Научная статья на тему 'ELEKTROMAGNIT TEBRANGICHLI KVANT OSSILATORLARI'

ELEKTROMAGNIT TEBRANGICHLI KVANT OSSILATORLARI Текст научной статьи по специальности «Физика»

CC BY
64
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
elektromagnit maydonlar / foton / tebranish konturi / kvantlashgan energiya. / electromagnetic fields / photon / vibration contour / quantized energy.

Аннотация научной статьи по физике, автор научной работы — Axmedov, Baxodir Baxromovich, Muminov, Islomjon Arabboyevich

Elektromagnit tebranishlar ta’sirida garmonik kvant ossilatorlarida elektromagnit to’lqinlarining xossalari va tebranish energiyasi o’rganilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

QUANTUM OSCILLATORS WITH ELECTROMAGNETIC OSCILLATORS

The properties of electromagnetic waves and vibration energy were studied in harmonic quantum oscillators under the influence of electromagnetic vibrations.

Текст научной работы на тему «ELEKTROMAGNIT TEBRANGICHLI KVANT OSSILATORLARI»

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

ELEKTROMAGNIT TEBRANGICHLI KVANT OSSILATORLARI

Axmedov Baxodir Baxromovich

Farg'ona davlat universiteti, Fizika-matematika fanlari bo'yicha

falsafa doktori (PhD); Muminov Islomjon Arabboyevich Farg'ona davlat universiteti, Fizika-matematika fanlari bo'yicha falsafa doktori (PhD); ima220790@mail.com

ANNOTATSIYA

Elektromagnit tebranishlar ta'sirida garmonik kvant ossilatorlarida elektromagnit to'lqinlarining xossalari va tebranish energiyasi o'rganilgan.

Kalit so'zlar: elektromagnit maydonlar, foton, tebranish konturi, kvantlashgan

The properties of electromagnetic waves and vibration energy were studied in harmonic quantum oscillators under the influence of electromagnetic vibrations. Keywords: electromagnetic fields, photon, vibration contour, quantized energy.

Yorug'lik (fotonlar, elektromagnit maydonlar) va materiya (elektronlar yoki atomlar) o'rtasidagi o'zaro ta'sir fizikaning eng keng tarqalgan mavzularidan biri bo'lib, kvant elektrodinamikasi (KED) deb nomlanadi. O'ta-o'tkazuvchi mikroto'lqinli tebranishlarda amalga oshirilgan fotonlar va kvant zarralar kvant elektrodinamikasi KED mikrozarralari deb ataladi. U tashqi ta'sirdan himoyalangan muhitda yorug'lik bilan o'zaro ta'sir qiluvchi neytral atomlar yordamida oldindan mavjud bo'lgan KED maydonlar fizikasiga turtki beradi. KED ni muhokama qilishdan oldin, keling, KEDning kengroq tahlil qilaylik. KEDning birinchi muvaffaqiyatli yutug'i kvant maydon nazariyasi bo'lib, u uchun Richard Feynman, Julian Shvinger va Sinitero Tomonaga 1965 yilda fizika bo'yicha Nobel mukofotiga sazovor bo'lgan.

MUHOKAMA

Nazariya fotonlar yordamida zaryadlangan zarrachalarning elektromagnit maydonlari natijasida yuzaga keladigan barcha hodisalarga tegishli. U kvant mexanikasi va elektrodinamikaning relyativistik nazariyasi o'rtasidagi bog'liqlikni ta'minlaydi. Bundan tashqari, KED zarrachalarni hosil qilish va yo'q qilish,

energiya.

