Научная статья на тему 'DEEP EUTECTIC SOLVENT (RELINE) AS CATALYTIC SYSTEM IN SYNTHESIS OF SCHIFF BASES DERIVED FROM GLUCOSE AND DIFFERENT AMINES'

DEEP EUTECTIC SOLVENT (RELINE) AS CATALYTIC SYSTEM IN SYNTHESIS OF SCHIFF BASES DERIVED FROM GLUCOSE AND DIFFERENT AMINES Текст научной статьи по специальности «Химические науки»

CC BY
22
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Kimya Problemleri
Scopus
CAS
Область наук
Ключевые слова
Glucose amine Schiff base / deep eutectic solvents / azomethane / α and β glucose amines / глюкозоаминные Шиффвы основания / глубокие эвтектические растворители / азометан / αи β-глюкозоамины.

Аннотация научной статьи по химическим наукам, автор научной работы — Zaynab M. Mahmood, Shakir M. Saied, Mohanad Y. Saleh

In this work, seven new Schiff bases were obtained in two ways. In method (A), an equimolecular aqueous solution of glucose and an alcoholic solution of amine were refluxed for three hours, and in method (B), a deep eutectic solvent (Reline), prepared from one mole of choline chloride and two moles of urea,was used as catalyst. The reaction yield percentage in the traditional method (A) was found to be 60-79%, and in the catalytic method (Method B) using a deep eutectic solvent (Reline) yield percentage was 88-95%. The deep eutectic solvent catalytic system (Reline) is an environmentally friendly solution with the triple benefit of increased percentage yield, elimination of solvent, and faster reaction time by reducing reflux time by up to three times (i.e., just one hour).

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

DEEP EUTECTIC SOLVENT (RELINE) AS CATALYTIC SYSTEM IN SYNTHESIS OF SCHIFF BASES DERIVED FROM GLUCOSE AND DIFFERENT AMINES

В работе были получены семь новых Шиффовых оснований двумя способами. В традиционном методе (А) эквимолекулярный водный раствор глюкозы и спиртовой раствор амина кипятили с обратным холодильником в течение трех часов, а в методе (Б) использовали глубокий эвтектический растворитель (Reline), полученный из одного моля хлоридa холина и двух молей мочевины, в качестве катализатора. Было установлено, что процентный выход реакции в обычном методе (А) составляет 60-79%, а в каталитическом методе (Б) с использованием глубокоэвтектического растворителя (Reline) выход достигал 88-95%. Каталитическая система с глубоким эвтектическим растворителем (Reline) является экологически чистой средой, имеет тройное преимущество, заключающееся в повышении процентного выхода, исключении использования растворителя, и ускорения реакции за счет сокращения времени кипячения с обратным холодильником до трех раз (т.е. всего за один час).

Текст научной работы на тему «DEEP EUTECTIC SOLVENT (RELINE) AS CATALYTIC SYSTEM IN SYNTHESIS OF SCHIFF BASES DERIVED FROM GLUCOSE AND DIFFERENT AMINES»

CHEMICAL PROBLEMS 2024 no. 3 (22) ISSN 2221-8688

281

UDC 66.061.35+547-38

DEEP EUTECTIC SOLVENT (RELINE) AS CATALYTIC SYSTEM IN SYNTHESIS OF SCHIFF BASES DERIVED FROM GLUCOSE AND DIFFERENT AMINES

Zaynab M. Mahmood1, Shakir M. Saied2, Mohanad Y. Saleh3*

Ministry of Education, Nineveh Educational Directorate 2Department of Pharmacy, Al-Noor University College, Mosul, Iraq 3Department of Chemistry, College of Education for pure Science, Mosul University, Mosul, Iraq e-mail: albdranyzynb@gmail.com; shakir.mahmood@alnoor.edu.iq;*mohanadalallaf@uomosul.edu.iq

Received 17.01.2024 Accepted 28.03.2024

Abstract: In this work, seven new Schiff bases were obtained in two ways. In method (A), an equimolecular aqueous solution of glucose and an alcoholic solution of amine were refluxed for three hours, and in method (B), a deep eutectic solvent (Reline), prepared from one mole of choline chloride and two moles of urea,was used as catalyst. The reaction yield percentage in the traditional method (A) was found to be 60-79%, and in the catalytic method (Method B) using a deep eutectic solvent (Reline) yield percentage was 88-95%. The deep eutectic solvent catalytic system (Reline) is an environmentally friendly solution with the triple benefit of increased percentage yield, elimination of solvent, and faster reaction time by reducing reflux time by up to three times (i.e., just one hour).

