Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
ЗАЛ1ЗНИЧНА КОЛ1Я
UDC 625.151
O. M. PATLASOV1, S. O. TOKARIEV2*, YE. O. PATLASOV
'Dep. «Railway Track and Track Facilities», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 42, e-mail [email protected], ORCID 0000-0003-2081-5648
2 Track-Test Branch Research Laboratory, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 793 38 45, e-mail [email protected], ORCID 0000-0002-2607-3123
3Dep. «Railway Track and Track Facilities», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 42, e-mail [email protected], ORCID 0000-0002-1593-5875
ESTABLISHMENT OF THE PERMISSIBLE TRAIN SPEED ON THE CURVED TURNOUTS
Purpose. Turnouts play a key role in the railway transportation process. One-sided and many-sided curved turnouts were railed over the last 20 years in difficult conditions (curved sections, yard necks). They have a number of geometric features, unlike the conventional one-sided turnouts. Today the normative documents prohibit laying such turnouts in curved track sections and only partially regulate the assessment procedure of their real condition. The question of establishment the permissible train speed within the curved turnouts is still open. In this regard, authors propose to set the train speed according to the driving comfort criterion using the results of field measurements of ordinates from the baseline for the particular curved turnout. Methodology. The article considers the criteria using which one can set the permissible speed on the turnouts. It defines the complexity of their application, advantages and disadvantages. Findings. The work analyzes the speed distribution along the length of the real curved turnout for the forward and lateral directions. It establishes the change rate values of unbalanced accelerations for the existing norms of the curved track sections maintenance according to the difference in the adjacent bend versine at speeds up to 160 km/h. Originality. A method for establishing the trains' speed limit within the curved turnouts was developed. It takes into account the actual geometric position in the plan of forward and lateral turnout directions. This approach makes it possible to establish a barrier places in plan on the turnouts limiting the train speed. Practical value. The proposed method makes it possible to objectively assess and set the trains' permissible speed on the basis of the ordinate measurement of the forward and lateral directions of the curved turnouts from the baseline using the driving comfort criteria. The method was tested using real turnouts, which are located within the Prid-neprovsk Railway.
Keywords: turnouts; criterion; speed; acceleration; radius; driving comfort
Introduction
In recent years a tendency to reduce the cost of maintenance and operation of railway transport by introducing the resource-saving and advanced technologies, including scientific research and reasoning was targeted [13]. In the multifaceted field of railway transport travel track facilities play
a key role in ensuring transportation needs, it is a functional link between the conditional supplier and a consumer using rail tracks.
The operating length of railway tracks in the territory of Ukraine is 22.5 thousand km. Tracks at stations and running lines combine approximately 5.5 thousand of various connections and intersec-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
tions, 95% of which are turnouts. This is one of unique and at the same time demanding construction of a permanent way. If we analyze maintenance standards that are set up to the whole track, the turnouts take very nearly the first place in a variety of demands exactly to them. This is due to several design solutions that ensure locomotion of rolling stock from one track to another.
Requirements to the norms for organization and maintenance of turnouts are based on numerous theoretical and experimental studies as well as long experience of their operation.
During maintenance violations of turnouts the question arises as for their further exploitation -whether to close or limit the speed of rolling stock. Making such decisions should have well founded reasons, which can be obtained from existing regulations [7].
Among all currently laid turnouts on the main and receipt-dispatch tracks, conventional single turnouts have the largest part (about 97%). But in tight terms of stations and railway haul, limiting the use of conventional turnouts, there is a need of laying the turnouts of more complex design. To such turnouts one can include curved type P65 mark 1/1, project 2 889. Also on the railways of Ukraine there are cases of conventional turnouts presence in curved sections. In paper [6] main principles concerning setting speeds for such special cases are considered.
At present laying of conventional and curved turnouts in curve sections of the track is prohibited. But questions regarding service of those turnouts that are already been within the curves remain open. Reffering to the existing regulations, turn-
out's standards are regulated by track gauges in different sections, ordinates of lateral direction, wear and indexes of relative position between separate elements of turnouts (e.g., contact tongue and stock rail). At determination the state of curved turnouts it is necessary to check not only the lateral direction ordinates but also the core one. If there are deviations from the ordinates by value longer than specified in the project, what speed is allowable?
Purpose
The purpose of this paper is to provide proposals for setting the permissible speeds of trains within the main and lateral directions of curved turnout accordingly the results of ordinates field measurements from the baseline. It is a continuation of a forward direction of a stock rail. On the basis of the developed methodology to determine the locations of speed limits and reduce expenditures for regulation of ordinates.