ABSTRACT

KIRISH

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

shuningdek, bozonik kuch - tashuvchilar kabi g'oyalarni o'z qilishda shu masalalarni o'rganishni talab qiladi.

o'zidan izchil hal

NATIJALAR

Yorug'lik va materiyaning o'zaro ta'sirini o'z ichiga olgan sistemalar fizikaviy tushunchalarni beradi va yangi texnologiyalarni ta'minlaydi. Lazerlar, tranzistorlar va magnit-rezonans tomografiyaning ishlashini faqat KED fizikasi bilan tushuntirish mumkin. Bu, shuningdek, kvant zarrachalarining har qanday muhitda qo'llanilishi bilan ma'lumotlarni qayta ishlashga imkon beradigan fizikadir. Biroq, biz kvant tabiatiga ega bo'lgan qurilmalar (masalan, lazerlar va tranzistorlar) farqni ko'rsatishimiz kerak. Bizga boshqariladigan superpozitsiyalar va chalkashliklar bilan izchil kvant maydonlari kerak.

1-rasm: LC konturda ifodalangan kvant garmonik ossilatorining energiya tasavvuri.

O'ta-o'tkazuvchi moddalarga o'tishdan oldin, biz elektromagnit ossilatorlarni kvantlangan tilda tushunamiz. Boshlash uchun, barcha garmonik ossilatorlar kvadratik potensial energiya munosabatlari bilan tavsiflanganligini unutmasligimiz kerak. Elektromagnit ossilatorlar xuddi mexanik garmonik ossilator bilan bir xil dinamikaga amal qiladi, masalan, mayatnik yoki prujinadagi massa, hamda barchamizga tanish Gamiltonian bilan:

( 1)

Bu yerda m —yuk massasi, co —burchak chastotasi. Endi indukiv g'altak L va kondansator C o'z ichiga olgan oddiy elektromagnit ossilator uchun Gamiltonianni yozamiz. Moment va inersiya o'zgaruvchilari oqim va zaryad uchun kvant operatorlari (<?)bilan almashtiriladi (Q)

H = — Q'-. ( 2)

2 L 2C V 7

Zarralarning impulsi va harakat miqdor momenti singari, oqim va zaryad ham vaqt o'tishi bilan o'zgaruvchilardir. Kommutatsiya munosabati impuls va harakat

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

miqdor momentining kvant o'zgaruvchilari bilan o'xshashdir. Gamiltonning harakat tenglamalari bizga kattaliklarning [fi\(?] = — ih munosabatiga olib keladigan oqim va LC zanjirining tugunidagi kuchlanish uchun tanish munosabatlami beradi :

4>=-3A = _* = v

dQ C

(3) ( 4)

Asosiy holat energiyasi

bu yerda £J0 = 1 /^fLC- zanjirning rezonans chastotasi. Keyinchalik, zarralar maydoni oqimidagi nol nuqtali tebranishlarni yozish uchun impuls momentlarning teng bo'linish qoidasidan foydalanishimiz mumkin:

Q&r=i = ^ = (6)

tÎLCjJr

H2

nZPF

= (0\<FL\Q) = hta°'L

ftzr

( 7)

2 2

Bu yerda Zc = y[L/C zanjirning to'la qarshiligidir. Biz 2 tenglamaning o'zgaruvchilarini ko'tarish va tushirish operatorlariga o'zgartirishimiz mumkin ,3 va . Bundan quyidagilarga ega bo'lamiz

Bu oddiy kvant garmonik ossilatori uchun odatiy Gamiltonianni beradi:

H = hiJ0(â7S+ 1/2) = hcû0(N+ 1/2), (9)

Bu yerda Nv' = a1 a — fotonlar soni operatori. Ko'tarish va tushirish operatorlari kommutatsiya munosabatini to'liq tushuntirib beradi [â\i ] = 1.

XULOSA

Kvant garmonik ossilatorining kvadratik potensiali 1 - rasmda ko'rsatilgan . Yuqorida tavsiflangan zaryad va oqimning eng kichik (minimum) nuqtasi tebranishlari tufayli asosiy holat nolga teng bo'lmagan energiyaga ega. Tarkorlanuvchi energiyaning holatlari doimiy sakrashlar oralig'i bilan ajratiladi Endi bizda elektromagnit ossilatorning kvant tasavvuri bor. Kvantlangan holatlarni simdagi elektronlarning tartibli oqimi harakatining alohida qo'zg'alish usullari yoki butun kontaktlarning ta'sirlashuviga olib keladigan alohida fotonlar sifatida talqin qilish mumkin. Bizning LC tebrangichimizda elektr maydonining tebranishlari kondansator qoplamalari o'rtasida almashinuvda bo'ladi va magnit maydon induktiv g'altagida qayta taqsimlanadi.

