003 g/100 g fresh matter). There are also publications reporting minor fatty acids (C17, C20, C22 and C24) both in kernels [16] and in germ oil [17, 18]. Myristic acid (C14:0) was present in negligibly small amounts and irrelevant for calculation of fatty acid percentages. We detected no other minor fatty acids, as they were below limit of quantification for our method. Only C16:0, C18:0, C18:1, C18:2 and C18:3 accounting for around 90% of the total fatty acid content in durum wheat grain are constantly reported by all researchers and considered as the most important ones in durum wheat, while others amount to approximately 1-2% in total [19].

Wheat and other cereals lack A6desaturase, the enzyme responsible for catalytic conversion of linoleic acid to y-linolenic acid [20] and conversion of a-linolenic acid to stearidonic acid (C18:4). Therefore, we expectedly found no stearidonic acid, and all the linolenic acid in our samples should be considered as a-linolenic acid.

There is an idea that some parameters of grain quality can deteriorate during domestication. For example, Chatzav et al. reported that domestic emmer was inferior to its wild ancestor in terms of protein, iron and zinc contents [21]. Unsaturated fatty acid levels are obviously not the case, since the ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum is even slightly lower than in the domestic emmer varieties bred at the PPI (Table).

It is noteworthy that there were no significant differences for 4 (palmitic, linoleic, oleic and palmitoleic) of 6 major fatty acids between T. dicoccoides var. pseudojordanicum and T. dicoccum var. serbicum, which is considered to have not been crossed with other tetraploid species and have undergone the least changes in the breeding process. On the other hand, T. dicoccum var. atratum accessions from different locations, which are morphologically very close, in many cases differ one from another in contents of 5 of 6 major fatty acids (except palmitoleic acid).

Increased unsaturated fatty acid contents is known to be associated with cold tolerance and considered as a general biological pattern. However, there are data that increased unsaturated fatty acid contents are due rather to cold hardening than to genetic differences between cold hardy and less hardy varieties, as the fatty acid profiles did not differ between the varieties under investigation [22]. For oil crops, Chernova et al. [23] reported that winter-type rapeseed seeds contained triglycerides with a lower degree of saturation, while in spring-type rapeseed highly saturated lipids were the most abundant. We found that the unsaturated/saturated ratio in grain was not associated with growth habit (winter vs. spring).

The oil value is primarily determined by unsaturated fatty acids. In this respect, T. timofeevii seems the most promising species for crossing with other tetraploid species to improve wheat oil quality via breeding. Nevertheless, the emmer varieties bred at the PPI, Holikovska and Romanivska, and durum wheat variety Spadschina, also

0 200 400 000 _SCO_1KM_1200 1400 1600 1i«№ 2000

Fig. 1. Typical chromatogram of fatty acid methyl esters extracted from T. timofeevii grain

developed by the PPI, boast rather high unsaturated/saturated ratios (4.5, 4.7, and 5.1, respectively). These values are higher than those registered for durum wheat in USDA and Italian National Institute for Research on Food and Nutrition (IINRAN) databases (3.0 and 3.5, respectively) and also higher than the average ratio obtained by Narducci et al. for Italian durum wheat varieties [14].

Interspecies comparison showed that among emmer species T. timofeevii and emmer varieties Holikovska and Romanivska had the best unsaturated/saturated ratios (see above). This is attributed rather to the sum of unsaturated fatty acids than to an increased content of one component. Linoleic acid content in oil from T. timofeevii grain was significantly higher than in oil from T. dicoccoides var. pseudojordanicum, T. dicoccum var. atratum (Poland), T. dicoccum var. atratum (USA) and T. dicoccum var. serbicum. Linolenic acid content in oil from T. timofeevii grain was significantly lower than in oil from T. dicoccoides var. pseudojordanicum, but higher than in oil from T. dicoccum var. atratum (USA) and T. dicoccum var. atratum (Poland). Oleic acid content in oil from T. timofeevii grain was significantly lower than in oil from T. dicoccoides var. pseudojordanicum, T. dicoccum var. atratum (Poland) and T. dicoccum var. serbicum, but significantly higher than in oil from T. dicoccum var. atratum (Hungary). Palmitoleic acid content in oil from T. timofeevii grain was significantly higher than in oil from T. dicoccoides var.

