SRSTI 55.19.03
https://doi.org/10.48081/JITJ8922
*M. K. Ospantaev
PF LLP «KSP Steel», Republic of Kazakhstan, Pavlodar.
DEVELOPMENT OF THE DESIGN OF A PEAKLESS ROTARY CUTTING TOOL
Processing of external surfaces with turning tools is the most common in the total mass of tools, and occupies a special place in the technological process of manufacturing machine parts. The issues of increasing productivity, accuracy and reliability of the technological process have always been and remain relevant and effective for metalworking.
The aim of the study is to improve the quality ofprocessing ofexternal cylindrical surfaces with the development of a new processing method and the design of a peakless turning through-hole cutter.
The idea of the work is to develop a new design of a lathe cutter forfinishing and a new processing method.
The analysis of methods and methods of processing external cylindrical surfaces, parameters of the cut layer during cutting, geometry and designs of turning cutting tools, led to the development of a new metal-cutting tool — a peakless turning cutting tool for finishing. The new design improves cutting conditions and minimizes the impact of adverse factors accompanying the cutting process.
Thus, a pass-through peakless cutter has one cutting edge, is simpler due to the absence of an auxiliary back surface and top, has less complexity of manufacturing and sharpening, and therefore requires less operating costs.
Keywords: processing, surface, construction, cutter, peakless, quality.
Introduction
The strategy of industrial and innovative development of the Republic of Kazakhstan is aimed at creating a high-tech structure of the economy through an active state policy in the field of science and innovation. The strategy outlines the main directions in the development of science: in the energy, chemical, oil and gas, mining industries, mechanical engineering and metalworking - increasing the competitiveness of manufactured products [1]. One of the most important elements that ensure the quality of machine parts processing and labor productivity is the cutting tool. With its help, the workpiece is given the desired shape and size by cutting off relatively thin layers of material. The performance of the cutting tool has a significant impact on the economic efficiency of the production process [2, 3].
In modern mechanical engineering, a large range of metal-cutting tools of various purposes and designs is used for processing external, internal and flat surfaces. At the same time, the processing of external cylindrical surfaces with cutters with the presence
of a tip on the cutting plate is associated with a number of difficulties due to abrasive mechanical effects on the material being processed, resulting in reduced tool life. These circumstances necessitate a reduction in cutting conditions, as well as the introduction of additional operations into the technological process.
The processing of external surfaces with turning tools is the most common in the total mass of tools, and occupies a special place in the technological process of manufacturing machine parts. The issues of increasing productivity, accuracy and reliability of the machining process have always been and remain relevant and effective for metalworking [4-7].
Methods and materials
Theoretical research was carried out using the basic provisions of mechanical engineering technology, cutting theory, tool design and mechanics.
Cutters are the most common type of metal cutting tool. They are used on turning, boring, carousel, revolving, planing machines, semi-automatic machines.
Depending on the type of machine and the work performed, various cutters are used, which are classified according to the following criteria:
- by type of processing (through, thrust, cutting, boring, cutting, shaped)
- by the nature of processing (roughing, finishing);
- by installation relative to the part (radial, angular, tangential);
- in the direction of feed (right, left)
- according to the design of the head (straight, bent, curved, drawn);
- according to the section of the body (rectangular, square, round);
- by design (solid, composite, prefabricated);
- according to the material of the working part (from tool steel, hard alloy, from ceramic materials, diamond, from superhard synthetic materials) [8].
The main geometric characteristics of the cutter are the main and auxiliary angles, the angles in the plan and the angle of inclination of the main cutting edge.
The main cutter angles (front y, main back a, cutting 5, sharpening P) are measured in the main cutting plane perpendicular to the projection of the main cutting edge onto the main plane.
The disadvantage of turning cutters is that the tip of the cutter is the weakest point on the cutting part and is more exposed to mechanical, abrasive effects of the material being processed and temperature effects, i.e. it works in the most unfavorable cutting conditions, as a result of which the cutter resistance is reduced.
