УДК 539.375+622.236
В. Н. Ревва, В. В. Васютина
ЭФФЕКТИВНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ -ИНТЕГРАЛЬНАЯ ХАРАКТЕРИСТИКА ТРЕЩИНОСТОЙКОСТИ ГОРНЫХ ПОРОД
Представлено физическое обоснование эффективной поверхностной энергии, как интегральной характеристики трещино-стойкости горных пород, и приведены методы её экспериментального определения.
Ключевые слова: механизм разрушения горной породы, рост трещины, эффективная поверхностная энергия, пластическая зона, трещиностойкость.
Введение. Горные породы относятся к хрупким телам, ослабленным различными дефектами типа трещин, при описании процесса разрушения горных пород целесообразно использовать параметр, характеризующий способность материала сопротивляться росту трещин.
Необратимая энергия, потребляемая на рост трещины в твердом теле, является основной характеристикой процесса разрушения, коренным образом отличающей его от других процессов.
Более обоснованное представление о механизме разрушения дает теория трещин, предусматривающая дефектность структуры и механизм разрушения.
Для зарождения и роста трещин в настоящее время используются силовой и энергетический критерии. При выполнении силового критерия межатомные связи разрываются за время порядка периода межатомных колебаний. Этот критерий является достаточным. Выполнение энергетического критерия означает возможность разрыва, т. е. является необходимым.
Материалы и методы исследования. Основой энергетического критерия является теория Гриффитса, заключающаяся в том, что при образовании трещины в хрупком теле, с уменьшением потенциальной энергии твердого тела происходит увеличение его поверхностной энергии. Другими словами, трещина при своем росте преобразует потенциальную энергию твердого тела в поверхностную. Для развития трещины необходимо, чтобы при увеличении ее размера изменение свободной энергии не возрастало.
В большинстве же реальных тел, при сравнительно низких напряжениях (гораздо ниже предела теоретической прочности атеор.), начинается пластическая деформация. Поэтому в местах с повышенными напряжениями (например, у вершины трещины) пластическая деформация может начаться раньше разрушения и существенно изменить его характер.
Существование пластической зоны, окружающей трещину, связано с определенными энергетическими затратами. Поэтому вместо удельной поверхностной энергии вводится эффективная поверхностная энергия (ЭПЭ), включающая собственно ПЭ, энергию пластической деформации (основные затраты) и другие затраты энергии (см. далее). Величину ЭПЭ в основном определяют как затраты на пластическое деформирование материала в окрестности устья трещины. Так, для пластичных тел упл = (102 -104)у « уэф, т. е. энергией свободной поверхности можно пренебречь по сравнению с работой пластической деформации в пластической зоне [1].
Известно, что пластической деформацией сопровождается любое разрушение твердых тел. На основании многочисленных исследований, проведенных в этой области, отличительной чертой хрупких тел можно считать не отсутствие, а лишь сравнительно очень малую величину пластического деформирования, сосредоточенного в области максимальных напряжений. Явления, которые можно объяснить лишь эффектом их пластического деформирования, были обнаружены при измельчении таких хрупких материалов, как алмаз, кварц, корунд, разрушение которых при нормальной температуре происходит при увеличении напряжений до разрушающих. Пластическое деформирование та-
ких материалов не существенно при разрушении крупных образцов, но в процессах измельчения его роль становится все более значительной. По данным [2], затраты на предельное пластическое деформирование кварца и карбонатов составляют около 20 Дж/м2.
Возможность наблюдения пластического деформирования больших образцов хрупких тел обнаруживается при их медленном сжатии. Так, такие хрупкие горные породы, как джеспилит и кварцит, на самом деле имеют значительную область пластического деформирования. При этом вклад работы предельного пластического деформирования составляет для джеспилита намного меньше половины всей работы разрушения, а для мрамора - более 80 % [3]. Комплекс пластических деформаций как в породообразующих минералах (кварц, плагиоклаз, полевые шпаты), так и в минералах цемента (вторичный карбонат, слюды) был установлен в углевмещающих песчаниках Донбасса [4].
При разрушении сжатием в областях наивысших сдвиговых напряжений растяжения вызывают перестройку кристаллической решетки, а высокий уровень напряжений - появление аморфных менее прочных образований. В тех областях, где произошла аморфизация, в результате дальнейших сдвигов и развиваются затем трещины разрушения.
