УДК 543.5;543.26
Г
\
БО! 10.21685/2307-4205-2017-3-2
ЭМПИРИЧЕСКАЯ МОДЕЛЬ ИДЕНТИФИКАЦИИ ВЕЩЕСТВА МНОГОКОМПОНЕНТНЫХ ПАРОГАЗОВЫХ СМЕСЕЙ
А. И. Белозерцев, С. З. Эль-Салим
Надежность измерений, проводимых с помощью газоаналитических систем, определяется факторами, зависимыми от ряда технических и математических параметров:
- технологии изготовления первичного преобразователя;
- совместимостью схемотехнического решения и первичного преобразователя;
- алгоритма управления и обработки результатов измерения;
- стабильностью аналитических характеристик [1].
В современном газовом анализе приведенные факторы составляют задачу 38: чувствительность, стабильность и селективность [2].
Цель настоящей работы - разработка программно-алгоритмического аппарата, позволяющего повысить качество работы газоаналитической системы. Результатом исследований, проводимых в рамках работы, является алгоритм управления и обработки результатов прямых измерений, позволяющий с высокой достоверностью идентифицировать вещества-аналиты и поднять точность количественного анализа реальных многокомпонентных паровоздушных смесей.
Полупроводниковые сенсоры, изготовленные на основе диоксида олова (8п02), легированного электроуправляющими и каталитическими примесями, наиболее полно удовлетворяют требованиям современного газового анализа [1, 2].
Действительно, стабильность электрофизических и аналитических характеристик достигается разработанной групповой технологией их изготовления, в которую входит методика синтеза дисперсных полупроводников и метод внесения добавок, снижающих температуру спекания газочувствительного материала.
Введение каталитических примесей, нагрев до заданных температур в полной мере не снимают основной вопрос селективной идентификации веществ в многокомпонентных смесях. Для повышения селективности предложен метод формирования мультисенсорных систем, составленных из сенсоров различного химического состава - сенсоров, основу которых составляет диоксид олова и различные каталитические примеси [3].
Разработанные схемотехнические устройства позволяют включать одновременно две 4-канальных микросборки с последующим попарным клонированием. Таким образом, при необходимости можно одновременно подключить до 4п сенсоров, имеющих различный химический состав и возможность работы при разных температурах. Такой подход позволяет достичь высокой степени селективности. На рис. 1 приведены изображения сенсоров, эскизов микросборок и варианты размещения микросборок в аналитических камерах различного типа.
На рис. 2 приведены схемотехнические решения для подключения двух 4-канальных микросборок с различными интерфейсами.
Обнаружение примесей паров и газов в воздухе, проводимое с применением полупроводниковых адсорбционных датчиков резистивного типа, основано на измерении падения напряжения на газочувствительном элементе при его нагреве до температуры, определяемой подводимой к нагревательному элементу мощностью, регулируемой в диапазоне от 50 до 1000 мВт. Изменение падения напряжения зависит от изменения сопротивления газочувствительного слоя в результате адсорбции молекул примеси исследуемого вещества при прокачке потока воздуха с расходом в диапазоне от 0,7 до 5 л/мин. Объем газовой камеры фиксирован и позволяет проводить обнаружение примесей паров и газов в воздухе в режиме полного перемешивания [3].
Применение вейвлет-преобразования обусловлено частотно-временной локализацией как аналогового, так и цифрового массива полученной при измерении информации. Разложение спектра по базису вейвлет-образующих функций позволяет раскрыть тонкую структуру спектра в реальном масштабе времени и устранить неопределенность, характерную для Фурье-преобразования. Неопределенность Фурье образа обусловлена принципом Гейзенберга, который не позволяет локализовать высокочастотные составляющие спектра (рис. 3). Вейвлет-преобразование свободно от
неопределенности в частотно-временной области в силу возможности деформации и сдвига вейвлет-базиса на любую величину, принадлежащую Ж2 [4].
П; . 4?; 1
1
§§| Щ 1 -Л ^
"Ч ."с?. Шг
С* X—'
Нагревательный элемент сенсора
Газочувствительный элемент сенсора
Схема микросборки и собранная 4-канальная плата-носитель
Варианты размещения микросборок в аналитических камерах Рис. 1. Сенсоры и 4-канальные микросборки
Рис. 2. Схемотехническое решение управления 8-канальной аналитической системой: 1 - модуль управления 8-канальной аналитической системой, интерфейсы коммутации с сервером;
2 - радиоканал; 3 - RS 485; 4 - UART/USB 2.0
а)
б)
в)
Рис. 3. Основные принципы алгоритмов: а, б - классические методы идентификации в частотной области; в - модификация идентификации; ПФ - преобразование Фурье; АИ - алгоритм идентификации; АЧХ - анализ частотных характеристик; ВФ - вейвлет-фильтр
Напряжение измеряется каждый момент времени и может быть сглажено с увеличением интервала измерений. Представим измеряемое напряжение в виде
и(') = иг , где tе [.',.' +1],/ е 2.