Keywords: Glucose amine Schiff base, deep eutectic solvents, azomethane, a and f glucose amines. DOI: 10.32737/2221-8688-2024-3-281-289

Introduction

Schiff bases, which are also known as imines are important organic compounds of the azomethane functional group produced from the

condensation of carbonyl compounds (glucose molecule in this work) and primary amines as shown in Fig. 1 [1].

Fig. 1. Azomethane.

Schiff bases establish a significant class of organic products due to their excellent pharmaceutical characteristics [2]. Their broad-spectrum activities such as anti-infective agents arise from there, antifungal, antibacterial and even antineoplastic activity. These activities due to associated with their functional toxophoric group azomethane (C = N) [3].

Aliphatic and aromatic Schiff bases derived from glucose or other monosaccharides and primary amines has been reviewed, and the glucosyl amines products were primary a and P glucose amines which converted into Syn and Anti imino structures (Fig. 2) [4].

Deep eutectic ionic liquid (Reline), the ambient temperature molten salt [5], has attracted concentrated focus in most organic synthesis of this laboratory in the last two years [6] owing to its amazing properties such as very low vapor pressure, high thermal stability, and ionic conductivity. In addition to all these it has been used as an alternative solvent in organic synthesis [7], and it's a very simple synthesis approach from heating two moles of urea and one mole of choline chloride in an open test tube [8].

Deep eutectic solvents were employed in the synthesis of Schiff bases using choline

www.chemprob.org

CHEMICAL PROBLEMS 2024 no. 3 (22)

chloride: malonic acid (1:1) based deep eutectic solvent [9].

H

I

Ar

OH

■Ar

a)

b)

primary a) and h) glucose amines

- H20

OH

Syn

I'

h2o

~Ar

Anti

Fig. 2. Syn and Anti imino structures

The protocol for the synthesis of Schiff bases by the reaction of aldehydes with amines using the (Reline) deep eutectic solvent prepared from urea and choline chloride with good to high yields was very rare and modern, it started less than seven years ago only [10].

It is clear from the above literatures that the deep eutectic solvents (DESs) are hopeful maintainable substitutes to old-style solvents and are mostly composed of two harmless and low-cost eutectic mixture connected with a hydrogen bonds to produce a much lower boiling point than that of each mixture

components, i.e. the choline chloride and urea [11], in addition to their thermal stability, little toxicity and ease of recyclability [12, 13].

Contributed to all this new knowledge and for the very importance of the use of a deep eutectic solvent (Reline) as a green catalyst of solventless and high yield percentage and as the continuation of our interest in using Reline catalyst, this new proposed objective was reported herein to improve the synthesis of novel Schiff bases derived from glucose sugar and appropriate amines.

Experimental part

Reagents or solvents were procured from a commercial source and used directly.

Moreover, DES (Reline) was prepared. The IR spectra were recorded using a Bruker Alph FTIR Germany spectrophotometer using the KBr, and expressed in wave number V (cm-1). Then, 1HNMR spectra of the synthesized compounds were recorded on a

spectrophotometer of Bruker-Avance II 400 (400 MHz), using DMSO-d6 solvent and TMS as an internal stander.

Synthesis of deep eutectic solvent (Reline) [13]: A mixture of choline chloride (0.1 mole) and urea (0.2 mole) was mixed manually using glass rode during heating at 100-120 °C until a clear solution began to form.

Then, the deep eutectic solvent (Reline) with the freezing point of the product was 12 oC was cooled and used without any purification.