pseudojordanicum, T. dicoccum var. atratum (Poland), T. dicoccum var. atratum (USA), T. dicoccum var. atratum (Hungary) and T. dicoccum var. serbicum. As to domestic emmer, linoleic acid content in oil from varieties Holikovska and Romanivska was significantly higher than in oil from T. dicoccoides var. pseudojordanicum, T. dicoccum var. atratum (Poland), T. dicoccum var. atratum (USA), T. dicoccum var. atratum (Hungary) and T. dicoccum var. serbicum. Linolenic acid content in oil from varieties Holikovska and Romanivska was significantly lower than in oil from T. dicoccoides var. pseudojordanicum, but higher than in oil from T. dicoccum var. atratum (Poland) and T. dicoccum var. atratum (USA). Oleic acid content in oil from varieties Holikovska and Romanivska was significantly lower than in oil from T. dicoccoides var. pseudojordanicum, T. dicoccum var. serbicum, T. dicoccum var. atratum (Poland) and T. dicoccum var. atratum (Hungary). Palmitoleic acid content in oil from varieties Holikovska and Romanivska was significantly higher than in oil from T. dicoccoides var. pseudojordanicum, T. dicoccum var. atratum (Poland), T. dicoccum var. atratum (USA), T. dicoccum var. atratum (Hungary) and T. dicoccum var. serbicum. No differences between Holikovska and Romanivska are explained by their close origin in the breeding process.

As to durum wheat and related species, variety Spadschina has the best unsaturated/ saturated ratio. The ratios for T. persicum var. rubiginosum, T. durum var. falcatamelanopus,

Fatty acid composition of tetraploid wheat grain oil (relative content,%)

Source Palmitic C16:0 Palmi-toleic C16:1 Stearic C18:0 Oleic C18:1 Lin-oleic C18:2 Linole- nic C18:3 Eico-sanoic C20:0 Eicose-noic C20:1 Behenic C22:0 Ratio Unsaturated/ Saturated

USDA 23.9 0.51 1.02 19.3 52.8 2.54 Not mentioned Not mentioned Not mentioned 3.0

INRAN 21.1 0.41 1.24 16.5 56.2 4.55 Not mentioned Not mentioned Not mentioned 3.5

Narducci et al. [14] 19.1 ± 3.18 0.40 ± 0.08 1.23 ± 0.38 19.1 ± 5.58 54.0 ± 12.7 6.35 ± 1.59 Not detected Not detected Not detected 3.8

Our data Species or variety/Growth habit

T. dicoccoides var. pseudo-jordanicum / winter 17.7 ± 0.28 0.08 ± 0.01 0.77 ± 0.09 27.5 ± 0.05 47.9 ± 0.14 5.48 ± 0.14 0.08 ± 0.001 0.10 ± 0.01 0.39 ± 0.03 4.3

T. dicoccum var. atratum (Hungary)/ winter 18.9 ± 0.14 0.08 ± 0.03 0.91 ± 0.02 24.2 ± 0.19 51.4 ± 0.42 4.01 ± 0.02 0.10 ± 0.01 0.10 ± 0.01 0.33 ± 0.04 3.9

T. dicoccum var. atratum (Poland)/win-ter 18.0 ± 0.16 0.10 ± 0.01 1.17 ± 0.06 27.7 ± 0.27 48.8 ± 0.49 3.60 ± 0.06 0.09 ± 0.02 0.11 ± 0.01 0.41 ± 0.09 4.1

T. dicoccum var. atratum (USA)/winter 18.8 ± 1.02 0.11 ± 0.05 1.30 ± 0.17 26.6 ± 0.53 49.1 ± 1.53 3.52 ± 0.19 0.10 ± 0.02 0.12 ± 0.04 0.36 ± 0.03 3.9

T. dicoccum var. serbicum/ spring 16.7 ± 0.32 0.09 ± 0.01 1.38 ± 0.11 27.4 ± 0.21 49.4 ± 0.54 4.42 ± 0.12 0.11 ± 0.01 0.11 ± 0.01 0.44 ± 0.02 4.3