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

REFERENCES

1. Muminov, I. A., Axmedov, B. B., & Maxmudov, A. A. O. G. L. (2022).

NANOTRUBKALAR. Oriental renaissance: Innovative, educational, natural and social sciences, 2(4), 517-523.

2. Ахмедов, Б., Муминов, И., & Хрмиджонов, Д. (2021). УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ДВУМЕРНОГО ВОЛНОВОГО ВЕКТОРА. InterConf.

3. Rasulov, V. R., Akhmedov, B. B., & Muminov, I. A. (2021). Interband one-and two-photon absorption of polarized light in narrow-gap crystals. Scientific-technical journal, 4(1), 28-31.

4. Yavkachovich, R. R., Bahromovich, A. B., Ogli, R. M. B., Akmaljon, A., & Umidaxon, R. (2020). Diagonal matrix elements of the effective Hamiltonian in a semiconductor (taking into account spin-orbit interaction). European science review, (1-2), 101-105.

5. Расулов, В. Р., Расулов, Р. Я., Эшболтаев, И. М., Насиров, М. Х., & Муминов, И. (2016). ЛИНЕЙНО-ЦИРКУЛЯРНЫЙ ДИХРОИЗМ ОДНО ФОТОННОГО ПОГЛОЩЕНИЯ СВЕТА В ПЬЕЗОЭЛЕКТРИЧЕСКИХ ПОЛУПРОВОДНИКАХ. УЧЕТ ЭФФЕКТА КОГЕРЕНТНОГО НАСЫЩЕНИЯ. American Scientific Journal, (7), 44-47.

6. Akhmedov B. B., Rozikov J. Y., Muminov I. A. MATERIAL'S ELECTRONIC STRUCTURE //Zbior artykulow naukowych recenzowanych. - С. 78.

7. Akhmedov, B., Rozikov, J., Muminov, I., & Ruziboev, V. (2018). ABOUT WAVEFUNCTIONS IN LOW-DIMENSIONAL SEMICONDUCTORS. Central Asian Problems of Modern Science and Education, 3(4), 51-57.

8. Muminov, I. A., Akhmedova, S. Y. K., Sobirjonova, D. A. K., & Khomidjonov, D. K. U. (2021). HETEROSTRUCTURES OF ANTIMONIDE-BASED SEMICONDUCTORS. Oriental renaissance: Innovative, educational, natural and social sciences, 7(11), 952-959.

9. Muminov, I. A., Axmedov, B. B., & Sobirov, U. B. N. O. G. L. (2022). TURLI SIMMETRIYAGA EGA BO'LGAN QATTIQ JISMLAR KRISTALL PANJARASI. Oriental renaissance: Innovative, educational, natural and social sciences, 2(4), 541-546.

10. Rustamovich, R. V., Yavkachovich, R. R., Forrux, K., & Arabboyevich, M. I. (2021). THEORETICAL ANALYSIS OF MULTIPHOTON INTERBAND ABSORPTION OF POLARIZED LIGHT IN CRYSTALS WITH A COMPLEX ZONE (PART 1). European science review, (3-4), 48-51.

YARIMO'TKAZGICH

ASOSIDAGI

TURLI

STRUKTURALI

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

11. Rustamovich, R. V., Yavkachovich, R. R., Bahroovich, A. B., Arabboyevich, M. I., & Xusnitdin, N. (2020). TWO-PHOTONE LINEAR-CIRCULAR DICHROISM IN NARROW-ZONE SEMICONDUCTORS. European science review, (7-8), 54-59.