Synthesis of glucose Schiff bases (1-7): Conventional procedure, (Method A) [14]: Equimolecular mixture of aqueous solution of glucose (1.8gm, 10 mmole), glacial acetic acid (0.3 ml) and ethanol solution of

appropriate amine was stirred under reflux for 3h the resulting solution was concentrated and left to cool. The formed precipitate was filtered off, washed with water then dried and crystallized from ethanol.

Physical properties, percentage yield and spectral data are listed in Table 1.

Table 1. Physical data of the novel Schiff bases.

Compd no. R Yieh met % %; thod Colour m.p., oC

A B

1 4-nitrophenyl 76 90 yellow 45-47

2 2-nitrophenyl 60 92 yellow 142-44

3 2,4-nitrophenyl 60 95 bright brown 171-73

4 6-methylpyridenyl 67 89 bright white 138-40

5 2-methylbenzo[d]thiazolyl 69 88 light brown 119-20

6 benzo[d]thiazol-2-ylcarbamyl 77 92 milky white 88-92

7 2-phenyl-1,2-dihydro-3H-pyrazol-3-one-4yl- 79 92 light yellow 145-47

Catalytic procedure (Method B), Using deep eutectic solvent (Reline) [2]:

The equimolecular mixture of the aqueous solution of glucose (gm, 10 mmole) and appropriate amine with (1mmole) of DES (Reline) were stirred under reflux until the end of the reaction, which was checked by thin-layer chromatography (TLC). The crude product that was formed with addition of water was washed

with ethanol to yield pure Schiff bases. Percentage yields are listed in Table 1. Note that all these Schiff-bases products by Method (B) were obtained had the exact specifications and spectrum measurements as those produced in Method (A). In addition, the purity of all products output for both methods (A and B) were equal melting points and mixed melting points.

Results and discussion

Frequently, glucose amine Schiff bases are formed by the reaction of amine with glucose in its reduction form, usually with the addition of catalysts such as acetic acid and solvent for example ethanol. In this article, seven Schiff bases were synthesized as anticipated potential bioactive agents via the route outline in the following Fig.3 [15].

To obtain the target Schiff bases, two routes were followed: In method (A), the conventional procedure for the synthesis of imines which are described in the literature involves the condensation of the reducing glucose (as aldehyde) with primary amines

using acetic acid catalyst and ethanol as solvent. The amine here is a nucleophilic reagent that irreversibly attacks the electrophilic carbonyl carbon with the forming of an imine group via tetrahedral mechanism with the elimination of water [16].

In the suggested mechanism, it is important to change the reaction medium to an acidic using acetic acid catalyst which protonates the carbonyl oxygen and enhances the susceptibility of the carbonyl carbon to the nucleophilic attack of amine nitrogen and formation of the tetrahedral intermediate which eliminates the catalytic proton and a molecule of

water to afford the imine group, as shown in Fig.4 [17].

OH OH

H,NR HO

EtOH/ AcOH, reflux Method A or B

OH OH

NR

OH OH

Glucosyl amine Schiff bases 1-7

(6) (7)

Fig. 3. Synthetic route of Glucosyl amine Schiff bases 1-7

o

H

IT.

Acid catalyst

OH

H

NH2Ar

-h2o,-h+

N H , '

OH

-H

PK

H' I Ar H

T

c

OH,

Ar

c

-H

H' Ar

Tetrahedral intermedate

An imine (Schiff base)

Fig.4. The tetrahedral mechanism of Imine (Schiff base) formation.

The yield percentages of Schiff base which were synthesized by the traditional methods (conventional procedure), (Method A) were 60-79% as shown in Table 1, which were enhanced to 88-95% by using the green catalyst deep eutectic solvent (Reline) which was prepared by the reaction of quaternary ammonium salt choline chloride and urea is atom efficient since all the atoms present in the starting materials are incorporated in the products [18].

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Deep eutectic solvent (Reline) was initially used as a green solvent due to their exclusive physical and chemical properties,

some of our new research marched far beyond this limit and verified their amazing role in accelerating the reactions as catalysts, and exhibited a significant increase in the yield percentages [19].

