Научная статья на тему 'Ekspert tizimlarini yaratishda bilimlar omborining ahamiyati va vazifalari'

Ekspert tizimlarini yaratishda bilimlar omborining ahamiyati va vazifalari Текст научной статьи по специальности «Строительство и архитектура»

CC BY
646
48
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Ekspert tizimi / bilimlar ombori / modellar / algoritmlar / dispetcher / qaror mexanizimi / qoida. / Expert system / knowledge store / models / algorithms / dispatcher / decision mechanism / rule / Экспертная система / хранилище знаний / модели / алгоритмы / диспетчер / механизм принятия решений / правило.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — К Ташметов, Р Алиев, М Алиев

Ushbu maqolada qisqacha suniy intellektning XX asrga kelib keskin rivojlanishi va uning qo‘llanilish soxalari ko‘rib chiqilgan. Bunda asosiy urg‘u ekspert tizimlarini yaratishda bilimlar omborining ahamiyati va vazifalariga keltirilgan. Bilimlar omborini ishlab chiqish, semantik, freym va rasmiy mantiq kabi namoyish modellarini o‘rganishga bag‘ishlangan. Bu modellarga doir jadval, rasmlar, modellarning avzaligi va kamchiligi keltirilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Ekspert tizimlarini yaratishda bilimlar omborining ahamiyati va vazifalari»

TÙSHKÉNT DAVLAT

TRANSPORT UHIVERÈITETI „ »nr-ini дтт

ташкенгсиий/мдамтмниый информационных технологии на транспорте» АВРИИТТ-2022

гранспортный униаерсиг* " ~ ~ г г

1-Республиканская научно-техническая конференция

iArenyA t»W cp*ce

(Ташкент, 21-22 ноября 2022 года)

EKSPERT TIZIMLARINI YARATISHDA BILIMLAR OMBORINING

AHAMIYATI VA VAZIFALARI

Tashmetov K.Sh.,

Toshkent davlat transport universitety "Transportda axborot tizimlari

va texnilogiyalaf' kafedrasi Aliev R.M.,

Toshkent davlat transport universitety "Transportda axborot tizimlari

va texnilogiyalaf' kafedrasi Aliev M.M.

Toshkent davlat transport universitety "Transportda axborot tizimlari

va texnilogiyalaf' kafedrasi DOI: https://doi.org/10.47689/978-9943-7818-0- 1-v2-pp97-103

Anotatsiya: Ushbu maqolada qisqacha suniy intellektning XX asrga kelib keskin rivojlanishi va uning qo'llanilish soxalari ko'rib chiqilgan. Bunda asosiy urg'u ekspert tizimlarini yaratishda bilimlar omborining ahamiyati va vazifalariga keltirilgan. Bilimlar omborini ishlab chiqish, semantik, freym va rasmiy mantiq kabi namoyish modellarini o'rganishga bag'ishlangan. Bu modellarga doir jadval, rasmlar, modellarning avzaligi va kamchiligi keltirilgan.

Kalit so'zlar: Ekspert tizimi, bilimlar ombori, modellar, algoritmlar, dispetcher, qaror mexanizimi, qoida.

Kirish. XX asrda birinchi bor sun'iy intellekt tushunchasi shakillana boshlandi va bu soxaga doir bir qancha ta'riflar berildi. Ta'riflarning eng omvaiylaridan biri "Kompyuterni inson kabi fikrlashga undash usuli" bo'lib, bu ta'rif asosini Britaniyalik matematik va kompyuter texnologiyalari bo'yicha birinchi tadqiqotchi Alan Turingning "Turing testidan" olinadi [1-4]. Bu testing asosiy sharti shundan iboratki agar tajribachi inson masofadan turib kompyuter bilan xabar almashganda, uning suhbatdoshi inson yoki kompyuter ekanligini aniqalashdan iborat bo'lib, bu shartni bajargan dastur kuchli sun'iy intillektga ega deyiladi. Bu yerda kompyuterni isondan ajirata olmasakgina, u kuchli sun'iy intillektga ega deyiladi.

Axborot tizimlarining jadal rivojlanishi oqibatida oxirgi 10 yilliklar ichida sun'iy intellekt tizimlarida sezirarli o'zgarishlar bo'ldi. Bunga misol tariqasida quyidagi yo'nalishrani keltirish mumkin (1-rasm).

1-rasm. Zamonaviy sun'iy intellekt texnologiyalari.

tdshkent davlat «Актуальные вопросы развития инновационно-

rBAKISPOnTUNIVERSITETI 1 г „г Г1 ....