Results and discussions
An analysis of the methods and methods for processing external cylindrical surfaces, the parameters of the cut layer during cutting, the geometry and designs of turning through cutters led to the development of a new metal cutting tool - a peakless turning through cut for finishing [9]. The new design improves cutting conditions and minimizes the impact of adverse factors that accompany the cutting process [10-13].
The cutter has one rear surface and one rear corner (Figure 1). To create more favorable cutting conditions, the working part is made without a vertex and therefore the cutter is called vertexless (the main and auxiliary cutting edges of a traditional turning
cutter are deployed in one line by reducing the main and auxiliary angles in the plan to zero, therefore they are located on the same straight line and form a single cutting an edge with a lead angle at the top of 180°); the conditional location of the excluded vertex is at the point of intersection of the cutting edge with the longitudinal plane of symmetry of the holder.
Bp - cutter width; Bp/2 - distance to the longitudinal plane of symmetry of the cutter holder; Hp - cutter height; e - cutting edge with a 180° apex angle, A - A - section normal to the cutting edge for identifying the geometrical parameters of the cutter.
Picture 1 - Peakless turning cutter
The only cutting edge is located perpendicular to the longitudinal axis of the cutter and during operation is in the working plane, perpendicular to the main plane and tangent to the machined surface. The theoretical point of contact of the cutter and the machined surface at the moment of contact at zero depth of cut is on the generatrix in the section of the horizontal plane passing through the axis of the workpiece. At the theoretical point of contact (which is located in the middle of the line of contact between the cutter and the cut layer), the cutting edge actually divides into a main and a secondary cutting edge in kinematics, due to the curvature of the machined surface in cross section.
Thus, in the kinematics, equal in magnitude main and auxiliary angles appear in the plan. Therefore, the cutter has variables (converging to zero at the theoretical central point of contact with the machined surface, which creates the effect of the presence of a smoothing edge on the real contact line) the main and auxiliary kinematic angles in the plan, the angle of inclination of the cutting edge, one clearance angle. The division of the cutting edge into the main and auxiliary (due to the appearance of real main and auxiliary kinematic angles in the plan outside the real line of contact with the machined surface) is conditional, since the position of the mentioned theoretical contact point depends on the unregulated position of the cutter in height in the tool holder for use the entire length of the cutting edge and the full resource of the cutter; the back angle
on the cutter remains unchanged. A safety undercut is made on the upper and lower parts of the cutting edge.
Figure 2 shows a diagram of the operation of a vertexless turning cutter when turning a part such as a body of revolution installed in a lathe chuck.
1 - the workpiece, 2 - the peakless turning tool, 3 - the machine chuck, 4 - the rotational movement of the chuck with the workpiece, 5 - the longitudinal movement of the cutter, 6 - chips, A and B - points limiting the contact of the workpiece and the cutter, K and L - views in the horizontal plane Figure 2 - Diagram of the operation of a peakless lathe through-hole cutter Figures 3 and 4 show the views along the arrow L and K in the horizontal plane.
7 - the angle of inclination of the main cutting edge (X = 10 - 90 °); 8 - the angle of the upper safety edge; A and B - the points limiting the contact of the workpiece and the cutter; 9 - the safety edge; the lower safety edge is conditionally not shown; C - D - projection of the cutting edge; points C and D are respectively the upper and
lower limits of the cutting edge Figure 3 - Processing scheme (front view)
К
Figure 4 - Processing scheme (right view)
When working, the cutter is installed in the tool holder in height with the help of special adjustment plates for installing and including new sections of the cutting edge in operation. Based on the distinctive features described above, the claimed cutter (in kinematics) has five geometric parameters (angles) instead of six for a traditional through-pass turning cutter (in statics) due to the exclusion of the auxiliary rear angle: front angle, rear angle, angle of inclination of the cutting edge; main and auxiliary kinematic angles in plan (not measured, but calculated); main and auxiliary angles in plan in statics are zero. In statics, the cutter has only three geometric parameters: the front angle, the rear angle, the angle of inclination of the cutting edge. The scheme and method of processing with this cutter do not differ from traditional ones.