Reline, was prepared according to the equation in Fig.5. The mechanism of Deep eutectic solution (Reline) was shown in Fig. 6 [20].

This Deep eutectic solution (Reline), was a crucial solvent because it not only permits a good interaction with amine and glucose in the reaction mixture but also fixes the choice of

work-up procedures and disposal strategies [21, 22].

JZ

o

HO-x

120°C \_""'CY

. . .Nf + 2 Jl ». N-^

HO ^^ ^ H2]sr xnh2 \ % txj

CI- x H2N NH choline chloride Urea

D

Fig. 5. Preparation of deep eutectic solvent (Reline).

HO

NTT,

NH

Fig. 6. Mechanism of Reline catalyst the Schiff base formation.

Also, a large amount of glucose can The chemical structures of these seven

dissolve in a Deep eutectic solution (Reline), novel Schiff bases were conferred by FT-IR and

and similarly can dilute released water, thus 1HNMR spectroscopy which were listed in

limiting the side rehydration [23-25]. Table 2 [26-29].

Table 2. The FT-IR and 1HNMR spectroscopy of the novel Schiff bases

Compound No. 1HNM R, ppm IR, KBr, cm

Glucose moiety protons C=N methine proton The OH of glucose moiety

1 3.166 - 3.566 7.834-7.903 3395-3420

2 3.166 - 3.566 7.834-7.903 3390-3420

3 3.166 - 3.566 7.834-7.903 3387-3413

4 3.166 - 3.566 7.834-7.903 3388-3418

5 3.166 - 3.566 7.834-7.903 3389-3418

6 3.166 - 3.566 7.834-7.903 3395-3416

7 3.166 - 3.566 7.834-7.903 3393-3418

The FT-IR spectroscopic of these seven new Schiff bases exhibited the presence of characteristic absorption bands corresponding to the OH of glucose moiety in the region 33953420 cm-1. This glucose moiety protons at !H-NMR spectra showed the signals at 3.166 -

3.566 ppm, and the C=N azomethane proton as a doublet in the range 7.834-7.903 ppm [26-29]. The IR (KBr, cm-1) of Schiff base (1) as representative for these serious was shown in Fig. 7.

BRUKER

cj><3

l 8

I

vvmAi

If I I H

I

I

II! I IM I 11 II I ISS II11

st & i*t r № t ri s «sr. * ■ ee

_ S 1 g g__I_9 £ §§5 ? IES 2 si is

■ » I '1 f I • III Jl II

1SOO 3000 7500 7000 1500 1000 500

VUiMiunrfwr rm I

Fig. 7. The HNMR of Schiff base (6) as representative of this series

Fig. 8. The NMR of Schiff base (6)

The 1H-NMR (300 MHz, DMSO-J6) of was shown in Fig. 8. Schiff base (6) as representative for these series

Conclusion

This paper summarizes the recent one-pot synthesis of seven Schiff bases by reaction of glucose with the appropriate amines via a conventional procedure, (Method A), which offered yields percentages of about 60-79% using the homogenous catalyst (acetic acid) in

refluxing ethanol solvent for three hours. Correspondingly, the using of a heterogeneous catalyst of Deep eutectic solvent (Reline) (prepared from one mole choline chloride with two moles urea (Method B) can have a triple advantage of enhancing the percentages yields

to 88-95%, eliminating the use of solvent and refluxing time to one-third (only one hour). that this facilitates the reactions by reducing the Acknowledgment

Authors thank University of Mosul and Alnoor University College for financial support and facilities that provided for the completion this article.

References

1. Adnan S., Al-Adilee K.J., A-Abedalrazaq K.A. Synthesis, spectral characterization and anticancer studies of novel azo Schiff Base and its complexes with Ag(I), Au(III) And Pt (lV) ions // Egypt. J. Chem. 2020, Vol. 63, No. 12, pp. 4749 - 475. doi: 10.21608/EJCHEM. 2020. 23312. 2438.