Ташкентский гесул; ровен™ информационных ТвХНОЛОГИИ НЭ транспорте» АВРИИТТ-2022

транспортный университет -г г -i г г

1-Республиканская научно-техническая конференция (Ташкент, 21-22 ноября 2022 года)

Kompyuter ko'zgusi - ob'ektlarni aniqlaydigan, kuzatadigan va tasniflaydigan mashinalarni yaratish nazariyasi va texnologiyasidir.

Kompyuter ko'zgusi quyida keltirilgan tizimlarda qo'llanilishi mumkin:

- jarayonlarni boshqarish tizimlarida;

- tibbiyot sohalarida;

- kuzatuv tizimlarida;

- aloqa tizimlarida va h.k.

Tabiiy tilni qayta ishlash tizimlari (Natural Language Processing, NLP) - bu tabiiy tilni sintez qilish jarayonlarini o'rganadigan yo'nalish bo'lib, u quyidagi yo'nalishlarda keng qo'llanilishi mumkin:

- nutqni aniqlash va unga baho berish;

- matnni taxlil qilish va kerakli axborotni saralash;

- matnni ishlab chiqish;

- nutqni sintez qilish;

Tabiiy tilni qayta ishlash tizimlari hozirgi kunda axborot texnologiyalari soxasining yirik kompaniyalari tomonidan ya'ni Google, Yandex, Amazon, Tesla, Neurolink kabi kompaniyalar tomonidan rivojlantirilmoqda va amaliyotda qo'llanilmoqda.

Qaror qabul qilishni qo'llab-quvvatlash tizimi - avtomatlashtirilgan kompyuter tizimi bo'lib, murakkab sharoyitlarda qaror qabul qilish kerak bo'lgan, insonlarga yordam beruvchi tizim bo'lib, bunday tizimlar katta ma'lumotlarni qayta ishlashi va bu ma'lumotlarni analiziga asoslangan holda, hisobot ko'rinishida yoki boshqa turdagi ma'lumotlarni beradi. Bu tizim quyidagi soxalarda keng qo'llanilmoqda:

- biznes jarayonlarida;

- ishlab chiqarishda;

- tibbiyotda va h.k;

Ekspert tizimi - bu kompyuter tizimi bo'lib, u ma'lum bir soxada mutaxassis-ekspertni vazifasini qisman bajaradi va shu soxada foydali maslaxatlar beradi. Bu tizimni birinchi bor 1832-yil S.N. Korsakov tomonidan "intellektual mashina" deb nomlangan mexanik qurilma yaratgan va bu qurilma ma'lum shartlarga asosan bemorlarning kassalik belgilariga qarab dori taklif qilgan.

Ekspert tizimining asosi bilimlar ombori hisoblanadi va bu bilimlar mutaxassis-ekspertning ma'lum soxadagi bilimlarini o'zida mujasamlashtirilgan bo'ladi.

Bilimlar ombori - bu ma'lum bir soxadagi dalillar va mantiqiy xulosa chiqarish qoidalar majmuidir. Bilimlar ombori suniy intellekt yaratishning asosiy yo'nalishi hisoblanadi. Intellektual tizimlarni o'rganganda an'anavi ravishda savol paydo bo'ladi bilim oddiy ma'lumotlardan nimasi bilan farq qiladi. Bu farqni bilish uchun biz ma'lum tushunchalar kiritishimiz kerak.

Ma'lumotlar - bu ob'ektlar, jarayonlar va hodisalarni, shuningdek ularning xususiyatlarini tavsiflovchi individual faktlardir [5].

Bilimlar bu inson tomonidan aqliy faoliyati natijasida olingan xulosa yoki ko'nikmadir. Demak bilimga tushuncha kirtsak, u quyidagicha bo'ladi:

Bilim - bu amaliy faoliyat va kasbiy tajriba natijasida olingan fan sohasidagi qonuniyatlar (tamoyillar, aloqalar, qonunlar), bu sohadagi savollarni qo'yish va hal qilish imkonini beradi [6].