Methodology
One can say with reasonable confidence that today there is no integrated practice for determining and setting the permissible speeds of trains within turnouts. This is primarily due to the presence of complex structural assemblies to ensure implementation of functions assigned on turnouts. However, the work [4] formulates the requirements at turnouts design meaningfully enough, which can be transformed into criteria for permissible speeds settings.
Fig. 1. The criteria for setting of the permissible speed of trains on the turnouts
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
In general, the speed on turnouts can be set with three main criteria (Fig. 1):
- strength and stability of turnouts elements;
- stability of rolling stock;
- driving comfort.
The speed of trains upon the criteria of strength and stability of turnout's elements can be presented as shape function:
[V] = f ([a],Ax, Ay), (1)
where [a] - permissible stresses in elements; Ax, Ay - displacements (strains) of elements in appropriate planes.
The permissible speed upon the criterion of turnout's elements strength is set on the base of stresses determination in the edges of the rail plinth by the results of theoretical calculations and experimental studies.
Theoretical calculations by the existing methodology [3] make it possible to determine stresses in rails of conventional section without many features, such as the impact of unloaded rail lines. For contact tongues, frog and counter battens aforementioned method generally can not be used because of the structure complexity and changes in cross sections of these elements of turnouts in length (Fig. 2).
Fig. 2. Turnout frog
A more adequate assessment of stresses distribution in complex elements at theoretical calculations can be given by numerical methods for solving boundary value problems, such as the finite element method (FEM). In papers [9, 15, 16] the finite-element model elements of the permanent way, including the contact tongue with a stock rail, which are under dynamic loads were considered. That is, the FEM allows to set stresses in the elements of any geometric configuration, including prefabricated structures. The only significant disadvantage of this method is time for solving the
problem, which varies with the finite element mesh refinement and can be increased from minutes to several hours.
Experimental studies to determine the stresses which allow setting the permissible speeds of trains motion, it is reasonable to conduct for new and upgraded designs of turnouts or rolling stock [11] from the standpoint of the high prime cost of this research method.
Let us consider the following criteria for setting the permissible speed of movement within turnout (see. Fig. 2) - rolling stock stability.
In general, the dependence of speed motion subject to ensure stability of rolling stock can be presented as shape function:
[V] = f (R, [n], Ww, [Kst]), (2)
where R - radius of transmission curve; [n] -permissible stability factor against overturning of rolling stock; Ww - wind force; [Kst ] - stability
factor of wheelset against climb-on of a wheel.
As shown theoretical calculations [4], the motion speed of trains subject to overturning within the transmission curve substantially exceed («1,5 times) the maximum traffic speed on the lateral direction of the turnout for appropriate mark. Therefore, this criterion within the work is not considered.
In [2] the stability factor of wheelset against wheel flange climb-on the rail is considered in depth. Attention is focused that this factor depends on the dynamic indexes of a particular type of rolling stock. They can be set accordingly the results of mathematical modeling and experimental research.
Let us consider the last criterion - driving comfort.
Permissible speed of train's motion by driving comfort criterion can be presented as:
[V ] = f (K ], [apu,se ] , M), (3)
where [aua ] - permissible unbalanced acceleration; [apulse J - permissible pulse lateral acceleration; [y] - change rate of unbalanced acceleration.
Lateral acceleration of pulsed nature apulse appears at rolling stock entry on turnout in the area of
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
contact tongue and transition from frog to transmission curve. At a speed of 40 km/h pulsed acceleration occurs 1,6-3,3 m/c2 at 50 km/h - 2,2-4,3 m/c2 [5]. At speed increasing the pulse acceleration can be up to 12 m/c2. [17]. Contact tongues area and frog is not highlighted as a part of this study.
Two indexes that had remained in the formula (3) is often used to set the permissible speeds not only within turnouts [1, 14], but also for circular and transmission curves [8].
According to existing maintenance norms permissible speeds of trains in the curved sections are set by the difference in adjacent bend versines [7]
A f = \ fM - f,
(4)
where fi+1, f - bend versines in the adjacent points.
Bend versines at any point of the circular curve is [7]:
f =
1000 a 8R
(5)
where a - chord length; R - curve radius. Let us make elementary transformations
a2 V2
f = 125 —, ' V2 R
(6)
V2
Fraction r is centrifugal lateral acceleration
at this point of curve arad.
The most important feature of curve section track arrangement is the presence of outer rail cant, one of the establishing criteria is lateral unbalanced acceleration [7, 1]:
V2
a„„ =---h
R S
(7)
lateral direction is without increase. Accordingly, the expression is valid:
V_
R '
Then equation (6) will be as follows:
= 125a2 ! I f = v2 'aua''
(8)
(9)
In turn, the allowable motion speed accordingly to the criterion of permissible unbalanced acceleration, which today regulate the standards (9) is as follows:
Vr -,< a.