(1)
Сглаживание Р(') непрерывно и соответствует дискретным наборам и, измеренным с интервалом 1/ю с , в этом случае вейвлет-образ Р(') имеет вид
Жи {а,Ь) = и('¥(t Ь
У V а
(2)
или, переходя к интегрируемым в пространстве Ж функциям:
Ж(аЬ )=та /и('('-а-) А
(3)
Коэффициенты а и Ь в (2) и (3) определяют масштабирование по времени и деформацию вейвлет-производящей функции у. Учитывая (1), уравнение (3) примет вид
Ж
1 N -1 ' (
(аЬ )= -ГТ ТР. ^ V
(' - Ь
а\ .=0
V а
Ж.
(4)
При этом а изменяется от 1 до N, Ь от 0 до N - 1. Таким образом, сигналу Р. с количеством отсчетов N ставится в соответствие матрица размерностью N х N [6].
Массив вейвлет-преобразования Жи(а, Ь) вычисляется при вариации коэффициентов а и Ь по измеренным значениям Р(') при условии а Ф 0. Для сигналов конечной длины выражение (4) представляет собой конечную сумму, вычисляемую в масштабе реального времени процесса измерения.
Наиболее подходящими базовыми вейвлет-функциями являются начальные производные функции Гаусса. Применение гауссовой функции для спектрального преобразования позволяет построить вейвлет-базис следующего аналитического вида:
V (') = (-1)п+1 Э Пе 2. (5)
Первые четыре функции, образующие базис, определяются операцией дифференцирования уравнения (5):
I \ -'2
- исходная функция: у0 (') = е ;
- первая производная: V (') = -'е-' ;
- вторая производная: у2(') = (1 -'2)е- ;
- третья производная: у3 (') = (' -'3)е-' ;
- четвертая производная: (') = (1 +'2 -'4)е.
То есть производные вейвлет-образующей функции гауссовой формы можно представить как произведение полиномов Лежандра и экспоненты квадрата зависимой переменной в квадрате, взятой со знаком минус:
¥п (' ) = (-1)4 (' )е-'2.
(6)
На рис. 4 приведены графики вейвлет-образующей функции и первых ее производных, образующих вейвлет-базис.
Вейвлет-образующая функция
Вейвлет-образующая функция первого порядка
Вейвлет-образующая функци-явторого порядка
Вейвлет-образующая функция третьего порядка Вейвлет-образующая функция четвертого порядка Рис. 4. Функции, образующие базис и соответствующие основным свойствам вейвлетов
Для данных вейвлетов характерно свойство, имеющее практическое значение: при построении вейвлет-преобразования, проведенного по результатам эксперимента, можно использовать один и тот же коэффициент сжатия/растяжения для всех вейвлетов порядка п.
Следует отметить, что дифференцирование вейвлета часто оказывается более простой операцией, чем дифференцирование самой анализируемой функции, которая может иметь разрывы и искажаться случайными внешними воздействиями. В этом случае вейвлет-преобразование от производной исходной функции можно представить как
к„ч = жпк/ = Жп+к/.
(7)
На примере обнаружения паров несимметричного диметилгидразина, являющегося активным восстановителем, рассмотрим алгоритм проведения вейвлет-преобразования для повышения достоверности идентификации вещества [5].
Перед преобразованием проведены предварительные операция сглаживания и нормировки исходного сигнала.
На рис. 5 показаны исходный, сглаженный и нормированный сигналы.
Исходный и сглаженный сигнал Р(') Сглаженный и нормированный сигнал Р(')
Рис. 5. Первичная обработка сигнала: сглаживание и нормировка
Приведем пример вычисления WWT-преобразования паров НДМГ. Исходный сигнал сглаживается по экспоненте (рис. 6).
Исходный сигнал
й2/Л
WWT-преобразование Рис. 6. Этапы проведения WWT для паров НДМГ
Затем рассчитывается Z-образ как мгновенная дисперсия. Следующий шаг - расчет производной первого и второго порядка. После проведения самоподобных преобразований, проводится операция WWT. Отметим, что все операции осуществляются в режиме реального времени
[4, 6].
Вейвлет-базисы локализованы как по частоте, так и по времени. При выделении в исходных сигналах локализованных разномасштабных процессов можно выделить только те масштабные уровни разложения, которые соответствуют веществу-аналиту. Сечение WWT-образа, определенного временем процесса, частотой и амплитудой, приведено на рис. 7.
Ч.
150 200 250 Игле (ог ¿расе) Ь
Рис. 7. Пространственно-частотная локализация в вейвлет-базисе для НДМГ
Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, так как они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований.
Отсюда следует, что при практическом использовании вейвлет-функций необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа [6].
С помощью вейвлет-базиса получены вейвлет-разложения для паров НДМГ и АТ, измеренных газочувствительными сенсорами в сложной паровоздушной смеси. На рис. 8 показан WWT-образ для НДМГ, на рис. 9 - для АТ. Концентрации примеси гептила и амила составляют 0,5 и 2,5 мг/м3 соответственно [6].