T. timofeevii/ spring 15.4 ± 0.15 0.68 ± 0.04 0.96 ± 0.07 25.7 ± 1.31 52.7 ± 1.32 3.99 ± 0.27 0.13 ± 0.05 0.10 ± 0.02 0.29 ± 0.08 5.0

T. persicum var. rubigino-sum/spring 19.0 ± 0.66 0.85 ± 0.13 1.05 ± 0.04 19.1 ± 0.73 52.8 ± 0.65 6.60 ± 0.60 0.14 ± 0.04 0.12 ± 0.08 0.30 ± 0.06 3.9

T. durum var. falcatamela-nopus/spring 17.3 ± 0.71 0.61 ± 0.08 1.19 ± 0.10 20.9 ± 1.48 54.9 ± 0.81 4.59 ± 0.23 0.12 ± 0.05 0.08 ± 0.02 0.29 ± 0.07 4.3

T. polonicum var. pseudo-com pactum/ spring 18.4 ± 0.16 0.64 ± 0.08 1.05 ± 0.07 21.1 ± 1.02 53.4 ± 0.81 4.84 ± 0.41 0.10 ± 0.04 0.09 ± 0.04 0.32 ± 0.08 4.0

T. aethiopicum var. densime nelikii (violet grain)/spring 19.1 ± 0.66 0.64 ± 0.11 0.95 ± 0.12 16.5 ± 0.30 55.9 ± 0.35 6.46 ± 0.43 0.11 ± 0.01 0.07 ± 0.02 0.29 ± 0.03 3.9

Emmer Roma-nivska/spring 16.0 ± 0.42 0.30 ± 0.13 1.23 ± 0.12 24.3 ± 0.69 53.3 ± 0.78 4.40 ± 0.13 0.14 ± 0.04 0.08 ± 0.02 0.20 ± 0.08 4.7

Emmer Ho-likovska/ spring 17.1 ± 0.94 0.39 ± 0.09 0.98 ± 0.09 24.2 ± 0.46 52.9 ± 0.35 4.39 ± 0.12 0.17 ± 0.05 0.08 ± 0.03 0.18 ± 0.10 4.5

Durum wheat Spadschina (reference va-riety)/spring 14.9 ± 0.39 0.42 ± 0.09 1.21 ± 0.11 24.4 ± 0.33 54.3 ± 0.45 4.32 ± 0.16 0.13 ± 0.04 0.12 ± 0.04 0.30 ± 0.10 5.1

Fig. 2. 'Box-and-whiskers' plots of fatty acid content in grain of tetraploid wheat species grown in the same

location for three consecutive years

T. polonicum var. pseudocompactum and T. aethiopicum var. densimenelikii were less beneficial (Table). Thus, these species are unadvisable to use in crossings for improvement oil quality. The highest level of linoleic acid was recorded for T. aethiopicum var. densimenelikii (though there was no significant difference in comparison with T. durum var. falcatamelanopus); however this species had the lowest level of oleic acid (Table). The oleic acid levels in oil from T. persicum var.rubiginosum, T. durum var. falcatamelanopus and T. polonicum var. pseudocompactum did not differ. The highest levels of linolenic acid were observed in oil from T. aethiopicum var. densimenelikii and T. persicum var.rubiginosum grain (6.46 ± 0.43% and 6.60 ± 0.60%, respectively, vs. 4.84 ± 0.41% and 4.59 ± 0.23%, respectively, for T. polonicum var. pseudocompactum and T. durum var. falcatamelanopus oil). The highest level of palmitoleic acid was determined in oil from T. persicum var. rubiginosum (0.85 ± 0.13% vs. 0.61 ± 0.08%, 0.64 ± 0.08% and 0.64 ± 0.11% for T. durum var. falcatamelanopus, T. polonicum var. pseudocompactum and T. aethiopicum var. densimenelikii oil, respectively).

The greatest variability was intrinsic to fatty acids, contents of which were below 1%: the peak variation coefficients amounted to 48.8% for palmitoleic acid in T. dicoccum var. atratum (USA) and 67.7% for eicosenoic acid in T. persicum var. rubiginosum. In Fig. 2, box and whisker plots are presented.

