Научная статья на тему 'Диагностика проточной части авиационных ГТД на примере ТРДД Д-36'

Диагностика проточной части авиационных ГТД на примере ТРДД Д-36 Текст научной статьи по специальности «Механика и машиностроение»

CC BY
641
162
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по механике и машиностроению, автор научной работы — Бунякин Алексей Вадимович, Торбеев Станислав Александрович

Предложена диагностическая модель, основанная на вычислении параметров проточного тракта ГТД Д-36, по изменению которых можно определять развитие неисправностей.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Бунякин Алексей Вадимович, Торбеев Станислав Александрович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Диагностика проточной части авиационных ГТД на примере ТРДД Д-36»

2006

НАУЧНЫЙ ВЕСТНИК МГТУ ГА серия Эксплуатация воздушного транспорта

№ 109

УДК 629.735

ДИАГНОСТИКА ПРОТОЧНОЙ ЧАСТИ АВИАЦИОННЫХ ГТД

НА ПРИМЕРЕ ТРДД Д-36

А.В. БУНЯКИН, С.А. ТОРБЕЕВ

Статья представлена доктором технических наук, профессором Пивоваровым В.А.

Предложена диагностическая модель, основанная на вычислении параметров проточного тракта ГТД Д-36, по изменению которых можно определять развитие неисправностей.

В реальных условиях эксплуатации отечественных двигателей возникает проблема с качественным определением состояния объекта в данный момент времени. Наряду с используемыми методиками диагностики двигателей [1,2,3] предлагается новая модель диагностики с использованием дополнительных параметров авиадвигателей (на примере ТРДД Д-36).

В основе модели лежит соотношение баланса мощностей на установившихся режимах работы ГТД.

Сначала определим мощность, расходуемую на ступени сжатия компрессора (рис. 1)

Для упрощения записи обозначим С1а как у1 , а С2а как у2 :

где: Q - расход воздуха через ступень;

і - порядковый номер ступени ротора компрессора;

V - скорость воздуха на входе в рабочее колесо; у2 - скорость воздуха на выходе из рабочего колеса;

Як - средний радиус рабочего колеса компрессора по высоте лопатки;

(О - угловая скорость;

к ^

Ща - тангенс угла схода воздуха с выходной кромки лопаток направляющего аппарата, на

входе в і-ю ступень;

щЬ - тангенс угла схода воздуха с выходной кромки лопаток рабочего колеса і-й ступени.

(1)

(2)

где: с/ - плотность воздуха за /-и ступенью;

8/ - площадь проходного сечения за /-й ступенью. Преобразуя, получим:

По условию адиабатического сжатия (рабочий процесс, протекающий без теплообмена с окружающей средой) имеем:

грк грк

____ Ті+1

рГ-1 гг

(4)

где: ^=1,4 - показатель адиабаты; Тгк - температура воздуха за /-й ступенью компрессора.

Рис. 1. План скоростей в ступени компрессора Давление воздуха на входе в компрессор:

Р = — рТ •

1 о Но± о ’

Мо

(5)

где: Я - универсальная газовая постоянная; т - молярная масса воздуха; р0 - плотность воз духа на входе в компрессор; Т0 - температура воздуха на входе в двигатель.

к к к Ті+1 — Ті = АТ ;

(6)

где: АТ - повышение температуры на ступени сжатия.

С помощью условия адиабатического сжатия находим плотности воздуха по тракту. Для этого составим систему уравнений:

і+1

рґ Рі+11

Т+1 - Тк = АТк ^ Т+1 = АТк + Тк

откуда:

рі

Г-1

АТк + Тк Рж

р,+1 = РіГ-1-

Тк +АТк

к

к

к

к

Теперь определим мощность, получаемую на колесе турбины (рис. 2):

сл

Рис. 2. План скоростей ступени турбины Для упрощения записей обозначим С1а как v1 , а С2а как у2 :

М™ = (VI • + У2 • tgДm -ПК); (8)

где: Q - расход воздуха через ступень; і - порядковый номер ступени; V - скорость газа на

входе в рабочее колесо; v2 - скорость газа на выходе из рабочего колеса; Я™ - средний радиус

рабочего колеса турбины по высоте лопатки; о - угловая скорость; tg 0™ - тангенс угла схода воздуха с выходной кромки лопаток соплового аппарата і-й ступени; tg/5™ - тангенс угла схода воздуха с выходной кромки лопаток рабочего колеса і-й ступени.

а = р?,к = р,+ъ *Т+і; (9)

где: р - плотность газа на і-й ступени; Б™ - площадь проходного сечения на і-й ступени.