TOSHKÉNT DAl/LAT

TRANSPORT UNIVERSITETJ „ »nr-ini дтт

ташкенгсиий/мдамтмниый информационных технологии на транспорте» АВРИИТТ-2022

транспортный униаерсиг* " ~ ~ г г

I-Республиканская научно-техническая конференция

íArenyA 6W cp*ce

(Ташкент, 21-22 ноября 2022 года)

Hozirgi kunda O'zbekistonda intellektual tizimlarga katta axamiyat berilmoqda bunga misol O'zbekiston Respublikasi Prezidentining 2020-yil 29-oktabrdagi PF-6097-son Farmoni, "Sun'iy intellekt texnologiyalarini jadal joriy etish uchun shart-sharoitlar yaratish chora-tadbirlari to'g'risida" 2021-yil 17-fevraldagi PQ-4996-son qaroriga muvofiq hamda sun'iy intellekt texnologiyalarini jadal joriy etish va ushbu sohada yuqori malakali kadrlar tayyorlash tizimini yo'lga qo'yish maqsadidagi qarorlar asos bo'la oladi. [7]

Bilimlarni namoyish qilish modeli:

- ishlab chiqarish modeli;

- semantik tarmoqlar;

- freymlar;

- rasmiy mantqiy modellar;

Ishlab chiqarish modeli yoki qoidaga asoslangan model boshqa modellarga nisbatan, amaliyotda ishlab chiqarishdagi ekspert tizimlarida keng qo'llaniladi. Bunga sabab, uning ravshanligi, yuqori modullilik, qo'shimchalar va o'zgartirishlar kiritish qulayligi va xulosa chiqarish mexanizmining soddaligidir.

Qoidaga asoslangan tizimning ikki turi mavjud:

1. To'g'ri xulosa

2. Teskari xulosa

To'g'ri xulosa faktdan-xulosagacha strategiyasini amalga oshiradi. Teskari xulosada faktlar asosida bu tizimga qo'ilgan gipoteza yoki ehtimollik xulosalari tasdiqlanadi yoki inkor qilinadi.

Qoidaga asoslangan modelning asosiy kamchiligi shundan iboratki qoidalarning ko'payishi natijasida bir qoida boshqa qoidani ishlashiga to'sqinlik qilishidir. Bunday holatlarda noaniq mantiq yordamida bu kamchiliklar bartaraf etiladi.

Qoidaga asoslangan modelni ishlab chiqish uchun juda ko'p dasturlash vositalari mavjud bularga OPS5(Official Production System), EXSYS Inc dasturiy ta'minoti, KAPPA-PC, G2 standart va boshqalar kiradi.

Qoidaga asoslangan modelning umumiy ko'rinishi quidagi rasmda keltirilgan (2-rasm).

2-rasm. Qoidaga asoslangan modelning umuiy ko'rinishi.

tdshkent davlat «Актуальные вопросы развития инновационно-

tbakispontumversiteti 1 г „г Г1 ....

Ташкентский гесул; ровен™ информационных ТвХНОЛОГИИ НЭ транспорте» АВРИИТТ-2022

транспортный университет -г г -i г г

1-Республиканская научно-техническая конференция (Ташкент, 21-22 ноября 2022 года)

Qoidaga asoslangan modelning ustunligini va kamchiligini keltirsak u quidagicha bo'ladi.

Ustunligi:

- shaxsiy qoidalarni tushunish va yaratish qulayligi;

- ma'lumotlar bazasini to'ldirish va o'zgartirishning soddaligi;

- xulosa chiqarish mexanizmining soddaligi;

- ishlab chiqarish tizimini soxalarga ajratish (parchalash) resurslardan samarali foydalanishga imkon beradi va yechim topish uchun zarur bo'lgan vaqtni qisqartiradi;

- parallel va asinxron qoidalarni qayta ishlash imkoniyati.

Kamchiligi:

- ishlab chiqarish tizimlarini qurishda nazariy asos yo'q;

- ko'p sonli ishlab chiqarishda qoidalarning muvofiqligi va tizimning to'g'ri ishlashini tekshirish tartibi o'ta murakkablashadi;

- bilimlarni bazasiga jiddiy xatoliklarni oson kiritish imkoniyati, bu tizimning noto'g'ri ishlashiga olib keladi [3, 4, 5, 8].

Semantik tarmoqlar bu ma'lum bir soxaning axborot modelidir va u yo'naltirilgan graf ko'rinishiga ega. Grafning cho'qilari bu ma'lum soxa obyekti bo'lsa uning yoylari obyektlar o'rtasidagi o'zaro munosabatni bildiradi. Obyekt sifatida tushunchalar, hodisalar, xususiyatlar, jarayonlar kiradi [8].

3-rasm. Semantik tarmoqlarga asoslangan bilimlarni namoyish qilish modeli.

Sematik tarmoqlar bir qancha xususiyatlarga ko'ra tasniflanadi. Munosabatlar miqdoriga ko'ra:

- yagona munosabat;

- bir qancha munosabat;

TOSHKCNT DAl/LAT

TRANSPORT UNIVERSITETJ „ »nr-ini ITT ОЛОО

ташкентсиий/мдамтмниый информационных технологии на транспорте» АВРИИТТ-2022

транспортный униаерсит* " ~ ~ г г

1-Республиканская научно-техническая конференция

(Ташкент, 21-22 ноября 2022 года)

Munosabat turiga ko'ra:

- ikkilik (ikkita obyektni bog'laydi);

- n o'lchamlik (ikkitadan ko'p obyektni bog'laydi).