The plots show no patterns in variability of fatty acid contents across the species under investigation. The same species (for example, T. persicum var. rubiginosum with

REFERENCES

1. Liu K. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J. Food Sci. 2011, 76 (2), 334-342. https://doi.org/10.1111/ j.1750-3841.2010.02038.x.

2. Mitmesser S. Octacosanol and wheat germ oil. In: Driskell J., ed. Sports Nutrition: Fats and Proteins. Boca Raton, FL: CRC Press. 2007, P.99-104.

3. Ghafoor K, Ozcan M. M., Al-Juhaimi F., Babiker E. E, Sarker Z. I., Ahmed I. A. M, Ahmed M. A. Nutritional composition, extraction and utilization of wheat germ oil: A review. Eur. J. Lipid. Sci. Technol. 2017, 119 (7). https://doi.org/10.1002/ ejlt.201600160

variation coefficients of 15.5% and 4.19% for palmitoleic and stearic acids, respectively) can be characterized by a wide variability in one fatty acid and by a narrow range for another. At the same time, the same fatty acid (for example, palmitic acid) can be very variable within one species (T. dicoccum var. atratum (USA) and variety Holikovska; variation coefficient = 5.45% and 5.49%, respectively) and demonstrate a relatively stable content in another (T. dicoccum var. atratum (Hungary); variation coefficient = 0.75%).

Thus, we can conclude that 1) six major fatty acids were found in tetraploid wheat species, with linoleic acid being the most abundant; 2) there was no evidence of deterioration in the grain quality in terms of unsaturated fatty acid levels, since the ratio of unsaturated acids to saturated ones in grain of wild emmer T. dicoccoides var. pseudojordanicum was even slightly lower than in the domestic emmer varieties; 3) T. timofeevii, emmer varieties Holikovska and Romanivska and durum wheat variety Spadschina had the most beneficial unsaturated/saturated ratios; 4) we observed no patterns in variability of fatty acid contents across the species under investigation, since same species can be characterized by a wide variability in one fatty acid and by a narrow range for another, and, at the same time, the same fatty acid can be very variable within one species.

The work was supported by the National Academy of Agrarian Sciences project 24.01.03.01.0. (State Registration Number 0116U001070). The authors declare that they have no conflicts of interest.

4. Kumar G. S., Krishna A. G. Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. J. Food Sci. Technol. 2015, 52 (2), 1145-1151. https://doi.org/10.1007/s13197-013-1119-3

5. Go-Woon J., Md. Salim U., Kwon K. T., Chun B. S. Comparison of supercritical and near-critical carbon dioxide extraction of carotenoid enriched wheat bran oil. Afr. J. Biotechnol. 2010, V. 9, P. 7702-7709.

6. Durante M., Lenucci M. S., Rescio L., Mita G., Caretto S. Durum wheat by-products as natural sources of valuable nutrients. Phytochem. Rev. 2012, V. 11, P. 255-262.

7. Beleggia R., Rau D., Laido G., Platani C., Nigro F., Fragasso M., De Vita P., Scossa F., Fernie A. R,

Nikoloski Z., Papa R. Evolutionary metabolo-mics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 2016, 33 (7), 1740-1753. https://doi. org/10.1093/molbev/msw050

8. Gabrovska D., Fiedlerova V., Holasova M, Maskova E, Smrcinov H., Rysova J., Winterova R., Michalova A., Hutar M. The nutritional evaluation of underutilized cereals and buckwheat. Food Nutr. Bull. 2002, 23 (3 Suppl), 246-249.

9. Nakov Gj., Stamatovska V., Ivanova N., Damyanova S., Necinova Lj. Nutritional properties of einkorn wheat (Triticum monococcum L.) - review. Proceeding of 55th Science Conference of Ruse University. Bulgaria. 2016, P. 381-384.

10. Hidalgo A., Brandolini A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94 (4), 601-612. https://doi.org/10.1002/ jsfa.6382

11. Ziegler J. U., Wahl S., Wurschum T, Longin C. F., Carle R., Schweiggert R. M. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites. J. Agric. Food Chem. 2015, 63 (20), 5061-5071. https://doi. org/10.1021/acs.jafc.5b01477

12. Peisker K. V. A rapid semi-micro method for preparation of methyl esters from triglycerides using chloroform, methanol, sulphuric acid. J. Am. Oil. Chem. Sci. 1964, V. 41, P.87-88.