Аморфизация и другие изменения кристаллической структуры, наблюдаемые при измельчении ряда твердых тел, также позволяют считать наличие пластической деформации достаточно общим явлениям.
Результаты исследования и их обсуждение. Как отмечалось ранее, кроме затрат энергии на разрыв атомных связей и пластическую деформацию всегда существуют и другие затраты энергии. Даже в относительно простом случае разрушения кристалла на половины берется в расчет много факторов. Основные из них: работа, отвечающая за накопление упругой ^упр) деформации материала на краях растущей трещины, кинетическая энергия нарушенных частей ^кин), выделения поверхностного заряда ^зар) и трения ^-ф) на берегах трещины.
В таблице 1 приведены главные каналы потребления энергии при разрушении кристалла [5].
Таблица 1 - Каналы энергопотребления
Источники энергопотребления Уравнения для вычислений Энергопотребление, Дж/м2
Образование поверхности, ^пов) 1-3
Упругая энергия, и =2 -Ь3/(Е Ь -а3) 3-5
Пластические деформации, А = [а -Л/(8 -Ь)] [1+2 Щц/т)] 10 и более
Кинетическое разрушение, (№кин) Т = (24/5)-U-(Ь/a)(iIvs) 3-5
Выделение поверхностного заряда, А3ар = 2ф-((Г3ар £+ (Г3ар.0 ^ - 2 и более
Примечание: Е - модуль Юнга; V - скорость звука в кристалле; азар и азар0 - поверхностные плотности зарядов; L - размер трещины в вершине; азар0 - может достигать 2 -10-8 к/м ; Y - угол раскрытия трещины
Значительная часть энергии при разрушении поглощается различными неупругими и диссипативными процессами вблизи распространяющейся трещины, и формированием микротрещин в стороне от главной плоскости трещин. Эффективная поверхностная энергия разрушения включает в себя также тепловую, электрическую компоненту, обусловленную накоплением зарядов на берегах образующихся микротрещин, акустическую, микросейсмическую и ряд других, более слабо влияющих на величину ПЭ.
Из приведенных в таблице данных видно, что удельная ПЭ, измеренная или рассчитанная теоретически, исходя из простейших представлений об энергии связи в идеальной кристаллической решетке, составляет лишь малую долю работы разрушения. Уместно заметить, что значения ЭПЭ существенно зависят от способа разрушения материала. Так, например, значения работы затраченной на образование поверхности в кварце при сверлении, разрушении сжатием или при молке находятся в пределе 100+10 Дж/м2 [5],
что значительно превышает работу при раскалывании. Эти значения превосходят значения теоретической поверхностной энергии кварца, равной 0,78-1,81 Дж/м2, на два по-
рядка. Исходя из этого, можно предположить, что при указанных выше методах речь идет об определении ЭПЭ.
При изучении процесса разрушения горных пород, относящихся к полиминеральным соединениям, в работе [2] были получены значения ЭПЭ некоторых углевмещающих песчаников, равные 10-150 Дж/м , что на один-два порядка больше теоретической ПЭ породообразующих минералов (кварца, полевых шпатов) и цемента. В то же время, они совпадают с экспериментальными значениями ПЭ для образцов кварца. Удельная ПЭ минералов, составляющих цемент, имеет значения на порядок меньше теоретической ПЭ породообразующих минералов.
Так, ПЭ карбонатов равна 0,078-0,23 Дж/м , глинисто-слюдистых материалов - 0,038-0,48 Дж/м . Отсюда, зачастую при отрыве и сдвиге, наблюдается зернограничный излом (разрушение идет по цементу), и мы имеем минимальное значение ЭПЭ (~10 Дж/м ). Лишь в отдельных случаях происходит разрушение крупных дефектных зерен кварца. При этом трещины зарождаются у зерен кварца за счет различия пластических свойств цемента и кварца. Энергоемкость разрушения определяется механизмом разрушения и степенью дробления. При увеличении бокового давления вязкое разрушение по цементу сменяется хрупким разрушением по зернам кварца.
Как известно, определяющими факторами, влияющими на различные физико-механические свойства, являются состав и структура горных пород. Для осадочных пород, занимающих наибольший удельный вес в продуктивной толще месторождений (песчаников, алевролитов и аргиллитов), наиболее полно изучались зависимости ЭПЭ песчаников от отдельных структурно-текстурных параметров.