2. Mamdouh A.S., Samy B.S, Said H.K. Antimicrobial activity of newly synthesized thiadiazoles, 5-benzyl-2H-tetrazole and their nucleosides // Der Pharma Chemica. 2012, Vol. 4, No.3, pp.1064-1073.

3. Yadav U.N., Shankarling, G.S. Room temperature ionic liquid choline chloride-oxalic acid: A versatile catalyst for acid-catalyzed transformation in organic reactions. J. Mol. Liq. 2014, Vol. 191, pp. 137-141. DOI: 10.1016/j. molliq.2013.11.036.

4. Pereza, E.M.S., Avalos, M., Babiano, R., Cintas, P. et al. Schiff bases from d-glucosamine and aliphatic ketones). Carbohydrate Research. 2010, Vol. 345, No. 1, pp. 23-32. D0I:10.1016/j.carres.2009.08.032.

5. Smith, E. L., Abbott, A. P., Ryder, K. S. Deep eutectic solvents (DESs) and their applications). Chemical reviews. 2014, Vol. 114, No. 21, pp. 11060-11082. DOI: 10.1021/cr300162p.

6. Saleh, M., Al-barwari, A., Ayoob, A. Synthesis of some novel 1,8-naphthyridine chalcones as antibacterial agents. J. of Nanostructures. 2022, Vol. 12, No. 3, pp. 598-606. doi: 10.22052/JNS.2022.03.013.

7. Al-Thakafy, N. T., Abdelzaher, M. A., Abdelzaher, H. G., Saleh, M. Y., Al-Enizzi, M. S., Saied, S. M., ... & Moghanm, F. S. (2024). A novel chalcone compound as a reagent for the validation of pharmaceutical cefotaxime sodium preparations. Results in Chemistry, 101387. https://doi.org/10.1016Zj.rechem.2024.1013 87

8. Zhang,Q., Vigier, K.D.O., Royera, S., Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviw. 2012, Vol. 41, No. 21, pp.7108-46. D01:10.1039/c2cs35178a

9. Molnar, M., Komar, M., Brahmbhatt, H., Babic, J., et al. Deep Eutectic Solvents as Convenient Media for Synthesis of Novel Coumarinyl Schiff Bases and Their QSAR Studies; Molecules; "(2017)22, 1482.

10. Saeed, Z., Saleh, M., Sadeek, G. Synthesis and biological evolution of novel substituted 1,2,4-triazine from sulfanilic acid. Egyptian Journal of Chemistry. 2022, Vol. 66, No. 1(1), ' pp. 555-561. D0I:10.1039/c2cs35178a.

11. Abbott, A.P., Davies, D.L., Capper, G., Rasheed, R.K., Tambyrajah, V. Ionic liquids and their use as solvents. U.S. Patent. 2007, 7, 183, 433.

12. Paiva, A., Craveiro, R., Aroso, I., Martins, M. et al. Natural deep eutectic solvents— Solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, Vol. 2, No. 5, pp.10631071. D0I:10.1021/sc500096j.

13. Abdullah, L.W., Saied, S.M., Saleh, M.K. Deep eutectic solvents (Reline) and gold nanoparticles supported on titanium oxide (Au-Ti02) as new catalysts for synthesis some substituted phenyl(substituted-3-phenyloxiran) methanone. Egypt. J. Chem. 2021, Vol. 64, No. 8. pp. 4381 - 4389. DOI: 10.21608/EJCHEM.2021.68511.3498

14. Shamusuri, A. A., Dzulkefly, K.A. Synthesizing of ionic liquids from different chemical reactions. Singapore Journal of Scientific Research. 2011, Vol. 1, No. 3, pp. 246-252. D0I:10.3923/sjsres.2011.246.252.

15. Saied, S., Saleh, M., Hamdoon, A. Multicomponent synthesis of tetrahydro benzo[a]xanthene and

tetrahydrobenzo[a]acridine derivatives using sulfonated multi-walled carbon nanotubes as heterogeneous nanocata-lysts. Iranian Journal of Catalysis. 2022, Vol. 12,No.2, pp.189-205. doi: 10.30495/ijc. 2022. 1955651.1924

16. Morrison, R.T. Boyed, R.N. Organic Chemistry; Thirty-first Printing; Sixth Edition; Prentice-Hsolll; New Delhi. 2002.