Conclusions
Thus, a pass-through peakless cutter has one cutting edge, is simpler due to the absence of an auxiliary back surface and top, has less complexity of manufacturing and sharpening, and therefore requires less operating costs. Its design provides upper and lower safety edges, although they may rarely be needed. The cutter can be made of high-speed steel or equipped with plates made of hard alloy and other tool materials.
REFERENCES
1 Государственная программа индустриально-инновационного развития Республики Казахстан на 2020-2025 годы. Постановление Правительства Республики Казахстан от 31 декабря 2019 года № 1050.
2 Карпов, А. В. К вопросу повышения энергетической эффективности технологических процессов обработки резанием // Современные наукоемкие технологии. - 2019. - № 3-1. - С. 43-47.
3 Барботько, А. И. Геометрия резания материалов : Учебное пособие. - 2-е издание, стереотипное. - Старый Оскол : ООО «Тонкие наукоемкие технологии», 2019. - 320 с. - ISBN 978-5-94178-286-4.
4 Дудак, Н. С., Итыбаева Г. Т., Мусина Ж. К. и др. Новые режущие инструменты для работы на токарных, расточных, сверлильных и протяжных
станках для повышения качества обработки деталей // Наука и техника Казахстана. - 2006. - № 2. - С. 5-9.
5 Касенов, А. Ж. Формирование шероховатости поверхности отверстия обработанного развёрткой-протяжкой // Наука и техника Казахстана. - 2011. -№ 3-4. - С. 46-49.
6 Rakishev, A., Sherov K., Donenbayev B., Sovet N. Studying the rigidity of partsof rotational-frictional tool within NX CAE // Science and Technology of Kazakhstan. - 2019. - No 3. - P. 96-103.
7 Дудак, Н. С., Итыбаева, Г.Т., Мусина, Ж. К., Касенов, А. Ж.
Металлорежущие инструменты : Учебно-методические указания - Павлодар : Кереку, 2017. 210 с.
8 Турчанов, В. Г. Токарные резцы и токарные инструментальные системы, их классификация, конструкция и применение : учебное пособие / Минобрнауки России, ФГБОУ ВПО «Рыбинский гос. авиационный технический ун-т им. П. А. Соловьева». - Рыбинск : РГАТУ им. П. А. Соловьева, 2012. - 184 с. - ISBN 978-5-88435-432-6.
9 Dudak, N. S., Itybaeva, G. T., Musina, Z. K. A new pass-through lathe cutter // Russian Engineering Research. - 2014. - Vol. 34. - No 11. - P. 705-707. - DOI 10.3103/S1068798X14110069.
10 Сорокин, Н. В. Исследование процесса безвершинного точения // Современные наукоемкие технологии. - 2013. - № 8-1. - С. 103.
11 Филиппов, А. В. Определение параметров сечения срезаемого слоя при косоугольном точении безвершинным резцом // СТИН. - 2014. - № 4. - С. 21-25.
12 Ситников, М. Ю. Применение безвершинных инструментов в процессе токарной обработки // Общество. Наука. Инновации. Всероссийская ежегодная научно-практическая конференция, Киров, 01-29 апреля 2017 года. / Вятский государственный университет. - Киров: Вятский государственный университет, 2017. - С. 2137-2143.
13 Попов, А. А., Солоха, А. И., Чазов, П. А. Особенности деформации стружки в процессе точения безвершинными резцами // Современные проблемы науки и образования. - 2014. - № 4. - С. 172.
REFERENCES
1 Gosudarstvennaya programma industrial'no-innovatsionnogo razvitiya Respubliki Kazakhstan na 2020-2025 gody [State program of industrial and innovative development of the Republic of Kazakhstan for 2020-2025]. Decree of the Government of the Republic of Kazakhstan dated December 31, 2019 No. 1050.
2 Karpov, A. V. K voprosu povysheniya energeticheskoy effektivnosti tekhnologicheskikh protsessov obrabotki rezaniyem [On the issue of improving the energy efficiency of technological processes of cutting]. Modern high technologies. -2019. - No. 3-1. - P. 43-47.