Тогда:

, Є • tgb

я?р,

+

сі+1Бі+1

-аЯт

По условию адиабатического расширения имеем:

і+і

р

3-і

р5 1 Иі+і

(10)

(11)

где: 5=1,3 - показатель адиабаты для газа; Т™ - температура газа за і-й ступенью турбины. Давление газа на входе в турбину:

я

р™ = —ртт; (12)

где: Я - универсальная газовая постоянная; — - молярная масса газа; рг - плотность газа на входе в турбину; Т*™ - температура газа на входе в турбину.

Применительно к двигателю Д-36 имеем следующие выражения с учётом его конструктивных особенностей:

Вентилятор (1 ступень):

ыв=ав я в

О Я я

ав2 • tgaв ав2 • tg5f

рв Б1

(13)

Л

2

где: - расход воздуха через вентилятор (через 1-й и 2-й контур); 50 - площадь проходного

сечения на входе в рабочее колесо вентилятора; 58 - площадь проходного сечения на выходе из РК вентилятора; р0 - плотность воздуха на входе в РК вентилятора; рв - плотность воздуха на выходе из РК вентилятора.

РоМо .

Ро = Ро

'Т'в

То

\Г-\

ЯТ0

т в

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Г-1

(р Г (Р)

тв - т0в = ДТв;

где: Т0в = Т0 - температура воздуха на входе в рабочее колесо вентилятора; Т6

воздуха на выходе из рабочего колеса вентилятора.

Компрессор низкого давления (6 ступеней):

^^кндгікнд^ ^^кндгькнд

О Я й О Я -

а • а • івд

кнд \

кнд -кнд

сікнд _

5г Рг

кнд сікнд

- кнд о

Рг+1 5,

(14)

(15)

(16)

температура

(17)

г+1 г+1 у

где: Q1 - расход воздуха через внутренний контур; - площадь проходного сечения /-й сту-

пени компрессора низкого давления; Р

кнд

плотность воздуха за г-й ступенью компрессора

низкого давления; Я*нд - радиус в среднем сечении /-й ступени компрессора низкого давления.

т

кнд

т

кнд

\Г-1

(рГ )’ (р+д)

= ДТ кнд ; Тв;

кнд Т+1 - т

кнд

кнд

т

Г\

кнд в

Ро =Р ;

где: Т™д - температура воздуха на входе в компрессор низкого давления; рК

духа на входе в компрессор низкого давления.

Компрессор высокого давления (7 ступеней):

(18)

(19)

(20)

(21)

плотность воз-

Ґ

квд

квд квд а> Яг а

квд квд

(О Я -

а • tgaГд а • Ї8Д

квд

квд квд квд квд

5 г р р+15г+1 ,/

(22)

оквд • ^ квд

где: - площадь проходного сечения /-й ступени компрессора высокого давления; р

плотность воздуха на /-й ступени компрессора высокого давления; Я“д - радиус в среднем се чении 1-й ступени компрессора высокого давления.

т

квд

___ ________г+1

т

квд

Г-1 ’

т

г+1

т квд = ДТ к

квд кнд

квд

то = т6

квд

Роквд = Р

кнд

(23)

(24)

(25)

(26)

где: Т™д - температура воздуха на входе в компрессор высокого давления; Т*нд - температура воздуха за компрессором низкого давления (за 6-й ступенью); ррд - плотность воздуха на входе в компрессор высокого давления; р™д - плотность воздуха за компрессором низкого давления (за 6-й ступенью).

Уравнение теплового баланса внутреннего контура:

аг,-+гі=(а+4)г", (27)

где: Т7квд - температура воздуха за компрессором высокого давления (за 7-й ступенью); q -расход топлива; Ткс - температура газа в камере сгорания; I - энергетическая отдача топлива

диагностический параметр камеры сгорания.

При решении уравнения теплового баланса производился подбор I таким образом, чтобы температура Ттнд » Ттнд.

В данном уравнении потери в камере сгорания не учитываются.

Я

Ркс _ тукед _ кед^кед /ООЧ

--—Р, 17 ; (28)

т

где: Ркс - давление в камере сгорания; Р“д, ррвд - давление и плотность воздуха за компрессором высокого давления (за 7-й ступенью).

..ксркс

рКС -^-----------------------------------------------; (29)

г ЯТКС

где: р - плотность газа в камере сгорания; ц - молярная масса газа в камере сгорания. Турбина высокого давления (1 ступень):

( . +^™твд , +п,/1твд Л

~ + й + Ч . Х%Р] _атвдкп

Ытед -ЮтвдЯ™6 (б1 + q)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3 - номер ступени ротора турбины.