17. Shamsuri, A. A., Abdullah, D. K. Isolation and characterization of lignin from rubber wood in ionic liquid medium. Modern Applied Science. 2010, Vol. 4, No.11, pp. 19-27. D0I:10.5539/mas.v4n11p19

18. Saleh, M. Y., Aldulaimi, A. K. O., Saeed, S. M., & Adhab, A. H. (2024). TiFe204@ Si02-S03H: A novel and effective catalyst for esterification reaction. Heliyon. doi.org/10.1016/j.heliyon.2024.e26286

19. Sadeek, G. T., Saeed, Z. F., & Saleh, M. Y. (2023). Synthesis and pharmacological profile of hydrazide compounds. Research Journal of Pharmacy and Technology, 16(2), 975-982. D0I: 10.52711/0974-360X.2023.00163

20. Galehassadi, M., Pourreza, S. Base and Catalyst-Free Preparation of Silyl Ethers in the CholineChloride/Urea Deep Eutectic Solvent (DES). J. of Inorganic and Organometallic Polymers and Materials. 2019, Vol. 29, No.2, pp. 541-549. D01:10.1007/s 10904-018-1028-z

21. Zhang, Q., Vigier, K.D.0., Royer, S.B., Jerome, F.0. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 2012, Vol. 41, No.17, pp.7108-7146. D0I:10.1039/c2cs35178a

22. Jung, Y., Marcus, R. A. 0n the Theory of Organic Catalysis "on Water". J. Am. Chem. Soc. 2007, Vol. 129, No. 17, pp. 5492-5502. https://doi.org/10.1021 /ja068120f.

23. Breslow, R. Hydrophobic effects on simple organic reactions in water Acc. Chem. Res., 1991, 24, 159-164; doi.org/10.1021/ar00006a001.

24. Zakrzewska, M. E., Bogel-Lukasik, E., Bogel L. R. Ionic Liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev, 2011, Vol.111, No.2, pp. 397417. D0I:10.1021/cr100171a

25. Saleh, M. Y., Sadeek, G. T., & Saied, S. M. (2024). Preparation and characterization of a dual acidic Ionic Liquid functionalized Graphene Oxide nanosheets as a Heterogeneous Catalyst for the Synthesis of pyrimido[4,5-b] quinolines in water. Iranian Journal of Catalysis (IJC). DOI: 10.30495/ijc.2023.1998276.2052

26. Ali, A. H., Saleh, M. Y., & Owaid, K. A. (2023). Mild Synthesis, Characterization, and Application of some Polythioester Polymers Catalyzed by Cetrimide Ionic Liquid as a Green and Eco-Friendly PhaseTransfer Catalyst. Iranian Journal of Catalysis (IJC). https://doi.org/10.30495/ijc.2023.1973500.1 977

27. Zalov, A. Z., Iskenderova, K.O., Askerova Z.G., Hajiyeva A.B. Spectrophotometric study of nickel (II) complexes with 2-hydroxythiolphenol and its derivatives in the presence of hydrophobic amines. Chemical Problems. 2021, No. 4 (19), pp.224-231. DOI: 10.32737/2221-86882021-4-224-231.

28. Zalov, A.Z., isgenderova K.O., Askerova Z.G. Spectrophotometric research into interaction nickel (II) with 1- (2-pyridylazo) -2- hydroxy -4-mercaptofenol and aminophenols. Chemical Problems. 2021, No. 3 (19), pp.150-159. DOI: 10.32737/2221-8688-2021-3-150-159.

29. Zalov, A.Z., Mammadova, Sh.A., Hasanova, N.S., Ibrahimova, Sh.A. Spectrophotometric study of ternary complexes of Cr (VI) and Co (II). Chemical Problems. 2020, No. 2 (18), pp.164-173. DOI: 10.32737/2221-8688-2020-2-164173.