3 Barbot'ko, A. I. Geometriya rezaniya materialov [Geometry of cutting materials]: Stary Oskol : Fine Science-Intensive Technologies LLC, 2019. - 320 p. - ISBN 978-594178-286-4.
4 Dudak, N. S., Itybayeva G. T., Musina Zh. K. et al Novyye rezhushchiye instrumenty dlya raboty na tokarnykh, rastochnykh, sverlil'nykh i protyazhnykh stankakh dlya povysheniya kachestva obrabotki detaley [New cutting tools for work on turning, boring, drilling and broaching machines to improve the quality of processing parts]. Science and Technology of Kazakhstan. - 2006. - No. 2. - P. 5-9.
5 Kasenov, A.Zh. Formirovaniye sherokhovatosti poverkhnosti otverstiya obrabotannogo razvortkoy-protyazhkoy [Formation of the surface roughness of a hole processed by a reamer-broaching]. Science and technology of Kazakhstan. - 2011. - No. 3-4. - p. 46-49.
6 Rakishev A., Sherov K., Donenbayev B., Sovet N. Studying the rigidity of partsof rotational-frictional tool within NX CAE [Studying the rigidity of partsof rotational-frictional tool within NX CAE] // Science and Technology of Kazakhstan. - 2019. - No 3. - P. 96-103.
7 Dudak, N. S., Itybayeva, G. T., Musina, Zh. K., Kasenov, A. Zh. Metallorezhushchiye instrumenty [Metal-cutting tools] : educational and methodological instructions - Pavlodar: Kereku, 2017. - 210 p.
8 Turchanov V. G. Tokarnyye reztsy i tokarnyye instrumental'nyye sistemy, ikh klassifikatsiya, konstruktsiya i primeneniye : Uchebnoye posobiye [Turning cutters and turning tool systems, their classification, design and application] / Ministry of Education and Science of Russia, FGBOU VPO «Rybinsk State Aviation Technical University named after P. A. Solovyov». - Rybinsk : RGATU im. P. A. Solovieva, 2012. - 184 p. - ISBN 978-5-88435-432-6.
9 Dudak, N. S., Itybaeva, G. T., Musina, Z. K. A new pass-through lathe cutter. Russian Engineering Research. - 2014. - Vol. 34. - No 11. - P. 705-707. - DOI 10.3103/ S1068798X14110069.
10 Sorokin, N. V. Issledovaniye protsessa bezvershinnogo tocheniya [Investigation of the process of peakless turning]. Modern science-intensive technologies. - 2013. - No. 8-1. - P. 103.
11 Filippov, A.V. Opredeleniye parametrov secheniya srezayemogo sloya pri kosougol'nom tochenii bezvershinnym reztsom [Determination of the parameters of the section of the cut layer during oblique turning with a vertexless cutter]. STIN. - 2014. -No. 4. - P. 21-25.
12 Sitnikov, M. Yu. Primeneniye bezvershinnykh instrumentov v protsesse tokarnoy obrabotki [The use of peakless tools in the process of turning]. Society. The science. innovation. All-Russian annual scientific and practical conference, Kirov, April 01-29, 2017. - Kirov : Vyatka State University, 2017. - P. 2137-2143.
13 Popov, A. A., Solokha, A. I., Chazov, P. A. Osobennosti deformatsii struzhki v protsesse tocheniya bezvershinnymi reztsami [Peculiarities of chip deformation in the process of turning with tipless cutters]. Modern problems of science and education. - 2014. - No. 4. - P. 172.
Material received on 17.12.21.
*М. К. Оспантаев
«KSP Steel» ЖШС ЦФ,
Казахстан Республикасы, Павлодар к.
Материал баспаFа 17.12.21 тYстi.