V
125K ]
Ifl
(10)
As it is known, chord length a is set in dependence of curve radius [7]:
a = <
|R<400
(11)
The length of turnout, marks 1/9 and 1/11 is approximately 31 and 33.3 meters, and the mileage of transmission curve - 11.9 and 16.5 meters. If measurements are performed in accordance with the regulations, we will obtain 2 values of bend versines f for marks 1/9 and 3 for mark 1/11. One can see that it is insufficient to set the movement speed by such limited number of data. Measuring the bend versines within the transitions curves also is complicated by presence of wings within frogs. Therefore, to assess the transfer curve position, in our opinion, is better with measurement results of ordinates (every 2 meters). Bend versines in this case are determined by the following formula [10]:
where V - trains motion speed; g - free-falling acceleration; S - distance between the axes of rails; h - cant of the outer rail.
g
In the formula (7) subtrahend — h - is a hori-
S
zontal component of vehicle gravity when driving in a curve, which is due to differences in the level of rail heads for the value h . Accordingly, if we consider the vast majority of turnouts at the railway network of Ukraine (99%), the limit rail of
f = F -2(F+1 + F-1 ),
(12)
where Fi_j, F, Fi+l - ordinates, that are measured from the baseline, mm. For curved turnouts the base is such line which is a conditional extension of the forward direction of the stock rail (Fig. 3).
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
V ! <
2000[а Ua ]
F _1 (F+i + F_i)
(13)
, , d , ч ,. Aa(t)
.(t ) = -ra(t ) = }im0 W
At^0 At
= lim
At^0
а
(t + At)_a(t) a(t + At)_a(t)
(14)
At
At
-а
d / \ dx t ) = —a(x )— =
/ л,, v / л
= Vd a(x )« V —.
dx A x
(15)
;[y]Ax
|A/|
(16)
A/=2 [ Fi _1 _ 3 (F _ F+1 )_ F+2 ].
Formula (16) will have final form:
К..Л < 20 3
M
F,_ _3(F _F+1 )_F+ 2 '
(17)
(18)
On the basis of obtained formulas (13) and (18) speed definition is accepted the least
Fig. 3. Measuring ordinate scheme of the forward and lateral directions of the curved turnouts
In Fig. values Foi, F6i - are ordinates for main and lateral directions of turnouts.
Ignoring the angle value of chord rotation a within the transfer curve, formula (10) with (12) will be:
one:
Vper = min
min
in {Va,]]} , ' = 1 in {{}, j = 1
= 1, П _ 1
(19)
Unbalanced acceleration rate in view of physical concept of derived function can be represented as:
where At - growth time during which acceleration value changes.
We provide replacement of variable at differentiation for constant motion speed:
Taking into account (4) i (9) we will find speed by criterion of permissible speed at unbalanced acceleration rate [y]:
Rewrite the formula (4), using expressions (12):
where n - the number of measuring points.
Referring to the existing regulations, the recommended values of allowable accelerations and changes of unbalanced acceleration in accordance with [12] are:
- [a ua ] = 0,7 m/c2 (1,0 m/c2); - [y] = 0,6 m/c3.
The above mentioned values of acceleration act on the floor level of the passenger car or locomotive in the center pivot section. These values are significantly different from the acceleration acting on the level of the wheelset box. This is explained by the presence of spring suspension, which acts as a filter of low-frequency vibrations of sprung mass. We believe that to set the allowable movement speed in a curved sections of the track one should use it is this acceleration, acting at the level of box, because the motion trajectory of the gravity center in the wheelset when movement in a curve almost coincides with the forms of horizontal and vertical inequalities (provided that the wheel flange is pressed to the limit rail).
Using formulas (10) and (16) it should be analyzed existing regulations of curved sections maintenance of the track upon direction in the plan and establish values aua and y for appropriate difference in adjacent bend versines A f (Table 1).
Unbalanced accelelration aua (Table 1) was obtained at maximum value of curved radius for given grade of failure (e.g. for I and V degrees and R = 4000 m). Bend versines is determined by the formula (4).
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
In some cases obtained values aua and y exceed recommended ones and explains this is the
place of performance data by driving comfort.