Semantik tarmoqlarda asosan quyidagi munosabatlar qo'llaniladi:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- funksional munosabat;

- miqdoriy (katta, kichik, teng va h.k);

- fazoviy;

- vaqt;

- mantiqiy munosabat;

- til munosabatlari va h.k.

Bu model amerikalik psixolog Kvillian Rossom tomonidan taklif etilgan. Bu modelning boshqa modellarga ko'ra ustunligi u insoning uzoq xotirasini tashkil qilishiga o'xshashligidir.

Bu modelning ustunligini va kamchiligi haqida ma'lumot keltirsak u quidagicha bo'ladi [9].

Ustunligi:

- bilimlar tizimining grafik ko'rinishidaligi;

- bilimlar tizimini ifodalovchi tarmoq tuzilishining tabiiy tildagi iboralarning semantik tuzilishiga yaqinligi;

- insonning uzoq muddatli xotirasini tashkil etish haqidagi zamonaviy g'oyalarga muvofiqligi.

Kamchiligi:

- modelni shakillantirish va o'zgartirish murakkabligi;

- xulosa chiqarishning murakkabligi;

- bilimlarni namoyish etish, o'zgartrish va ishlatish murakkabligi.

Modellarning keying turi freymlardir. Freym inglizcha so'zdan olingan bo'lib,

"qobiq" yoki "na'muna" ma'nolarini beradi. Model Amerikalik olim Marvin Minsk tomonidan taklif etilgan va u ham huddi semantik tarmoqlar kabi chuqur psixologik asosga ega.

Freym - bu idrokning ma'lum bir qobig'ini ifodalash uchun mavhum tasvir.

Psixologiya va falsafada mavhum tasvir tushunchasi ma'lum. Masalan "kema" so'zini ovoz chiqarib aytsak tinglovchilarning hayolida "kema" tasvirlanadi. Freym nazariyasida kemmaning bunday tasviri kemaning freymi deyiladi. Freymlar farqlanadi bilimlar omborida saqlanadiga namuna-freymi yoki prototiplar va ko'chirma-freymlar kelgan ma'lumotlar yordamida haqiqiy hodisalarni namoyan qiladi. Ushbu model hozirgi kundagi obyektga yo'naltirilgan dasturlash tiliga o'xshaydi. Masalan obyektga yo'naltirilgan dasturlash tilida class kalit so'zi orqali shablon yaratib undan ko'p marotaba ko'chirma olish mumkin. Freymda ham hudi shunday bir obyektan bir qancha ko'chirma olish mumkin va uni bilimlar omborini tashkil qilishda qo'lash mumkin. Ananaviy freymni tuzilishini ro'yxat ko'rinishida ifodalash mumkin:

(1-slot: 1 - slotining qiymati),

(2-slot: 2 - slotining qiymati),

(3-slot: 3 - slotining qiymati),

(N-slot: N - slotining qiymati).

Bundan ro'yxatni jadival ko'rinishida ham ifodalash mumkin, faqatgina qo'shimcha ustunlar bilan.

T0T

tdshkent davlat «Актуальные вопросы развития инновационно-

rBAKISPOnTUNIVERSITETI 1 г „г Г1 ....

ташкентский гесул; рственчый информационных технологии на транспорте» АВРИИТТ-2022

транспортный университет -г г -i г г

1-Республиканская научно-техническая конференция (Ташкент, 21-22 ноября 2022 года)

1 -jadival

Freymning nomi (xonadon)

Slotning nomi Slotning qiymati Ma'lumotlar tipi

oyna 3 raqam

eshik 1 raqam

Jadivaldagi bu ikkita qo'shimcha ustunlar har bir slot o'z qiymatini qayerdan olgani haqida ma'lumot yoziladi. Natijada bu freymlarning o'zaro tarmog'ini yasaydi.

Slot qiymatlarini olishning bir necha yo'li mavjud:

- na'munaviy freymdan;

- boshqa freymdan meros qilish yo'li bilan;

- slotda ko'rsatilgan formula yordamida;

- biriktirilgan protsedura yordamida;

- ma'lumotlar omboridan;

- foydalanuvchi bilan o'zaro aloqa orqali.

Rasmiy mantiqiy model. Rasmiy mantiqiy model birinchi darajali predikatga asoslangan. Bunda masala aksioma toplami sifatida tushuntiriladi. Bu model amaliyotda deyarli foydalanilmaydi. Bu rasmiy mantiqiy model asosan tajriba tizimlarida qo'llaniladi.

