УДК 544.654.2:546.74
И. В. Антихович, магистрант (БГТУ);
А. А. Черник, кандидат химических наук, доцент (БГТУ);
И. М. Жарский, кандидат химических наук, профессор, ректор (БГТУ)
ЭЛЕКТРООСАЖДЕНИЕ НИКЕЛЕВЫХ ПОКРЫТИЙ ИЗ АЦЕТАТНЫХ ЭЛЕКТРОЛИТОВ
Исследован процесс электроосаждения никеля из ацетатных электролитов с концентрацией по Ni2+ 0,95 моль/л и CH3COO 0,36 моль/л. Установлено, что добавление CH3COONa увеличивает катодную поляризацию по сравнению с добавкой CH3COONH4. Электролиты с добавкой CH3COONa обладают большей буферной емкостью. Определены диапазоны получения качественных никелевых покрытий с высоким выходом по току при комнатной температуре.
Process of electrodeposition of nickel from acetatum electrolytes with concentration of Ni2+ 0,95 mol/l and CH3COO 0,36 mol/l is investigated. It is established that adding CH3COONa increases cathodic polarization in comparison with additive CH3COONH4. Electrolytes with additive CH3COONa possess higher buffer capacity. Ranges of reception of qualitative nickel coatings with a high exit on a current at room temperature are defined.
Введение. Электрохимические никелевые покрытия одни из самых востребованных в гальванотехнике: используются при получении многослойных, защитно-декоративных покрытий, при производстве алмазно-режущего инструмента. Большинство существующих электролитов получения никелевых покрытий работают при повышенных до 45-55°С температурах. Это приводит к дополнительным энергитиче-ским затратам при осаждении покрытий.
Катодный выход по току никеля меньше 100%, в результате чего на катоде протекает процесс восстановления водорода и значение рН в прикатодном слое увеличивается. Это приводит к образованию на поверхности катода основных солей и гидрооксидов никеля и невозможности получения осадков никеля. Поэтому для получения качественных никелевых покрытий важное значение имеет буферная емкость электролита никелирования, т.е. способность поддержания постоянного значения рН в прикатодной области. Наиболее часто используемой буферной добавкой при никелировании является борная кислота, которая входит в состав многих кислых электролитов [1, 2]. Экспериментальное исследование рН прикатодного слоя (рН5) в растворах сульфата никеля, содержащих борную кислоту, подтвердили ее низкие буферные свойства в кислых электролитах никелирования. Так при рН = 2,5 и температуре 20°С, рН5 при рабочих плотностях тока достигает значения 5,0. Установлено, что в сульфатно-хлоридном электролите никелирования с борной кислотой при рН = 4,0 и температуре 25°С уже при катодной плотности тока 2 А/дм2 достигается значение рН5 > 5,5 [3].
Более действенными буферными добавками являются соли уксусной кислоты. Кроме того, ацетат-анионы образуют с никелем комплексные соединения типа М(СНзСОО)2, №(СНзСОО)+,
что способствует повышенной буферной емкости и позволяет поддерживать рН постоянным в прикатодной области, комплексообразование при катодном выделении металлов традиционно применяется для регулирования как скоростей стадии разряда и кристаллизации, так и качества катодного осадка.
Преимуществом электролитов с ацетатными буферными добавками является возможность реализации довольно высоких плотностей тока (3-4 А/дм2) при пониженной до 20-30°С температуре, а также при снижении в 2 и более раза концентрации солей никеля по сравнению со стандартным электролитом Уоттса. Это позволяет пропорционально снизить унос солей никеля при промывке деталей, а также уменьшить нагрузку на системы регенерации электролита и очистки сточных вод.
Целью данной работы явилось исследование процесса электроосаждения низкотемпературных электролитов на основе ацетатных солей щелочного металла и аммония.
Основная часть. В качестве буферных добавок в электролите никелирования применяли ацетаты натрия и аммония. Суммарная концентрация №2+ в каждом электролите составляла 0,95 моль/дм3, концентрация СН3СОО 0,36 моль/дм3 при рН = 4. рН электролита поддерживали рН-метром рН-150 с точностью ±0,05. Свежеприготовленные электролиты с СН3СОО№ и СН3СООКН4 имели рН соответственно 5,86 и 5,68. До требуемого значения рН = 4 электролиты корректировали концентрированной уксусной кислотой или №ОН. Это позволяет получить ацетатную буферную смесь СН3СООН + СН3СОО . Анодами служили пластины из металлургического никеля марки Н0. Качество покрытий определяли визуально. Перемешивание осуществляли устройством для покачивания электродов.