Table 1
and y values with deviation towards the railway track in plan for the sections at movement speeds of 140-160 km/h
Degree of devia- Radius, m Difference in bent versines, measured after 10 m from mid-chord, length 20 m, mm Allowable speed, km/hour, at length deviation, m Unbalanced acceleration, m/c2 Change rate of unbalanced ac-
tion to 20 incl. above 20 to 40 incl. celeration, m/c3
1 2 3 4 5 6 7
I At all radii1 ot10 (incl.) 1,71/0,54 1,76/0,31
II to 2000 (incl.)1 - - -
over 2000 over 10 to 18 (incl.) 160/904 1,7/0,54 3,16/0,56
III to 2000 (incl.)1 over 2000 over 18 to 25 (incl.) 1,98/0,63 4,39/0,78
to 1800 (incl.)2 over 10 to 25 (incl.) over 25 to 35 (incl.) 140/90 80/60 140/90 120/90 2,27/0,94 0,84/0,47 2,94/0,78 0,77/0,32
IV >1800 to 2000 over 18 to 25 (incl.) 140/90 140/90 1,6/0,66 2,94/0,78
(incl.) over 2000 over 25 to 35 (incl.) over 25 to 35 (incl.) 80/60 120/90 0,62/0,35 0,59/0,33 0,77/0,32 0,77/0,32
over 35 to 65 (incl.) 40/40 80/80 0,57/0,57 0,18/0,18
V At all radii3 over 65 to 90 (incl.) 15/15 40/40 0,09/0,09 0,01/0,01
over 90 Motion is closed - -
Notes: Radius, which is taken in the calculations is 1 000 m; 3radius, which is taken in the calculations is 300 for freight ones
With similar analogy we will determine value aua i y for turnout, type P65 mark 1/11 in project 2889 with radii of turnout curve:
- for forward direction - 600 m;
- for lateral direction - 200 (350) m.
At this the maximum speed of rolling stock for this turnout project is:
- for forward direction - 70 km/h;
- for lateral direction - 40 km/h.
Due to the requirement that the difference of ordinates deviation of transmission curve in adjacent points should not exceed ± 2 mm [7], we will get: 2
- for forward direction - aua = 0,95 m/c2; y =
7,35 m/c
3
1500 m; radius, which is taken in the calculations is m; 4numerator - for passenger trains, the denominator -
- for lateral direction - aua = 0,83 m/c2, y = 2,7 m/c3.
We see that obtained values differ significantly from the recommended ones.
Findings
Taking into account, that standards aua and y, operating at the level of the wheel pair axle box, to day, is not established, one can use an analogue method (which, by the way, is used at initial angle definition on turnouts [4]) to determine the permissible speed of trains within turnouts.
Method of determining the permissible speed upon the travelling comfort criterion was tested at
а
ua
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
a real turnout. Tests and calculation results for the lateral direction are presented at Table 2.
Table 2
Evaluation of the allowable speed on the lateral direction of the turnouts
Point number Distance from the root of contact tongue Xt, mm Ordinates F, mm V i M V i M
1 2 3 4 5
-1 -2 116 - -
0 0 181 60 701
1 2 258 57 701
2 4 348 62 40
3 6 449 40 30
4 8 578 64 30
5 10 696 40 40
6 12 842 61 701
7 14 999 57 68
8 16 1169 65 47
9 18 1350 701 701
10 20 1531 701 701
11 22 1713 701 -
12 24 1894 - -
Note: :speed is limited till maximum by forward direction
We see that the limitation is reached only by criterion y in two places. Having corrected in the plan value of ordinates in pointed areas one can achieve increasing the speed, set for given curved turnout.
Originality and practical value
The method of establishing the permissible speed of movement within the curved turnouts upon the travelling comfort criterion was proposed. This approach takes into account the actual geometric position of the turnout's lateral direction. Versatility of technique gives the possibility to control and direct direction of turnouts.
The theoretical results were tested on the results of ordinates field measurements for curved lateral direction of turnouts.
Conclusions
1. Objectively the main criteria for permissible speeds set of trains within the turnouts that exist today were analyzed.
2. Technique for measuring the coordinates of forward and curved lateral direction of curved turnouts that are in curved sections is recommended. The proposals are offered to determine the permissible speed of trains within the curved turnouts by the driving comfort criterion based on ordinates measurements from the baseline.
Permissible values aua and у were gounded for curved turnouts, based on the deviation of curve ordinates in adjacent locations.
LIST OF REFERENCE LINKS
1. Ангелейко, В. И. О допускаемых скоростях движения поездов по основному пути криволинейных стрелочных переводов / В. И. Ангелейко // Исследование взаимодействия пути и подвижного состава : межвуз. сб. науч. тр. / Днепропетр. ин-т инженеров трансп. - Днепропетровск, 1983. - Вып. 228. - С. 40-44.
2. Блохин, Е. П. Об эквивалентности критериев безопасности от схода колеса с рельсов при использовании направляющей либо боковой силы / Е. П. Блохин, М. Л. Коротенко, И. В. Клименко // Наука та прогрес транспорту. - 2013. - № 3. - С. 74-81. doi: 10.15802/stp-2013/14538.
