Chemical Journal of Kazakhstan
Volume 4, Number 80(2022), 89-99 https://doi.org/10.51580/2022-3/2710-1185.97
УДК 661.74
INVESTIGATING COMPUTATIONALLY THE FORMATION MECHANISM OF METHYLTRIPHENYLPHOSPHONIUM BROMIDE AND ETHYLENE GLYCOL - BASED NATURAL DEEP EUTECTIC SOLVENT AND ITS APPLICATIONS IN THE PURIFICATION
OF BIOFUEL
Zh.A Sailau1', N.Zh. Almas2, K. Toshtai1, A. A. Aldongarov3, Y.A Aubakirov1
1Al-Farabi Kazakh National University, Almaty, Kazakhstan 2Astana IT University, Astana, Kazakhstan 3L.N. Gumilyov Eurasian National University, Astana, Kazakhstan E-mail: sailau. online@gmail. com
Abstract. Introduction. Biodiesel is a new replacement for various types of traditional fuels. There are many advantages of biofuel, including renewable ones, of less-flammability, and cheaper as compared with the traditional fuel, reducing the greenhouse gas emissions, and others. However, the primary challenge of the biofuel production in the large-scale production is related to the purification of its undesirable impurities such as glycerol, water, methanol, soap/catalyst, free fatty acids, glycerides and others. Herein, glycerol is an undesired impurity of biofuel, which leads to the problems including i) deposition in the bottom of the fuel tank, ii) decantation, iii) engine durability problems, iv) setting problems, v) injector fouling, vi) storage problem, and others. Consequently, there are many ways to remove glycerol, and herein, the one alternative is the extraction of glycerol from biodiesel via the Natural Deep Eutectic Solvents. The goal of this work. The mixture of a methyltriphenylphosphonium bromide and ethylene glycol, as a the Natural Deep Eutectic Solvent is effective in removing glycerol from biofuel. Methodology. We have investigated the formation mechanism of methyltriphenylphosphonium bromide and ethylene glycol, as the Natural Deep Eutectic Solvents, and the extraction of glycerol from biofuel via the Natural Deep Eutectic Solvents via implementing the Quantum Chemical Calculations, using the HyperChem software. Results. The results imply that there are strong ionic and covalent interactions between bromine, methyltriphenylphosphonium and ethylene glycol according to the optimized structures, bond length, energies, and others. Conclusion. The extraction of glycerol from biofuel is mainly achieved via bromine ion of the Natural Deep Eutectic Solvent, and the structure of the Natural Deep Eutectic Solvent is remaining unchanged after this process, meaning its stability, and can be reused.
Keywords: methyltriphenylphoshonium bromide, ethylene glycol, glycerol, biofuel, extraction
Citation: Zh.A. Sailau, N.Zh. Almas, K. Toshtai, A.A. Aldongarov, Y.A. Aubakirov. Investigating computationally the formation mechanism of methyltriphenylphosphonium bromide and ethylene glycol -based natural deep eutectic solvent and its applications in the purification of biofuel. Chem. J. Kaz., 2022, 4(80), 89-99. DOI: https://doi.org/10.51580/2022-3/2710-1185.97
Sailau Zhassulan Askhatuly 3rdyearPhD student,
e-mail: sailau. online@gmail. com
Almas Nurlan Zhumabekuly lstyearpostdoctoral attendee,
e-mail: [email protected]
Tostai Kainaubek PhD, Senior Lecturer,
e-mail: kainaubek. toshtay@gmail. com
Aldongarov Anuar Akylkhanovich PhD, Associated Professor,
e-mail: [email protected]
Aubakirov Yermek Aitkazynovich Doctor of Chemical Sciences, Associate Professor,
e-mail: miral. 64@mail. ru
1. Introduction
There has been a requirement of the new world demand for the replacement of the energy sources, based on the traditional petroleum-based fuel, due to the security issue caused by crude oil, continuously burning of petroleum-based fuels, climate change, and others [1-3]. At this stage, the biofuel is one of the important biodegradable fuels, which can replace traditional petroleum-based fuels, including natural gas, coal, and oil. In this regard, biodiesel is an oil-based fuel, containing alkyl ester long chains, and is mainly produced via the reaction of lipids with an alcohol to obtain fatty acid monoesters. Biodiesel could be easily prepared from animal fats, vegetable oils, oleaginous microbial biomass, pine trees, soybean and others [2-5]. Herein, there are many advantages of biofuel including renewable, less-flammability, and cheaper fuels as compared with the traditional fuel, reducing greenhouse gas emissions, and others. Although, the major challenge of biofuel production in the large scale is connected with the purification of its undesired impurities, including glycerides, glycerol, water, methanol, soap/catalyst, free fatty acids, and others [3-6]. Due to this, it is highly important to remove glycerol from the biofuels content. Glycerol causes many problems in the biofuel content including i) storage problems, ii) setting problems, iii) injector fouling, iv) engine durability, v) deposition in the bottom of the fuel tank, vi) decantation and others [6-10]. At this stage, there are many ways to remove glycerol from biofuel, and one of the important ways is related to the extraction of glycerol from biofuel by the Natural Deep Eutectic Solvents.