ТЭБЕС1З ЖОНУ 0ТПЕЛ1 КЕСК1ШТЩ КОНСТРУКЦИЯСЫН ЭЗ1РЛЕУ
Сыртцы 6emmepdi бурау арцылы ецдеу цуралдардыц жалпы санында ец квп таралган жэне машина белшектерт eHdipydщ технологиялыц урдШнде ерекше орын алады. вцдеу процестщ енмдтш, дэлдш мен сетмдыг мдселелерi эрдайым металл ецдеу ушт езектi жэне muiMdi болып цала бередi.
Зерттеудщ мацсаты — сыртцы цилиндрлт беттердi ецдеудщ жаца эдШн жэне тебесыз жону етпелi кестштщ констркциясынын жасау арцылы ецдеу сапасын арттыру.
Жумыстыц идеясы — тyпкiлiктi ецдеуге арналган жону кескштщ жаца констркциясынын жэне ецдеудщ жаца эдкт жасау.
Сыртцы цилиндрлк беттердi ецдеу эдiстерi мен эдктерт, кесу кезтде ке^лген цабаттыц параметрлерт, геометрия мен жону кескШ конструкцияларын талдау жаца металл кескШ цуралдыц — тебес1з жону етпелi кестштщ дамуына экелд1 Жаца конструкцияда кесу жагдайлары жацсарып, кесу урдкт суйемелдейтт цолайсыз факторлардыц эсерт азайтады.
Осылайша, айналмалы бШкЫз кескШ бiр кесу жиегте ие, кемекшi артцы бетi мен yстiцгi жагыныц болмауына байланысты царапайым, ендiрiс пен цайраудыц аз ецбек съшымдылыгына ие, сондыцтан пайдалану шыгындарын аз талап етедi.
Кiлттi сездер: ецдеу, бетi, цурылымы, кескш, тебес1з, сапасы.
*М. К. Оспантаев
ПФ ТОО «KSP Steel»,
Республика Казахстан, г. Павлодар.
Материал поступил в редакцию 17.12.21.
РАЗРАБОТКА КОНСТРУКЦИИ БЕЗВЕРШИННОГО ТОКАРНОГО ПРОХОДНОГО РЕЗЦА
Обработка наружных поверхностей токарными резцами является наиболее распространенным в общей массе инструментов, и занимает особое место в технологическом процессе изготовления деталей машин. Вопросы повышения производительности, точности и надёжности процесса обработки всегда были и остаются актуальными и эффективными для металлообработки.
Целью исследования является повышение качества обработки наружных цилиндрических поверхностей с разработкой нового способа обработки и конструкции безвершинного токарного проходного резца.
Идея работы заключается в разработке новой конструкции токарного резца для чистовой обработки и нового способа обработки.
Анализ методов и способов обработки наружных цилиндрических поверхностей, параметров срезаемого слоя при резании, геометрии и конструкций токарных проходных резцов, привёл к разработке нового металлорежущего инструмента — безвершинного токарного проходного резца для чистовой обработки. В новой конструкции улучшены условия резания и сведены к минимуму воздействия неблагоприятных факторов, сопровождающих процесс резания.
Таким образом, проходной безвершинный резец имеет одну режущую кромку, является более простым из-за отсутствия вспомогательной задней поверхности и вершины, имеет меньшую трудоёмкость изготовления и заточки и потому требует меньше затрат на эксплуатацию.
Ключевые слова: обработка, поверхность, конструкция, резец, безвершинный, качество.
Теруге 17.12.21 ж. жiберiлдi. БасуFа 27.12.21 ж. кол койылды. Электрондык баспа 5,07 Mb RAM
Шартты баспа табаFы 9,15 Таралымы 300 дана. БаFасы келiciм бойынша. Компьютерде беттеген: Е. Е. Калихан Корректор: А. Р. Омарова
Тапсырыс № 3875
«Toraighyrov University» баспасынан басылып шыFарылFан ТораЙFыров университетi 140008, Павлодар к., Ломов кеш., 64, 137 каб.
«Toraighyrov University» баспасы ТораЙFыров университетi 140008, Павлодар к., Ломов к., 64, 137 каб. 67-36-69
e-mail: [email protected] nitk.tou.edu.kz