3. Даншенко, Е. I. Правила розрахуншв залiз-нично! коли на мщшсть i стшшсть : ЦП - 0117 / Е. I. Даншенко, В. В. Рибшн. - Ки!в : Транспорт Укра!ни, 2005. - 119 с.
4. Даниленко, Э. И. Стрелочные переводы железных дорог Украины. Технология производства. Эксплуатация в пути. Расчеты и проектирование / Э. И. Даниленко, А. П. Кутах, С. Д. Тара-ненко. - Киев : Киев. ин-т ж.-д. трансп., 2001. -296 с.
5. Желнин, Г. Г. Особенности установления допускаемых скоростей на стрелочных переводах / Г. Г. Желнин // Решение задач взаимодействия подвижного состава и пути реального очертания : сб. науч. тр. / ВНИИЖТ. - Москва : Транспорт, 1985. - С. 34-38.
6. Желнин, Г. Г. Установление допускаемых скоростей движения поездов на стрелочных переводах, уложенных в кривых участках пути / Г. Г. Желнин, Л. О. Грачева, А. П. Татуревич // Исследование взаимодействия пути и соврем. подвиж. состава : межвуз. сб. науч. тр. / Днеп-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
ропетр. ин-т инженеров трансп. - Днепропет- 13. ровск, 1987. - Вып. 257. - С. 4-14.
7. 1нструкщя з улаштування та утримання коли залiзниць Укра!ни : ЦП-0269 / Е. I. Даншенко, А. М. Орловський, М. Б. Курган, В. О. Яковлев [та ш.]. - Ки1в : Полкрафсервю, 2012. - 465 с.
8. Методика визначення допустимих швидко-стей руху погдав на складних дiлянках 14. плану залiзницi / М. Б. Курган, Д. М. Курган,
H. П. Хмелевська, С. Ю. Байдак // Наука та прогрес транспорту. - 2014. - № 2 (50). -С. 83-94. ао1: 10.15802^2014/23760.
9. Настечик, М. П. Дослвдження напруженого стану в елементах скршлення типу КПП-5
пiд дiею рухомого складу / М. П. Настечик, 15.
I. О. Бондаренко, Р. В. Маркуль // Наука та прогрес транспорту. - 2015. - № 2 (56). -С. 146-156. ао1: 10.15802^2015/42174.
10. Патласов, О. М. Удосконалення методики вимiрювання горизонтальних нерiвностей
у планi / О. М. Патласов, С. О. Токарев // Наука 16. та прогрес транспорту. - 2015. - № 4 (58). -С. 121-131. ао1: 10.15802^2015/49219.
11. Рухомий склад залiзниць. Норми допустимого впливу на залiзничну колш 1520 мм : ДСТУ 7571:2014. - Чинний ввд 2014-02-12. - Кив : М-во економ. розвитку Укра!ни, 2014. - 33 с. 17.
12. Техшчт вказiвки щодо оцiнки стану рейково! коли за показниками колiевимiрювальних вагошв та забезпечення безпеки руху по1здв при вiдступах вiд норм утримання рейково! коли : ЦП-0267 / О. М. Патласов, В. В. Рибшн, 18. Ю. В. Палейчук [та iн.]. - Ки!в : Полпраф-сервiс, 2012. - 25 с.
Транспортна стратегiя Укра!ни на перюд до 2020 року [Electronic resource] : схвалено роз-порядж. Кабшету Мiнiстрiв Укра!ни ввд 20 жовт. 2010 р. № 2174-р. - Available at: http://zakon1.rada. gov.ua/ laws/show/2174-2010-%D1%80. - Title from the screen. - Accessed : 11.02.2016.
Шаройко, В. С. К выбору формы переводной кривой в стрелочных переводах для высоких скоростей движения / В. С. Шаройко // Исследование взаимодействия пути и подвижного состава в пределах стрелочных переводов : сб. тр. / Ленингр. ин-т инженеров ж.-д. тр-та. -Ленинград, 1962. - Вып. 188. - С. 151-166. Effects of profile wear on wheel-rail contact conditions and dynamic interaction of vehicle and turnout / J. Xu, P. Wang, L. Wang, R. Chen // Advances in Mechanical Engineering. - 2016. -Vol. 8, № 1. - P. 1-14. doi: 10.1177/1687814015623696.
Herian, J. Modelling of structure and properties of pearlitic steel and abrasive wear of the turnout frog in the cyclic loading conditions / J. Herian, K. Aniolek // J. of Achievements in Materials and Manufacturing Engineering. - 2011. - Vol. 49. -Iss. 1. - P. 71-81.