Буферные свойства растворов определяли методом потенциометрического титрования с помощью универсального ионометра со стеклянным индикаторным электродом. Объем растворов солей никеля составлял 0,05 л. Для титрования использовали 1 н. раствор КаОН. Выход по току никеля определяли гравиметрическим методом.
Исследования проводили в электролитах с составом, представленным в табл. 1.
Поляризационные измерения осуществляли с помощью потенциостата ПИ 50-1.1 в комплекте с программатором ПР-8 в потенциоста-тическом режиме. Электрод сравнения - насыщенный хлорсеребряный. Время установления равновесного потенциала составляло 5-7 мин.
На рис. 1 представлены зависимости влияния температуры на поляризационные характеристики никелевого электрода в электролитах с добавками СИзСООКа и СНзСООКИф
Как следует из рис. 1, увеличение температуры с 20 до 40°С приводит к уменьшению катодной поляризации и смещает поляризационную кривую в положительную сторону на 120 мВ как в присутствии СИ3СООКа (рис. 1, а), так и СИзСООКИ4 (рис. 1, б).
Важное значение при осаждении покрытия оказывает подложка. Влияние материала подложки на поляризационные кривые показано на рис. 2. При этом в электролите с ацетатом натрия при 20°С подложка почти не оказывает влияния (рис. 2, а). В электролите с ацетатом аммония (рис. 2, б) на стальном катоде наблюдается большая поляризация, чем на никеле, что обусловлено большими затруднениями при кристаллизации никеля на чужеродной основе.
При использовании в качестве катода никеля вместо стали, перенапряжение поляризации уменьшается и уменьшается угол наклона поляризационной кривой.
Катодное поведение никелевого электрода практически не отличается в присутствии добавок СИ3СООКа и СИ3СООКИ4 в области потенциалов положительнее -1,5 В. При потенциалах отрицательнее -1,5 В в электролите с добавлением СИ3СООКа начинают наблю-
даться диффузионные ограничения, по всей видимости, связанные с увеличением скорости побочной реакции выделения водорода и более сильным подщелачиванием прикатодного слоя.
а
б
Рис. 1. Влияние температуры на поляризационные характеристики катода в электролите с СН3СОО№ (а) СИ3СООКИ4 (б) = 1 см2)
Применение в качестве материала катода сталей различных марок оказывает существенное влияние на поляризационные характеристики катода (рис. 4). Установлено, что увеличение содержания углерода в стали смещает поляризационную кривую в отрицательную
Таблица 1
Состав изучаемых ацетатных электролитов
Состав, г/л № 1 № 2
№8О4 ■ 7Н2О 121 121
№С12 ■ 6Н2О 22 22
СН3СОО№ 30 -
СН3СООКИ4 - 28
Температура,°С 20-35 20-35
рН 4-5 4-6
сторону при потенциалах катоднее -1,2 В. Причем такое поведение характерно как для электролитов с добавлением СН3СОО№, так и СН3СОО№.
I, мА 120
100
80
60
40 20 0
0,7
I, мА 120
100 80 60 40 20 0
0,7
1 2 3
1 - никель
2 - Ст3
3 - Ст3 + Ni (10 мкм)
1,2
1,7
2,2
-£(НВЭ), В
- никель
2 - Ст3
3 - Ст3 + Ni (10 мкм)
1,2
1,7
б
2,2
-ДНВЭ), В
Рис. 2. Влияние материала подложки на поляризационные характеристики катода при 20°С в электролите с СН3СОО№ (а) с СН3СОО]МН4 (б) (& = 1 см2)
I, мА 120
100
80
60
40
20
1 - CH3COONH4
2 - CH3COONa
0 0,5
1
1,5 2
-£(НВЭ), В Рис. 3. Влияние добавки на поляризационные характеристики никелевого электрода при 20°С (£к = 1 см2)
I, мА 135 115 95 75 55
35 15
-5
1 2 3 4
1 - Ст20 + CH3COONa
2 - Ст35 + CH3COONa
3 - Ст20 +CH3COONH4
4 - Ст35 +CH3COONH4
0,75
1,25
1,75
2,25
-£(НВЭ), В
Рис. 4. Влияние материала катода и добавки в электролит на поляризационные характеристики катода (£к = 1 см2)
Исследование буферных свойств показало, что электролиты никелирования, содержащие соли СН3СООКН4 и СН3СОО№, имеют значительно более высокую буферную емкость по сравнению с электролитом Уоттса, что позволяет получать покрытия при больших значениях плотностей тока (табл. 2). Причем буферная емкость в электролите с ацетатом натрия в 2 раза выше, чем в электролите с ацетатом аммония. Большая буферная емкость позволяет электролиту работать в более широком диапазоне плотностей тока и, как следствие, получать покрытия с большим выходом по току.