Наибольшее изменение ПЭ твердых тел происходит при воздействии поверхностно-активных сред (эффект Ребиндера). В горных породах и углях чаще всего присутствует минерализованная вода. Вопросы изучения состояния воды и степени ее влияния и на ЭПЭ углей и пород освещены в работах [2], [6]. Так, ЭПЭ песчаников с силикатным цементом снижается до 6 раз. При этом наибольшее снижение происходит при содержании влаги 1,2-1,5 %. В песчаниках с карбонатным цементом (особенно ба-
зальным) ЭПЭ уменьшается до 1,5 раза, при этом наибольшее снижение происходит при содержании влаги до 0,5-0,75 %.
В случае ярко выраженной анизотропии в осадочных горных породах величина ЭПЭ меняется в пределах порядка в зависимости от направления плоскости разрушения к слоистости, структурной ориентации и текстуры.
В настоящее время величина ЭПЭ Гэф представляет наибольший интерес для практики, как характеристика, интегрально учитывающая все энергопоглощающие процессы, локализованные непосредственно перед фронтом трещины. В отличие от используемых для оценки разрушения горных пород прочностных и деформационных характеристик, учитывающих усредненные свойства образца при нагружении, ЭПЭ дает возможность оценить его локальные свойства, являясь фундаментальной характеристикой сопротивляемости горных пород разрушению.
Сейчас имеется ряд экспериментальных методик определения эффективной поверхностной энергии [7]-[14], которые в основном созданы для металлов. В большинстве методик для определения абсолютной величины ЭПЭ используют искусственно образованную в образце одиночную трещину, от которой начинается его разрушение.
Для горных пород наиболее приемлемы, технологичны и апробированы методики это: метод раскалывания дисков [11], инженерный метод Г. П.Черепанова [13] и способ определения ЭПЭ горных пород при объемном сжатии (разработанный при непосредственном участии автора) [14].
Для керновых проб наиболее технологичным является метод раскалывания дисков [11], а для штуфовых проб применяется инженерный метод определения ЭПЭ [13].
Заключение. Наиболее точным является способ определения ЭПЭ горных пород при объемном сжатии [14]. На камнерезном станке из одного и того же куска породы изготовляются два образца цилиндрической или кубической формы с различными геометрическими размерами (идентичные образцы). Основание образца ориентируют параллельно слоистости. Образцы разрушаются в объемном поле сжимающих напряжений на специальном
объемном прессе (стабилометре), по одной и той же схеме нагружения: о1 > о2 > о3, моделирующей реальные условия массива горных пород.
Фиксируются полные диаграммы «Среднее нагружение -объемная деформация» и «Касательные напряжения - касательная деформация» на октаэдрической площадке для Д0 обоих образцов. Плотность энергии деформирования есть сумма плотностей энергии изменения объема и энергии изменения формы, которые определяются с помощью планиметра как площади под соответствующими диаграммами.
Увеличение объема образца при пластическом разупрочнении (дилатансии) Д0 определяют как разницу между предельным уменьшением объема при сжатии и объемной остаточной деформацией после разрушения, а величину вновь образованной поверхности определяют с помощью ситового анализа. По полученным данным определяют величину удельной поверхности разрушения материала Sv как отношение вновь образованной поверхности ДSн к абсолютному увеличению объема образца ДУпл при дилатансии:
Л5\,
(1)
v А
ЭПЭ определяют как отношение разности плотностей энергии деформирования двух образцов и разницы их удельных поверхностей ДSV:
г = ^. (2)
Минимальное количество испытуемых образцов определяется точностью определения параметров свойств и вероятностью того, что отклонения от среднего значения будут в пределах доверительного интервала. По одной пробе минимальное количество образцов составляет 3-5.
ЛИТЕРАТУРА
1. Владимиров, В. И. Физическая природа разрушения металлов [Текст] / В. И. Владимиров. - М.: Металлургия, 1984. -280 с.
2. Алексеев, А. Д. Разрушение горных пород в объемном поле сжимающих напряжений [Текст] / А.Д. Алексеев, В. Н. Ревва, Н. А. Рязанцев - Киев: Наукова думка, 1989. - 168 с.