Kim, S. J. A Study on the Running Safety of F26 Turnout and Vehicle Model / S. J. Kim, B.-G. Eom, H. S. Lee // Intern. J. of Railway. -2012. - Vol. 5, № 4. - P. 156-162. doi: 10.7782-/IJR.2012.5.4.156.
UIC Code 513 R. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles. - Paris : Int. Union of Railways, 1995. -81 p.
О. М. ПАТЛАСОВ1, С. О. ТОКАРСВ2*, С. О. ПАТЛАСОВ3
'Каф. «Колiя та колшне господарство», Дншропетровський нацюнальний ушверситет затзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Укра!на, 49010, тел./факс +38 (056) 373 15 42, ел. пошта [email protected], ОЯСГО 0000-0003-2081-5648
2*Колiевипробувальна галузева науково-дослдаа лабораторш, Дншропетровський нацюнальний ушверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Укра!на, 49010, тел./факс +38 (056) 793 38 45, ел. пошта [email protected], ОЯСГО 0000-0002-2607-3123 3Каф. «Колiя та колшне господарство», Дншропетровський нацюнальний утверситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Укра!на, 49010, тел./факс +38 (056) 373 15 42, ел. пошта [email protected], ОЯСГО 0000-0002-1593-5875
ВСТАНОВЛЕННЯ ДОПУСТИМИХ ШВИДКОСТЕЙ РУХУ ПО1ЗД1В ПО КРИВОЛ1Н1ЙНИХ СТР1ЛОЧНИХ ПЕРЕВОДАХ
Мета. Стршочш переводи вщграють одну з ключових ролей при виконанш перевiзного процесу на заль зничному транспорта Протягом останшх 20 рошв у складних умовах (кривi дмнки, горловини станцiй) укладали одно-та рiзностороннi криволiнiйнi стрiлочнi переводи, якi мають ряд геометричних особливостей, на ввдмшу ввд одностороннiх звичайних. На сьогодшшнш день нормативнi документи забороняють нове
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2016, № 2 (62)
укладання таких переводiв у кривi дмнки коли та тшьки частково регламентують порядок оцiнки !х реального стану. Залишаеться вшкритим питання встановлення допустимо! швидкостi руху в межах криволшш-них стршочних переводiв. Тому в науковому дослвдженш пропонуеться встановлювати швидкiсть руху по-!здв за критерiем комфортабельностi !зди, спираючись на результати натурних вимiрювань ординат вiд ба-зисно! лшп для конкретного криволiнiйного стрiлочного переводу. Методика. Розглянуто критерп, за допо-могою яких можна встановити допустимi швидкостi руху на стрiлочних переводах. Встановлено складнiсть !х застосування, переваги та недол1ки. Результати. Проаналiзовано розподш швидкостей по довжинi реального криволшшного стрiлочного переводу для прямого та бокового напрямку. Встановлено величини швид-костi змiни непогашених прискорень для iснуючих норм утримання кривих дмнок колИ за рiзницею у су-мiжних стрiлах вигину при швидкостях до 160 км/год. Наукова новизна. Авторами розроблено методику встановлення допустимо! швидкосл руху поддав у межах криволшшного стршочного переводу, яка врахо-вуе реальне геометричне положения у плаш основного та бокового напрямшв переводу. Даний пiдхiд дае можливють встановити мiсця у плаш на стршочному переводi, як1 лiмiтують швидк1сть руху. Практична значимiсть. Запропонована методика дае можливiсть об'ективно ощнити та встановити допус-тиму швидшсть руху по!здiв на основi вимiрювання ординат основного i бокового напрямку криволшшного стршочного переводу ввд базисно! лiнi! за критерiем комфортабельностi !зди. Методика була апробована на реальних стрiлочних переводах, як1 знаходяться в межах Придшпровсько! залiзницi.