Таблица 2
Буферная емкость электролитов никелирования
1
2
а
Вид электролита Б у >ерная емкость электролитов в интервале pH (моль-экв./л NaOH)
1,5-2,5 2,0-3,0 2,5-3,5 3,0-4,0 3,5-4,5 4,0-5,0 4,5-5,5 5,0-6,0 5,5-6,5 5,5-6,5 pH
Электролит с СН3СО(Жа 0,02 0,03 0,06 0,07 0,12 0,10 0,04 0,02 0,02 0,06 6,17
Электролит с СН3СОСЖН4 0,05 0,08 0,15 0,29 0,29 0,175 0,10 0,07 0,10 0,21 6,32
Электролит Уоттса - 0,03 0,009 0,0074 0,0054 0,005 0,031 - - - 5,6
Для определения диапазона плотностей тока, позволяющих получать на катоде качественные покрытия, применяли угловую ячейку Хулла. В зависимости от расстояния между поверхностью катода и анода, на катоде будет реализовываться различная плотность тока. Таким образом, в одном опыте можно определить и диапазон плотностей тока, и качество осаждаемых покрытий. Исследования проводили в стационарном режиме при токе в 1 А, что позволило исследовать диапазон плотностей тока от 0 до 5,2 А/дм2. Таким образом, установлено, что при рН около 6 для обоих электролитов рабочий диапазон плотностей тока становится довольно узким и составляет для электролита с СН3СОО№ 0-2 А/дм2, а для электролита с СНзСООад 0-1,4 А/дм2. Уменьшение рН до 4 позволяет расширить диапазон получения качественных никелевых покрытий в электролите с СНзСООКа до 4 А/дм2, с СН3СООШ4 - до 2 А/дм2. В полученных диапазонах плотностей тока выход по току никеля составил 90-95% в электролите с добавкой СН3СООКа и 85-93% в присутствии СН3СООКН4. Зависимости выхода по току никеля от плотности тока носят экстремальный характер. Следует отметить, что в оптимальных диапазонах плотностей тока покрытия получаются блестящими, компактными, хорошо сцепленными с подложкой.
Важной характеристикой любого покрытия является его пористость. Данный параметр определяется условиями получения покрытий и видом электролита. Электролиты с добавками СН3СООКН4 и СН3СООКа по способности получать беспористые покрытия ведут себя одинаково: практически беспористые покрытия получаются при толщине 30 мкм (2 пор/см2) (рис. 5).
а о а
А
н
О О
н
о «
а о
С
20
15
10
0.
1 2
1 - СЩСООШ
2 - СН3СОО]МН4
0
20 40 60
Толщина покрытия, мкм Рис. 5. Зависимость пористости покрытия от толщины в ацетатных электролитах
Заключение. Полученные данные показывают, что электролиты, содержащие СН3СОО№ и СН3СООМН^ обладают высокой буферной емкостью, которая обеспечивает стабильное значение рН, благодаря чему можно осаждать качественные никелевые покрытия с выходом по току 90-95% в электролите с добавкой СН3СОО№ при 7 = 1-4 А/дм и 85-93% при 7 = 1,0-2,5 в присутствии СН3СООМН4 и температуре 20-25 °С.
Литература
1. Гальванические покрытия в машиностроении: справочник: в 2-х т. / под ред. М. А. Шлугера. - М.: Машиностроение, 1985. -Т. 1. - 240 с.
2. Кудрявцев, Н. Т. Электролитические покрытия металлами / Н. Т. Кудрявцев. - М.: Химия, 1979. - 352 с.
3. Седойкин, А. А. Электроосаждение никеля из растворов его солей с дикарбоновыми кислотами / А. А. Седойкин, Т. Е. Цупак // Гальванотехника и обработка поверхности. - 2007. -№ 1. - С. 10-17.
Поступила 28.02.2011
5