13. Prokhorova M. I. Methods of biochemical studies (lipid and energy metabolism). Lenynhrad: Leninhradskyi universytet. 1982, 272 p. (In Russian).

14. Narducci V., Finotti E., Galli V., Carcea M. Lipids and fatty acids in Italian durum wheat (Triticum durum Desf.) cultivars. Foods. 2019, 8 (6), 223, 1-9. https://doi. org/10.3390/foods8060223 .

15. Bottari E., De Acutis R., Festa M. R. On the lipid constituents of wheat of different species, variety, origin and crop year. Ann. Chim. 1999, V. 89, P. 849-862.

16. Beleggia R., Platani C., Nigro F., De Vita P., Cattivelli L., Papa R. Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum

wheat (Triticum durum Desf.) grain. J. Cereal. Sci. 2013, V. 57, P. 183-192. https:// doi.org/10.1016/j.jcs.2012.09.004

17. Zarroug Y., Mejri J., Dhawefi N., Ali S. B. S., El Felah M., Hassouna M. Comparison of chemical composition of two durum wheat (Triticum durum L.) and bread wheat (Triticum aestivum L.) germ oils. EKIN J. Crop. Breed Genet. 2015, V. 1, P. 69-76.

18. Guven M., Kara H. H. Some chemical and physical properties, fatty acid composition and bioactive compounds of wheat germ oils extracted from different wheat cultivars. J. Agric. Sci. 2016, V. 22, P. 433-443. https:// doi.org/10.1501/Tarimbil_0000001401

19. Lafiandra D., Masci S., Sissons M., Dornez E., Delcour J. A., Courtin C. M., Caboni M. F. Kernel components of technological value. In: Sissons M., Marchylo B., Abecassis J. et al., editors. Durum Wheat Chemistry and Technology. 2nd ed. AACC International Inc.; St. Paul, MN, USA. 2012, P. 85-124. https://doi.org/10.1016/B978-1-891127-65-6.50011-8

20. MihalikD., Klcova L., Ondreickova K., Hudcovicova V., Gubisova M., Klempova T., Certik M., Pauk J., Kraic J. Biosynthesis of essential polyunsaturated fatty acids in wheat triggered by expression of artificial gene. Int. J. Mol. Sci. 2015, 16 (12), 30046-30060. https://doi.org/10.3390/ijms161226137

21. Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I., Saranga Y. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot. 2010, 105 (7), 1211-1220. https:// doi.org/10.1093/aob/mcq024.

22. Willemot C., Hope H. J., Williams R. J., Michaud R. Changes in fatty acid composition of winter wheat during frost hardening. Cryobiol. 1977, 14 (1), 87-93. https://doi. org/10.1016/0011-2240(77)90126-2

23. ChernovaA., Gubaev R.,MazinP., Goryunova S., Demurin Y., Gorlova L., Vanushkina A., Mair W., Anikanov N., Martynova E., Goryunov D., Garkusha S., Mukhina Z., Khaytovich P. UPLC-MS triglyceride profiling in sunflower and rapeseed seeds. Biomolecules. 2018, 9 (1). https://doi. org/10.3390/biom9010009

ЖИРНОКИСЛОТНИЙ СКЛАД ОЛП 13 ЗЕРНА ДЕЯКИХ ВИД1В ТЕТРАПЛО1ДНО1 ПШЕНИЦ1

Л. I. РелЬна О. Г. Супрун Р. Л. Богуславський С. Ю. ДЬденко Л. А. Вечерська О. В. ГолЬк

1нститут рослинництва îm. В. Я. Юр'ева НААН, лабораторiя генетики, б^технологп та якосм, Харшв, Украша