Ключовi слова: стршочш переводи; критерiй; швидк1сть; прискорення; радiус; комфортабельнiсть !зди
А. М. ПАТЛАСОВ1, С. А. ТОКАРЕВ2*, Е. А. ПАТЛАСОВ
1Каф. «Путь и путевое хозяйство», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 373 15 42, эл. почта [email protected] ОЯСГО 0000-0003-2081-5648
2*Путеиспытательная отраслевая научно-исследовательская лаборатория, Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, 49010, Украина, тел./факс +38 (056) 793 38 45, эл. почта [email protected], ОЯСГО 0000-0002-2607-3123 3Каф. «Путь и путевое хозяйство», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел./факс +38 (056) 373 15 42, эл. почта [email protected], ОЯСГО 0000-0002-1593-5875
УСТАНОВЛЕНИЕ ДОПУСТИМЫХ СКОРОСТЕЙ ДВИЖЕНИЯ ПОЕЗДОВ ПО КРИВОЛИНЕЙНЫМ СТРЕЛОЧНЫМ ПЕРЕВОДАМ
Цель. Стрелочные переводы играют одну из ключевых ролей при выполнении перевозочного процесса на железнодорожном транспорте. В течение последних 20 лет в сложных условиях (кривые участки, горловины станций) укладывали одно- и разносторонние криволинейные стрелочные переводы, которые имеют ряд геометрических особенностей, в отличие от односторонних обыкновенных. На сегодняшний день нормативные документы запрещают вновь укладывать такие переводы в кривые участки пути и только частично регламентируют порядок оценки их реального состояния. Остается открытым вопрос установления допустимой скорости движения в пределах криволинейных стрелочных переводов. Поэтому в научном исследовании предлагается устанавливать скорость движения поездов по критерию комфортабельности езды, опираясь на результаты натурных измерений ординат от базовой линии для конкретного криволинейного стрелочного перевода. Методика. Рассмотрены критерии, с помощью которых можно установить допустимые скорости движения на стрелочных переводах. Установлена сложность их применения, преимущества и недостатки. Результаты. Проанализированы распределения скоростей по длине реального криволинейного стрелочного перевода для основного и бокового направления. Установлены величины скорости изменения непогашенных ускорений для существующих норм содержания кривых участков пути по разнице в смежных стрелах изгиба при скоростях до 160 км/ч. Научная новизна. Учеными разработана методика установления допустимой скорости движения поездов в пределах криволинейного стрелочного перевода, которая учитывает реальное геометрическое положение в плане основного и бокового направления перевода. Данный подход дает возможность установить места в плане на стрелочном переводе, которые лимитируют скорость движения. Практическая значимость. Предложенная методика дает возможность объективно оценить и установить допустимую скорость движения поездов на основе измерения ординат основного
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 2 (62)
и бокового направления криволинейного стрелочного перевода от базисной линии по критерию комфортабельности езды. Методика была апробирована на реальных стрелочных переводах, которые находятся
в пределах Приднепровской железной дороги.
Ключевые слова: стрелочные переводы; критерий; скорость; ускорение; радиус; комфортабельность езды
REFERENCES
1. Angeleyko V.I. O dopuskayemykh skorostyakh dvizheniya poyezdov po osnovnomu puti krivolineynykh strelochnykh perevodov [On the permissible train speed on the main track of the curved turnouts]. Issledo-vaniye vzaimodeystviya puti i podvizhnogo sostava [Research of rolling stock and track interaction], 1983, issue 228, pp. 40-44.
2. Blokhin Ye.P., Korotenko M.L., Klimenko I.V. Ob ekvivalentnosti kriteriyev bezopasnosti ot skhoda kolesa s relsov pri ispolzovanii napravlyayushchey libo bokovoy sily [On the equivalence of the security criteria of the gathering wheels with the rails using the rail or lateral force]. Nauka ta prohres transportu - Science and Transport Progress, 2013, no. 3, pp. 74-81. doi: 10.15802/stp2013/14538.
3. Danilenko E.I., Rybkin V.V. Pravyla rozrakhunkiv zaliznychnoi kolii na mitsnist i stiikist: TsP-0117 [Rules of railway track calculation for strength and stability: TsP-0117]. Kyiv, Transport Ukrainy Publ., 2005. 119 p.
4. Danilenko E.I., Kutakh A.P., Taranenko S.D. Strelochnyye perevody zheleznykh dorog Ukrainy. Tekhnologiya proizvodstva. Ekspluatatsiya v puti. Raschety i proektirovaniye [Turnouts of Ukrainian railways. Production technology. Operation on passage. Calculations and design]. Kyiv, Kiyevskiy institut zheleznodorozhnogo transporta Publ., 2001. 296 p.
5. Zhelnin G.G. Osobennosti ustanovleniya dopuskayemykh skorostey na strelochnykh perevodakh [Features of the permissible speeds establishment on the turnouts]. Resheniye zadach vzaimodeystviya podvizhnogo sostava
i puti realnogo ochertaniya [Problem solving of interaction of the rolling stock and the track of real contours], 1985, pp. 34-38.
6. Zhelnin G.G., Gracheva L.O., Taturevich A.P. Ustanovleniye dopuskayemykh skorostey dvizheniya poyezdov na strelochnykh perevodakh, ulozhennykh v krivykh uchastkakh puti [Establishment of the permissible train speeds on the turnouts laid in the curved track sections]. Issledovaniye vzaimodeystviya puti i podvizhnogo sostava [Research of rolling stock and track interaction], 1987, issue 257, pp. 4-14.