На рисунках видно, WWT-образ, полученный в режиме реального времени, позволяет однозначно идентифицировать вещества-аналиты - НДМГ и АТ. Следует отметить, что с учетом реакции топлива и окислителя, компоненты идентифицируются с высокой достоверностью. Видно, что для повышения селективности при обнаружении пары НДМГ-АТ достаточно применения базиса, состоящего из первой и второй производной 2-функции (дисперсии), рассчитанной по измеренному потенциалу - напряжению в каждом канале аналитической системы, состоящей из четырех сенсоров.
Модель обработки результатов измерений, построенная на основе вейвлет-преобразований, позволяет, не повышая времени принятия решения, идентифицировать многокомпонентные парогазовые смеси, рассчитывать концентрации компонент как интегральные суммы WWT-разложения по первой и второй производной [7]. Так как модель является эмпирической в силу формирования базиса по измерениям «чистых» веществ, то массив проб, необходимых для градуировки, снижается, что значительно повышает ценность применения эмпирического моделирования.
V
Вейелет разложе-мие первой производной
200 400
200 400
ВСЮ 1000 1200 1400
Рис. 8. WWT-преобразование по первой и второй производной паров НДМГ
Рис. 9.WWT-преобразование по первой и второй производной паров АТ
Библиографический список
1. Налимова, С. В. Анализ газочувствительных наноструктур с варьируемым типом и концентрацией адсорбционных центров : автореф. дис. ... канд. физ.-мат. наук / Налимова С. В. ; Санкт-Петербургский государственный электротехнический ун-т. - СПб., 2013. - 22 с.
2. Odor identification using SnCVbased sensor array / T. Maekawa, K. Suzuki, T. Takada, T. Kabayushi, M. Egashira // Sensors and Actuators. - 2001. - Vol. 80. - P. 51-58.
3. Мясников, И. А. Полупроводниковые сенсоры в физико-химических исследованиях / И. А. Мясников, В. Я. Сухарев, Л. Ю. Куприянов. - М. : Наука, 1991. - 327 с.
4. Методы определения компонентов ракетных топлив и их производных в объектах производственной и окружающей среды : метод. пособие / под ред. Л. М. Разбитной. - М. : Ин-т Биофизики, 1988. - С. 68-70.
5. Тулупов, П. Е. Кинетика превращения несимметричного диметилгидразина в гелево-кислородной газовой фазе / П. Е. Тулупов, С. В. Колесников // Труды IV Всесоюз. совещания Загрязнение атмосферы и почвы : сб. - Л. : Гидрометеоиздат, 1991. - С. 102-108.
6. Мисийчук Ю. И., Терещенко Г. Ф., Лебедев Г. П. и др. // Экологические аспекты применения диметилгидразина // Экологическая химия. - 1998. - № 7 (1). - С. 42-47.
7. Вейвлет-преобразования в пакете Матлаб. - URL: https/ www.exponenta.ru
Белозерцев Александр Иванович первый заместитель генерального директора, Научно-исследовательский институт физических измерений
(440026, Россия, г. Пенза, ул. Володарского, 8/10) Е-шаП: info@niifi.ru
Эль-Салим Суад Зухер
доктор физико-математических наук, профессор, генеральный директор ООО «Омега»
(199048, Россия, г. Санкт-Петербург, наб. реки Смоленки, 19-21, лит. В) Е-шаП: suad-olka@yandex.ru
Аннотация. Рассматривается эмпирическая модель идентификации вещества при анализе многокомпонентных парогазовых смесей. Приводится анализ измеримых множеств и самоподобные преобразования первичных массивов данных. Показана возможность проведения вейвлет-преобразований в базисе, построенном на основе первичных и преобразованных функций, полученных при измерениях «чистых» веществ.
Ключевые слова: вейвлет, дисперсия, газочувствительный слой, мультисенсорная система, вейвлет-преобразования, селективность.
Belozertsev Aleksandr Ivanovich
first deputy general director,
Scientific-research Institute
of physical measurements
(440026, 8/10 Volodarskogo street, Penza, Russia)
Al-Salim Suad Zuher
doctor of physical and mathematical sciences, professor, director general, Ltd "Omega"
(199048, lit. In, 19-21 embankment
of the Smolenka river, Saint-Petersburg, Russia)
Abstract. In work the empirical model of identification of substances is considered in the analysis of multicom-ponent steam-gas mixes. The analysis of measurable sets and self-similar transformations of the processed data arrays is provided. The possibility of carrying out wavelet-transformations in basis, constructed on the basis of primary and transformed functions received at measurements of «pure» substances is shown.
Key words: wavelet, dispersion, a gas-sensitive layer, multitouch system, wavelet-transformations, selectivity.
УДК 543.5;543.26
Белозерцев, А. И.
Эмпирическая модель идентификации вещества многокомпонентных парогазовых смесей /
А. И. Белозерцев, С. З. Эль-Салим // Надежность и качество сложных систем. - 2017. - № 3 (19). - С. 10-17. БО! 10.21685/2307-4205-2017-3-2.