E-mail: lianaisaakovna@gmail.com

Незважаючи на те, що пшениця ншоли не належала до олiйних культур, олт з пше-ничних зародшв та висiвок вважають цiнною, оск^ьки вона мiстить вaжливi бiоaктивнi сполуки. Б^ьш^ть дослiджень у цiй гaлузi проводять на трaдицiйних комерцiйних сортах пшенищ. Водночас iнтерес селекцiонерiв, виробникiв та споживaчiв повертаеться до давшх та малопоширених видiв пшенищ. З ог-ляду на вищезазначене ми поставили за мету ощнити тетрaплоïднi види пшенищ (Triticum. dicoccoides var. pseudojordanicum, Triticum dicoccum, Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticum polonicum var. pseudocompactum i Triticum aethiopicum var. densimenelikii) за показниками жирнокис-лотного складу. Для ощнювання використо-вували зерно врожаю 2015, 2016, 2017, 2018 та 2019 рр. Метиловi ефiри жирних кислот го-тували за модифшованим методом Пейскера. Жирнокислотний склад aнaлiзувaли методом гaзовоï хроматографа.

У зерш видiв тетрaплоïдноï пшенищ було знайдено ш^ть основних жирних кислот, i найвищим був рiвень лiнолевоï кислоти. Спiввiдношення ненасичених кислот до наси-чених у зерш дикорослоï полби T. dicoccoides var. pseudojordanicum було дещо нижчим, шж у зернi сортiв культурноï полби. T. timofeevii, сорти полби Голшовська i Ромашвська, а та-кож сорт твердоï пшеницi Спадщина мали найкрашД спiввiдношення ненасичеш/наси-ченi жирш кислоти.

Не отримано докaзiв попршення якост зерна за показником рiвнiв ненасичених жирних кислот. Ми не спостерпали зaкономiрнос-тей у вaрiaбельностi вмiсту жирних кислот у зерш дослщжених видiв.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ключовi слова: види тетрaплоïдноï пшеницi, жирнi кислоти, яшсть олiï, газова хромато-грaфiя.

ЖИРНОКИСЛОТНЫЙ СОСТАВ МАСЛА ИЗ ЗЕРНА НЕКОТОРЫХ ВИДОВ ТЕТРАПЛОИДНОЙ ПШЕНИЦЫ

Л. И. Релина О. Г. Супрун Р. Л. Богуславский С. Ю. Диденко Л. А. Вечерская О. В. Голик

Институт растениеводства им. В. Я. Юрьева НААН, лаборатория генетики, биотехнологии и качества, Харьков, Украина

E-mail: lianaisaakovna@gmail.com

Несмотря на то, что пшеница никогда не относилась к масличным культурам, масло из пшеничных зародышей и отрубей считают ценным, поскольку оно содержит биологически активные соединения. Большинство исследований в этой области проводят на традиционных коммерческих сортах пшеницы. В то же время интерес селекционеров, производителей и потребителей возвращается к древним и малоисполь-зуемым видам пшеницы. Учитывая вышеизложенное, мы поставили цель оценить тетрапло-идные виды пшеницы (Triticum. dicoccoides var. pseudojordanicum, Triticum dicoccum, Triticum timofeevii, Triticum persicum var rubiginosum, Triticum durum var. falcatamelanopus, Triticum polonicum var. pseudocompactum и Triticum aethiopicum var. densimenelikii) по показателям жирнокислотного состава. Зерно собирали в 2015, 2016, 2017, 2018 и 2019 гг. Метиловые эфиры жирных кислот готовили по модифицированному методу Пейскера. Жирнокислотный состав анализировали методом газовой хроматографии.

В зерне видов тетраплоидной пшеницы было обнаружено шесть основных жирных кислот, и наиболее высоким был уровень лино-левой кислоты. Соотношение ненасыщенных кислот к насыщенным в зерне дикой полбы T. dicoccoides var. pseudojordanicum было несколько ниже, чем в зерне сортов культурной полбы. T. timofeevii, сорта полбы Голиковська и Рома-нивська, а также сорт твердой пшеницы Спад-щина характеризовались наилучшими соотношениями ненасыщенные/насыщенные жирные кислоты.

Не получено доказательств ухудшения качества зерна по показателю уровней ненасыщенных жирных кислот. Мы не наблюдали закономерностей в вариабельности состава жирных кислот в зерне исследованных видов.

Ключевые слова: виды тетраплоидной пшеницы, жирные кислоты, качество масла, газовая хроматография.

i Надоели баннеры? Вы всегда можете отключить рекламу.