ÇÎFF OSASLARININ QLÜKOZA VO MÜXTOLIF AMINLORDON SiNTEZiNDO (RELINE) EVTEKTiK HOLLEDÎCÎNÎN KATALITiK SiSTEM KÎMi ÎSTÎFADOSÎ

Zeynab M. Mahmud1 , Çakir M. Said2 , Mohanad Y. Saleh3

1Tahsil Nazirliyi, Ninova Tdhsil Müdirliyi 2dczaçiliq Departamenti, dl-Nur Universiteti Kolleci, Mosul, iraq 3Kimya Departamenti, Tsmiz Elmlsr ûçûn Tshsil Kolleci, Mosul Universiteti, Mosul, iraq e-mail: albdranyzynb@gmail. com ; shakir.mahmood@alnoor. edu. iq; * mohanadalallaf@Momosul.edu. iq

Xülasa: Χda iki müxtalif üsulla yeddi yeni §iff asaslari alinmi^dir. Onanavi (A) metodunda qlükozanin sulu mahlulu va aminin spirtli mahlulu ekvimolekulyar miqdarda götürülarak ûç saat arzinda qaynadilmi§dir. (B) metodunda isa bir mol xolin xloriddan va iki mol sidik cövharindan alinmi§ darin evtektik halledicidan (Reline) katalizator kimi istifada edilmi§dir. Onanavi (A) üsulunda reaksiyanin çiximi 60-79%, darin evtektik halledicidan (Reline) istifada edilan katalitik (B) üsulda çixim isa 88-95% oldugu müayyan edilmiçdir. (Reline) darin evtektik halledicidan ibarat olan katalitik sistem ekoloji cahatdan tahlükasizdir va ^qat üstünlüya malikdir. Buraya faiz çiximinin artmasi, halledicidan istifada olunmamasi va geri axin müddatinin ^ dafaya qadar azaltmaqla (yani cami bir saat arzinda) reakiyanin süratinin artmasi aid edilir. Açar sözlar: qlükozamin §iff asaslari, darin evtektik halledicilar, azometan, a- va ß-qlükozaminlar.

ЭВТЕКТИЧЕСКИЙ РАСТВОРИТЕЛЬ (RELINE) КАК КАТАЛИТИЧЕСКАЯ СИСТЕМА В СИНТЕЗЕ ШИФФОВЫХ ОСНОВАНИЙ ИЗ ГЛЮКОЗЫ И

РАЗЛИЧНЫХ АМИНОВ

12 3

Зайнаб М. Махмуд , Шакир М. Саид , Моханад Ю. Салех

1 Министерство образования, Управление образования Ниневии 2Фармацевтический факультет Университетского колледжа Аль-Нур, Мосул, Ирак 3Кафедра химии, Педагогический колледж чистой науки, Мосульский университет, Мосул, Ирак e-mail: albdranyzynb@gmail. com ; shakir.mahmood@alnoor. edu. iq; * mohanadalallaf@uomosul.edu. iq

Резюме: В работе были получены семь новых Шиффовых оснований двумя способами. В традиционном методе (А) эквимолекулярный водный раствор глюкозы и спиртовой раствор амина кипятили с обратным холодильником в течение трех часов, а в методе (Б) использовали глубокий эвтектический растворитель (Reline), полученный из одного моля хлорида холина и двух молей мочевины, в качестве катализатора. Было установлено, что процентный выход реакции в обычном методе (А) составляет 60-79%, а в каталитическом методе (Б) с использованием глубокоэвтектического растворителя (Reline) выход достигал 88-95%. Каталитическая система с глубоким эвтектическим растворителем (Reline) является экологически чистой средой, имеет тройное преимущество, заключающееся в повышении процентного выхода, исключении использования растворителя, и ускорения реакции за счет сокращения времени кипячения с обратным холодильником до трех раз (т.е. всего за один час).

Ключевые слова: глюкозоаминные Шиффвы основания, глубокие эвтектические растворители, азометан, а- и Р-глюкозоамины.

i Надоели баннеры? Вы всегда можете отключить рекламу.