In the modern society, the Natural Deep Eutectic Solvents are new types of Deep Eutectic Solvents, Ionic Liquids, and traditional solvents. Hence, the Natural Deep Eutectic Solvents have attracted great attention of the scientists, because of their many advantages, including the formation from the natural compounds, high stabilization and extraction potential, bio-degradable, simple preparation technique, low cost, sustainability, low volatility and others [10-13]. Sequentially, there are many applications of the Natural Deep Eutectic Solvents, including i) stabilization, enzyme reactions, iii) extraction, iv) biotransformation, v) bioactivity enhancement, vi) purification of biofuels and others [13-15]. Interestingly, some Natural Deep Eutectic Solvents have been explored, which can extract glycerol from biofuel [13-17]. For example, 1:1 mixture of glycerol
and quaternary ammonium salt has been implemented to remove glycerol from biofuel, and consequently, it has been found that choline chloride and glycerol -based Natural Deep Eutectic Solvent has been effective in removal of glycerol from the biofuel content [18]. For instance, 51 wt% of glycerol has been extracted from biofuel via choline chloride and glycerol - based Natural Deep Eutectic Solvent at the ratio of 1:1 [18]. Moreover, choline chloride/trifluoroacetamide, and choline chloride/ethylene glycol - based Natural Deep Eutectic Solvents have been shown also as an effective for the extraction of glycerol from palm oil derived biofuel [19]. In addition, Shahbaz et al. reveal that the Natural Deep Eutectic Solvents formed from methyltriphenylphosphonium bromide and ethylene glycol are highly effective for the removal of the glycerols, diglycerides, and monoglycerides from the biofuels content [20]. In this line, a comprehensive investigation of the formation mechanism of methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents and their application in the extraction of glycerol from biofuel via Natural Deep Eutectic Solvents are important at the molecular level [17-25].
Herein, we are going to study the intermolecular formation of the trimethylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents and their extraction ability of glycerol from biofuel, using the quantum chemical calculation. We had implemented the PM3 method of the HyperChem software for quantum chemical calculations. Basically, we have studied the optimized structures, energies, molecular electrostatic maps, and molecular orbitals for the formation of the Natural Deep Eutectic Solvents and extraction of glycerol from biofuel via the Natural Deep Eutectic Solvents.
2. Methods and materials
The HyperChem with the PM3 method have been implemented for quantum chemical calculations in order to get optimized structures, calculate molecular electrostatic potentials, molecular orbitals, bond distances, and energies[25]. Herein, we have selected methyltriphenylphosphonium bromide (MTPPBr), ethylene glycol as a computational model of the Natural Deep Eutectic Solvents (NADES), and glycerol with methyl linoleate as a model of biofuel.
The designed simulation systems are presented in Table 1. As can be seen in Table 1, initially we have performed quantum chemical calculations for pure methyltriphenylphosphonium bromide (MTPPBr), ethylene glycol, and then the mixture of methyltriphenylphosphonium bromide (MTPPBr) and ethylene glycol as a Natural Deep Eutectic Solvent. After that, we have simulated a pure modeled biofuel, which consists of glycerol and methyl linoleate as a mixture and as a separate form. Finally, we have performed the quantum chemical calculations for the process of extraction of glycerol from biofuel via methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents.
Table 1 - The designed simulation system for the study of the Natural Deep Eutectic Solvent Its formation and application in the extraction of glycerol from biofuel
MTPPBr EthyleneGlycol Glycerol MethylLinoleate IntendedPurpose
1 - - - PureMTPPBr
- 1 - - PureEthyleneGlycol
1 1 - - NADES
- - 1 - PureGlycerol
- - - 1 PureBiofuel
- - 1 1 Biofuel
1 1 1 1 Extraction
Ebinding = EaB - (Ea -Eb) (1)
The calculation formula for binding energy is shown in equation 1. By the analytical calculations of the second derivatives of energy, stationary points have been confirmed to be the minima for their potential energy surfaces, respectively.