3. Ходаков, Г. С. Физика измельчения [Текст]. / - М.: Наука, 1972. - 308 с.
4. Баранов, В. А. Структурные превращения песчаников Донбасса и прогноз их выбросоопасности: Автореф. Дис. ... д-ра геол. наук [Текст]. - Днепропетровск. - 2000. - 34 с.
5. Butyagin, Yu. Mechanical disordering and reactivity of solids [Техт] // Chemistry Reviews. - 1998. - Vol. 23. - P. 89 - 165.
6. Алексеев, А. Д. Предельное состояние горных пород. А.Д. Алексеев, Н.В. Недодаев [Текст] // - Киев: Наукова думка, 1982. - 200 с.
7. Грибанов, В. Г. Экспресс-метод определения трещино-стойкости горных пород и хрупких не металлических материалов при статическом нагружении [Текст] // В. Г. Грибанов, Г. Ф. Бобров ФТПРПИ. - 1995. - № 1. - С. 42 - 50.
8. Ефимов, В. П. Метод определения трещиностойкости хрупких материалов расклиниванием [Текст] // В. П. Ефимов, Е. Н. Шер, ФТПРПИ. - 1996. - № 1. - С. 32 - 36.
9. Вобряков, В.П. Развитие методов экспериментального исследования динамической прочности и критериев разрушения пород [Текст] // В. П. Вобряков, Г. Н. Покровский, Б. Н. Стерпе-ников, В. В. Смирнов ФТПРПИ. - 1975. - № 3. - С. 27 - 31.
10. Ковчик, С. Е. Характеристики кратковременной трещи-ностойкости материалов и методы их определения [Текст] // С. Е. Ковчик, Е. Н. Морозов Механика разрушения и прочность материалов. - Киев: Наукова думка. - 1988. - Т. 3. - C. 63 - 72.
11. Алексеев, А. Д. Энергия разрушения выбросоопасных песчаников [Текст] // А. Д.Алексеев, Г. Г. Чехова. Механика разрушения горных пород. - Киев: Наукова думка. - 1977. - С. 156 -159.
12. Алексеев, А. Д. Экспериментальные исследования вязкости скольжения хрупких тел [Текст] // А. Д. Алексеев, В. Н. Ревва, ФХММ. - 1980. - 16, № 2 - С. 105-106.
13. Черепанов, Г. П. Рабочая методика определения энергии разрушения металла [Текст] / Г. П. Черепанов, А. Б. Каплун, Л. П. Карасев, Л. И. Кутепова ФХММ. - 1970. - № 1. - С. 64 - 68.
14. Способ определения удельной поверхностной энергии горных пород: А.с. 1747992 СССР, МКИ G01N3/00 [Текст] // А. Д. Алексеев, В. Н. Ревва, Н. А. Рязанцев, Г. П. Стариков (СССР). - № 4797578/28; Заявлено 28.11.89; Опубл. 15.07.92, Бюл. № 26. - 4 с.
Ревва Владимир Николаевич, д-р техн. наук, профессор ведедущий научный сотрудник сектора защитных пластов и управления состоянием горного массива, ГБУ «РАНИМИ», ДНР, Донецк, revva.1948@mail.ru.
Васютина Виктория Владимировна, канд. техн. наук, старший научный сотрудник сектора защитных пластов и управления состоянием горного массива, ГБУ «РАНИМИ», ДНР, Донецк, vika.vasyutina@yandex.ru.
THE EFFECTIVE SURFACE ENERGY - AN INTEGRAL CHARACTERISTIC OF ROCK CRACK TOUGHNESS
Physical justification for effective surface energy as an integral characteristic of rock crack growth resistance and its experimental determination methods are given.
Mechanism of rock destruction, crack growth, effective surface energy, zone of rockflowage, crack growth resistance.
Revva Vladimir Nikolajevich, doctor of technical sciences, professor, principal researcher. sector for protective seams and control of rock conditions, GBU «RANIMI», DNR, Donetsk, revva.1948@mail.ru.
Vasyutina Victoria Vladimirovna, candidate of technical sciences (Ph.D), senior research associate, sector for protective seams and control of rock mass conditions, GBU «RANIMI», DNR, Donetsk,vika.vasyutina@yandex.ru.