бі + q _ ^ё>а] + 0,\ + q _ Хё>Ь] _ фтвдОтвд

тед птед тед птед 3

\ р3 ^3 Р3+\ 3 )

тед тед

Т0 _ 1

ч£_1 / Л\£_1 ’

(30)

(31)

Р) - (ртвд)

где: Т0тед - температура газа на входе в турбину высокого давления; р™д - плотность газа на входе в турбину высокого давления; Ттвд - температура газа за турбиной высокого давления; ртвд - плотность газа за турбиной высокого давления.

Ттвд ттвд дттвд . (32)

/-'тед гркс _тед _кс

0 -1 и р0 - р .

о “ го

Турбина низкого давления (1 ступень):

( ґл ■і-ґ'г у^тнд /-Х и. отнд \

Ытнд -а>тндЯ™6 (б, + q)

°\ + q аТ + <2\ + q фтндптнд

. | ^ 1 1 3_________фтн°Я

тнд тнд тнд тнд 3

\ рз Р 3+1 3

тнд тнд

Т0 _ 1

8_1 / „ „,\£_1 ’

/ _ тнд \ / _ тнд \

(р0 ) (р )

(33)

(34)

Ттнд ттнд д^тлд . (35)

где: Г0™д - температура газа на входе в турбину низкого давления; р™6 - плотность газа на входе в турбину низкого давления; Ттнд - температура газа за турбиной низкого давления; ртнд

- плотность газа за турбиной низкого давления, причём: Т"нд = Ттвд и р0нд = ртвд

‘0 і “ г0

Турбина вентилятора (3 ступени):

тв тв

ы™ =а>твя™ (б1 + д)

0.\+д + бі + д _ ^@1 _фтвятв

_тв птв г%тв птв 1

V Рі Р]+1 1 У

тв тв

Т1 _ Т+1 .

„8-1 „3-1 ’

Р Р+1

(36)

(37)

Ттв тте дт™є . (3 8)

тв тнд тв тнд

причём: Т0 = Т и р0 = р ;

где: Т0тв - температура газа на входе в турбину вентилятора; р0”в - плотность газа на входе в

турбину вентилятора.

Уравнения для мощностей на валах примут вид:

Ротор вентилятора (1 ступень вентилятора и 3 ступени турбины вентилятора):

Nре = Nв = К”;6 ; (39)

і=1

Ротор низкого давления (6 ступеней КНД и 1 ступень ТВД):

і=6

Nрнд = ^ ^кнд = Nтнд; (40)

2=1

Ротор высокого давления (7 ступеней КВД и 1 ступень ТВД):

2=7

Nрвд = ^ = Nтвд; (41)

2=1

Из уравнений находятся Q1 - расход воздуха через внутренний контур и Q12 - расход воздуха через двигатель.

Составляются уравнения подсчёта условных КПД для каждого из компрессоров:

Вентилятор (1 ступень):

в Я АТ* у ./1_.

л =——й.2 •У—л; (42)

то Nре у-1

Компрессор низкого давления (6 ступеней):

,кн^ Я 6АТг ,

*0

Компрессор высокого давления (7 ступеней):

-’квд

п =-----------г- &•-*—; (43)

— Nрнд 1 у-1 v 7

„д_ я 7АТк“_ у .

п =—б -_Т; (44)

— Nрвд у—1

Составляются уравнения подсчёта условных КПД для турбин: Турбина вентилятора (3 ступени):

тв — Npв 8-1 ,._Л

пт = —-----------------------------• (45)

Я 3АТтв (б1 + д) 8 ’

Турбина компрессора низкого давления (1 ступень):

тнд — г Nрнд 8- 1

„тнд =Г^------------------------------; (46)

Я АТтнд (б1 + д) 8

Турбина компрессора высокого давления (1 ступень):

т Nрвд б-1

Я АТтвд (Q1 + д) б ’

(47)

Девять уравнений Nрв, Nрнд, Nред, Г]е, Лшд, Л™6, Л™*, Лтнд, Лт°д представляют собой ма-

тематическую модель двигателя.

Для нормального режима работы исправного двигателя должны быть известны АТв, АТкнд, АТквд - повышение температуры воздуха на ступенях компрессоров по протяженности тракта и АТтв, АТтнд, АТтвд - срабатываемый теплоперепад на ступенях турбин. Эти параметры принимаются постоянными для каждой ступени.

Величины сов _ о™ , окнд _ (Отнд, оквд _ (Отвд - частоты вращения роторов и Ттнд - температура газов за турбиной низкого давления измеряются штатной аппаратурой двигателя в процессе его работы. Из уравнений математической модели находятся Q1, Q12, д, 1)в, Л™д, Л™6, Лтв,

Лтнд, Лтвд. Также определяются Тв, Т'* расширения.