Xulosa. Ishlab chiqarishga asoslanga bilimni namoyish etish modeli o'zining soddaligi va qulayligi sababli, boshqa modellarga nisbatan ishlab chiqarishda va boshqa soxalarda keng qo'laniladi. Biz tomondan ham loyhalashtirlgan ekspert tiziminig prototipida ishlab chiqarishga asoslangan model qo'llanilmoqda. Bu tizim, temir yo'ldagi avtomatika va telemexanika qurilmalaridagi nosozligini aniqlashga va bu ma'lumotlar asosida, qurilmalarga xizmat ko'rsatish xodimlariga foydali maslaxatlar beradi.

FOYDALANILGAN ADABIYOTLAR RO'YXATI:

1. Базы знаний интеллектуальных систем / Т.А. Гаврилова. В.Ф. Хорошевский. - СПб.: Питер, 2001. - C. 384.

2. Roussopoulos A.N.D. A semantic network model of databases. - TR No 104, Department of Computer Science, University of Toronto, 1976.

3. Искусственный интеллект: в 3-х кн. Кн.2. Модели и методы: Справочник / Под ред. Д.А. Поспелова - М.: Радио и связь, 1990. - C. 304.

4. Гаврилов А.В. Системы искусственного интеллекта: Учеб. пособие: в 2-х ч. -Новосибирск: Изд-во НГТУ, 2001. - Ч.1. - C. 67.

5. Matvaliyev D., Aliev R. Development of a Program and Algorithm for Determining the Resource of Relays of Automatic and Telemechanics in Railway Transport // Universum: технические науки: электрон. научн. журн. 2022. 11(104).

6. Матвалиев Д., Алиев Р.М. Development оf аn Algorithm аnd Program оп Mysql to Create a Database to Control the Turnover of Railway Automation Relays // Universum: технические науки: электрон. научн. журн. 2022. 11(104).

т

IScience

гоанкенг ммьи «Актуальные вопросы развития инновационно-

ТЙЛНЁРОКТ иМ|^ЕИЁ|ТЕТ| 1 Г „Г Г1 „.,„

ташкентский гкударетвенный информационных технологии на транспорте» АВРИИТТ-2022

транспортный униаерсит* " ~ ~ г г -

1-Республиканская научно-техническая конференция "•'->

(Ташкент, 21-22 ноября 2022 года)

7. Алиев Р.М., Алиев М.М., Хакимов Ш.Х., Тохиров Э.Т. Методы расчёта коэффициентов рельсового четырехполюсника бесстыковых рельсовых цепей. Фундаментальная и Прикладная Наука: Состояние и Тенденции Развития: Монография / [Алиев М. М. и др.]. - Петрозаводск: МЦНП «Новая наука», 2022. - 537 с

8. R.M. Aliev, E.T. Tokhirov, M.M. Aliev Mode Choice Model of Movement in Different Modes Наука, Общество, Образование в современных условиях: монография / Под общ. ред. Г.Ю. Гуляева - Пенза: МЦНС «Наука и Просвещение». - 2022. - C. 160.

9. Aliev R. Model Coordinate System of Interval Regulation Train Traffic // International Conference on Computational Techniques and Applications. -Springer, Singapore, 2022. - С. 459-467.

10. Tokhirov E.T., Aliev R.M., Aliev M.M. Modern Means and Methods for Monitoring the Condition of Track Sections // Наука, Общество, Технологии: проблемы и перспективы взаимодействия в современном мире. - 2022. -С. 186-203.

11. Aliev R.M., Aliev M.M., Tokhirov E.T. Methods of Monitoring the Condition of Track Sections Наука, Общество, Технологии: проблемы и перспективы взаимодействия в современном мире: монография / [Абакирова Э.М. и др.]. -Петрозаводск: МЦНП «Новая наука», 2022. - C. 438.

12. Aliev R.M., Aliev M.M., Tokhirov E.T. Solution to Security on Rail Transportation with the Help of a Database Наука, Общество, Технологии: проблемы и перспективы взаимодействия в современном мире: монография/ [Абакирова Э.М. и др.]. - Петрозаводск: МЦНП «Новая наука», 2022. - C. 438.

13. Aliev R., Aliev M. Algorithm for Determining the Optimal Length of the Rail Line by Current Automatic Locomotive Signaling // International Conference TRANSBALTICA: Transportation Science and Technology. - Springer, Cham, 2021. - С. 363-374.

i Надоели баннеры? Вы всегда можете отключить рекламу.