7. Orlovskyi A.M., Kurhan M.B., Yakovliev V.O. Instruktsiia z ulashtuvannia ta utrymannia kolii zaliznyts Ukrainy: TsP-0269 [Instruction on the organization and maintenance of the railway track: TsP-0269]. Kyiv, TOV «NVP Polihrafservis» Publ., 2012. 465 p.
8. Kurhan M.B., Kurhan D.M., Khmelevska N.P., Baidak S.Yu. Metodyka vyznachennia dopustymykh shvydkostei rukhu poizdiv na skladnykh diliankakh planu zaliznytsi [Methodology of determination of permissible train movement speeds on difficult sections of railroad plan]. Nauka ta prohres transportu - Science and Transport Progress, 2014, no. 2 (50), pp. 83-94. doi: 10.15802/stp2014/23760.
9. Nastechyk M.P., Bondarenko I.O., Markul R.V. Doslidzhennia napruzhenoho stanu v elementakh skriplennia typu KPP-5 pid diieiu rukhomoho skladu [Investigation of stress state in the elements of rail fastenings, type KPP-5 under the influence of rolling stock]. Nauka ta prohres transportu - Science and Transport Progress, 2015, no. 2 (56), pp. 146-156. doi: 10.15802/stp2015/42174.
10. Patlasov O.M., Tokariev S.O. Udoskonalennia metodyky vymiriuvannia horyzontalnykh nerivnostey u plani [Improvement of the measurement methodology of the horizontal irregularities in plan]. Nauka ta prohres transportu - Science and Transport Progress, 2015, no. 4 (58), pp. 121-131. doi: 10.15802/stp2015/49219.
11. DSTU 7571:2014. Rukhomyy sklad zaliznyts. Normy dopustymoho vplyvu na zaliznychnu koliyu 1520 mm. [State Standard 7571:2014. Railway rolling stock. Permissible impact norms on the railway track of 1520 mm]. Kyiv, Minekonomrozvytku Ukrayiny Publ., 2014. 33 p.
12. Patlasov O.M., Rybkin V.V., Paleichuk Yu.V., Solomakha S.O. Tekhnichni vkazivky shchodo otsinky stanu reikovoi kolii za pokaznykamy koliievymiriuvalnykh vahoniv ta zabezpechennia bezpeky rukhu poizdiv pry vidstupakh vid norm utrymannia reikovoi kolii: TsP-0267 [Technical instructions on the track state assessment according to the measures of the track-measuring cars and the train movement safety provisions at deviations from the track maintenance norms]. Kyiv, TOV «NVP Polihrafservis», 2012. 25 p.
13. Transportna stratehiia Ukrainy na period do 2020 roku no. 2174-r. (The transport strategy of Ukraine for the period to 2020 no. 2174-r). Available at: http://zakon1.rada.gov.ua/laws/show/2174-2010-%D1%80 (Accessed
4 November 2015).
14. Sharoyko V.S. K vyboru formy perevodnoy krivoy v strelochnykh perevodakh dlya vysokikh skorostey dvizheniya [To the choice of the turnout curve form on the for the high speed turnouts]. Issledovaniye vzai-
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2016, № 2 (62)
modeystviya puti i podvizhnogo sostava v predelakh strelochnykh perevodov [Investigation of the track and rolling stock interaction within the turnouts], 1962, issue188, pp. 151-166.
15. Xu J., Wang P., Wang L., Chen R. Effects of profile wear on wheel-rail contact conditions and dynamic interaction of vehicle and turnout. Advances in Mechanical Engineering, 2016, vol. 8, no. 1, pp. 1-14. doi: 10.1177/1687814015623696.
16. Kim S.J., Eom B.-G., Lee H.S. A Study on the Running Safety of F26 Turnout and Vehicle Model. International Journal of Railway, 2012, vol. 5, no. 4, pp. 156-162. doi: 10.7782/IJR.2012.5.4.156.
17. Herian J., Aniolek K. Modelling of structure and properties of pearlitic steel and abrasive wear of the turnout frog in the cyclic loading conditions. Journal of Achievements in Materials and Manufacturing Engineering, 2011, vol. 49, issue 1, pp. 71-81.
18. UIC Code 513 R. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles. Paris, Int. Union of Railways Publ., 1995. 81 p.
Prof. V. D. Petrenko, D. Sc. (Tech.) (Ukraine); Prof. O. M. Darenskyi, D. Sc. (Tech.) (Ukraine) recommended this article to be published
Received: Dec. 21, 2015
Accepted: March 25, 2016