12. Yavkachovich, R. R., Bahromovich, A. B., Ogli, R. M. B., Akmaljon, A., & Umidaxon, R. (2020). Diagonal matrix elements of the effective Hamiltonian in a semiconductor (taking into account spin-orbit interaction). European science review, (1-2), 101-105.

13. Rustamovich, R. V., Yavkachovich, R. R., Bahroovich, A. B., Arabboyevich, M. I., & Zaylobidinovich, P. B. (2020). Linear-circular dichroism of one-photon absorption of light in narrow-zone semiconductors. contribution of the effect of coherent saturation. European science review, (7-8), 49-53.

14. Rustamovich, R. V., Yavkachovich, R. R., Rustamovich, S. R., Mamirjonovich, E. I., & Bahromovich, A. B. (2020). Phenomenology of two and three photon linear-circular dichroism of light absorption in p-GaAs. European science review, (1-2), 97-

15. Rustamovich, R. V., Yavkachovich, R. R., Bahromovich, A. B., Qizi, R. U. G., & Akmaljon, A. (2020). Nondiagonal matrix elements of the effective Hamiltonian in a semiconductor (taking into account spin-orbit interaction). European science review, (1-2), 89-92.

16. Yavkachovich, R. R., Ogli, M. A. A., Umidaxon, R., Makhliyo, M., & Arabboyevich, M. I. (2019). Agency of surface recombination on volt-ampere characteristic of the diode with double injection. European science review, (11-12),

17. Rustamovich, R. V., Yavkachovich, R. R., Eshboltaev, I. M., Ahmedov, B., & Mamadaliyeva, N. Z. (2018). Investigation of dimensional quantization in a semiconductor with a complex zone by the perturbation theory method. European science review, (9-10-1), 253-255.

18. Rustamovich, R. V., Yavkachovich, R. R., Rustamovich, S. R., Mamirjonovich, E. I., & Arabboyevich, M. I. (2020). Matrix elements of two and three-photon absorption of polarized radiation in a cubic symmetry semiconductor. European science review, (1-2), 93-96.

19. Rustamovich, R. V., Yavkachovich, R. R., Mamirjonovich, E. I., Rustamovich, S. R., & Xoldorbekovich, N. M. (2020). ON THE THEORY OF FOUR PHOTONIC LINEAR CIRCULAR DICHROISM IN A HOLE-CONDUCTION SEMICONDUCTOR. European science review, (5-6), 77-80.

20. Rustamovich, R. V., Yavkachovich, R. R., Forrux, K., & Arabboyevich, M. I.

100.

70-73.

Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor

0

VOLUME 2 | ISSUE 10 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

(2021). THEORETICAL ANALYSIS OF MULTIPHOTON INTERBAND ABSORPTION OF POLARIZED LIGHT IN CRYSTALS WITH A COMPLEX ZONE (PART 1). European science review, (3-4), 48-51.

21. Rustamovich, R. V., Yavkachovich, R. R., Baxromovich, A. B., Arabboyevich, M. I., & Shoxrux, N. (2021). Single-photon linear-circular dichroism in narrow-gap crystals. taking into account the effect of coherent saturation. European science review, (1-2), 44-47.

22. Rustamovich, R. V., Yavkachovich, R. R., Baxromovich, A. B., & Arabboyevich, M. I. (2021). Coefficient of interband two-photon absorption of light and its linear-circular dichroism. European science review, (1-2), 39-43.

23. Rasulov, V. R., Rasulov, R. Y., Eshboltaev, I. M., & Tolaboyev, D. (2018). PHOTON DRAG EFFECT IN p-Te. European Science Review, (9-10-1), 249-252.

24. Rasulov, V. R., Rasulov, R. Y., Axmedov, B. B., Muminov, I. A., & Nematov, X. (2020). TWO-PHOTONE LINEAR-CIRCULAR DICHROISM IN NARROWZONE SEMICONDUCTORS. European Science Review, (7-8), 54-59.

i Надоели баннеры? Вы всегда можете отключить рекламу.