Тк

Ттв

по каждой ступени сжатия и

Диагностическими параметрами являются условные КПД: лв, Лтд "квд

Л™, л™ , Лтнд, Лтвд, по

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

изменению (уменьшению) которых делается вывод о наличии механических повреждений на лопатках, износе уплотнительных покрытий, снижении герметичности корпуса двигателя.

1 - энергетическая отдача топлива, по изменению которой можно сделать вывод о повреждении камеры сгорания или о неисправности топливной системы (засорение топливных форсунок и т.п.).

При нахождении массовых расходов вдоль тракта из системы уравнений для мощностей на валах Q12 определяется, а Q1 и д находятся из уравнений для Nрнд и Nрвд.

Для упрощения записей преобразуем выражения и примем следующие сокращения: Компрессор высокого давления:

г_7

А,_-Е Я

г_1

Турбина высокого давления:

]_,

С _ 2 Я

3_0

квд квд твд

квд к р ¿г

+

квд

квд квд р+1 ¿2+1 )

В

О

г _1

твд

'3

твд твд 3

твд

V р ^

+

твд

твд твд р+1 ^ 3+1 )

3_1 2

, л _-2 (к7д) ®вд;

3_0

Компрессор низкого давления:

2_6 (

Аг _-2 Я”

г _1

кнд к

рг ¿г

Турбина низкого давления:

3 _1

С2 _ 2 Я

3_0

кнд кнд

V/'

тнд

+

кнд

кнд кнд р+1 ¿г+1 )

г_6

Вп

О

тнд

3

хёа"-

тнд тнд 3

тнд

V Рз ^

+ -

тнд

тнд тнд

тнд

Р 3 +1 ¿

3_1

, Л _-2 (3) омд;

3 +1 3 +1 )

3_0

Тогда уравнения для мощностей на валах для Nред и Nрнд запишутся в виде:

АОл + Ай _ С1 (Q1 + д) + Л1 (Q1 + д) ;

А2Q12 + В2Й _ С2 (Q1 + д) + Л2 (б + д ) ;

Так как Q1 значительно больше (примерно в 100 раз) д, то д можно пренебречь. Тогда эти уравнения примут вид:

г _1

АД2 + Ш _С102 + да;

+ В2Й _ С20\ + Ай ;

Решая систему, находим Q1 : (Q1(1) и Q1(2)) - соответственно.

Подбираются теплоперепады таким образом, чтобы соблюдалось условие:

Q1( 1) _ 2) _ О

при этом мощности на валу вентилятора и его турбины должны совпадать.

Помимо этого находятся не только уточнённые теплоперепады, а также Q1 и диагностические коэффициенты полезного действия компрессоров и турбин: лв, Лкнд, Лквд, Лтв, Лтнд, Лтвд и мощности на валах, которые могут использоваться для оценки состояния соответствующих узлов.

Информативность условных КПД лопаточных колес компрессоров и турбин состоит в том, что их заметное уменьшение может свидетельствовать о развитии неисправностей типов: забоины и обрывы рабочих лопаток, газовая эрозия, увеличение уплотнительных зазоров. Уменьшение энергетической отдачи топлива может свидетельствовать о неисправностях камеры сгорания и топливной системы.

ЛИТЕРАТУРА

1. Кеба И.В. Диагностика авиационных газотурбинных двигателей -М.: Транспорт, 1980.

2. ДТРД Д-36. Руководство по технической эксплуатации.

3. Чичков Б. А. Построение и использование статистических диагностических моделей ГТД -М.: МГТУ ГА,

2002.

DIAGNOSTIC OF GAS-AIR TRACT OF TURBOJET WITH EXAMPLE OF ENGINE TRDD D-36

Buny akin A.V., Torbeev S.A.

Diagnostic model of gas-air tract of turbojet engine is present. The basic of the method is special parameter calculated. The changing of the parameters is indication of distractions development.

Сведения об авторах

Бунякин Алексей Вадимович, 1967 г.р., окончил МГУ (1991), кандидат физико-математических наук, доцент кафедры оборудования нефтегазовых промыслов КубГТУ, автор 25 научных работ, область научных интересов - управление обтеканием аэродинамических поверхностей, диагностика турбомашин.

Торбеев Станислав Александрович, 1970 г.р., окончил МГТУ ГА (1996), инженер по диагностике лаборатории технического контроля и неразрушающего контроля в АТБ ОАО «Авиационные линии Кубани», соискатель кафедры двигателей летательных аппаратов МГТУ ГА, область научных интересов -эксплуатация авиационной техники и диагностика двигателей летательных аппаратов.

i Надоели баннеры? Вы всегда можете отключить рекламу.