3. Results
The formation mechanism of methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents. The 2D structures of methyltriphenylphosphonium bromide, ethylene glycol, glycerol, and methyl linoleate are presented in Figure 1. Firstly, to study the intermolecular interactions for the formation of the Natural Deep Eutectic Solvents, we have studied the methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents in terms of the optimized structures, molecular electrostatic maps, molecular orbitals and energies. We have begun our quantum chemical calculations analysis on methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solventsas can be seen in Figure 2, 3, 4 and in Table 2.
Figure 1 -The 2D chemical structures of A) methyltriphenylphosphonium bromide, B) ethylene glycol, C) glycerol, and D) methyl linoleate.
Figure 2 - The quantum chemical calculation -
based optimized structures of methyltriphenylphosphonium bromide, ethylene glycol, and the Natural Deep Eutectic Solvents. The key colors: black: hydrogen; grey: carbon; green: phosphorus; red: oxygen; yellow: bromide.
Figure 3 — The quantum chemical calculation - Figure 4 — The quantum chemical calculation -
based molecular electrostatic maps of based molecular orbitals of
methyltriphenylphosphonium bromide, ethylene methyltriphenylphosphonium bromide, ethylene
glycol, and the Natural Deep Eutectic Solvents. glycol, and the Natural Deep Eutectic Solvents.
Table 2 - Energies for the formation of the Natural Deep Eutectic Solvents. Unit: kcal/mol
MTPPBr Ethylene Glycol Natural Deep Eutectic Solvent
Energy (kcal/mol) -69182.50 -21044.70 -90331.40
Extraction of Glycerol from Biofuel via the Natural Deep Eutectic Solvents. Secondly, we have studied the extraction of glycerol from biofuel via the Natural Deep Eutectic Solvents. Herein, we have analyzed quantum chemically calculated optimized structures, molecular electrostatic maps, molecular orbitals, and energies for extraction process of glycerol from biofuel via the Natural Deep Eutectic Solvents as can be seen in Figure 5-7 and in Table 3.
Figure 5 - The quantum chemical calculation -based optimized structures of the Natural Deep Eutectic Solvents, glycerol, and methyl linoleate.
The key colors: black: hydrogen; grey: carbon; green: phosphorus; red: oxygen; yellow: bromide.
Figure 6 — The quantum chemical calculation -based molecular electrostatic maps of the Natural
Deep Eutectic Solvents, glycerol, and methyl linoleate. The key colors: black: hydrogen; grey: carbon; green: phosphorus; red: oxygen; yellow: bromide.
Figure 7 - The quantum chemical calculation - based molecular orbitals of the Natural Deep Eutectic Solvents, glycerol, and methyl linoleate. The key colors: black: hydrogen; grey: carbon; green: phosphorus; red: oxygen; yellow: bromide.
Table 3 - Energies for the formation of the Natural Deep Eutectic Solvents, glycerol, and methyl linoleate. Unit: kcal/mol
Glycerol Methyl Linoleate Natural Deep Eutectic Solvent + Biofuel
Energy (kcal/mol) -31376.50 -77595.70 -199310.00
4. Discussion
The first part of our work has been devoted to the study the formation of methyltriphenylphosphonium bromide ethylene glycol - based Natural Deep Eutectic Solvents. Initially, we have built and optimized the geometrical structure of a pure methyltriphenylphosphonium bromide, ethylene glycol, and their mixture as a Natural Deep Eutectic Solvent. Figure 2 has illustrated the results of the optimized structures of the methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvent. It can be seen clearly that bromine ion acts as a connecting agent between the methyltriphenylphosphonium and ethylene glycol. Moreover, the shortest distances between bromine and methyltriphenylphosphonium, and between bromine and ethylene glycol have been 4.92 A and 4.01 A, respectively.
Secondly, we have studied the molecular electrostatic maps for the geometrical structure of a pure methyltriphenylphosphonium bromide, ethylene glycol, and their mixture as a Natural Deep Eutectic Solvent. Figure 3 has illustrated the results of the molecular electrostatic maps of the methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvent. It can be seen that the charges are localized around the bromine ion which is located between methyltriphenylphosphonium and ethylene glycol.
Thirdly, the HOMO and LUMO molecular orbitals have been represented for the geometrical structure of a pure methyltriphenylphosphonium bromide, ethylene glycol, and their mixture as a Natural Deep Eutectic Solvent. Figure 4 has illustrated the results of HOMO-LUMO of the methyltriphenylphosphonium
bromide and ethylene glycol - based Natural Deep Eutectic Solvent. We can note from Figure 4 that the HOMO orbital is mainly located around bromine ion, while LUMO is populated around phenyl group of the formed Natural Deep Eutectic Solvent.
Fourthly, the total energy for MTPPBr has been -69182.50 kcal/mol, and the total energy for ethylene glycol has been -21044.70 kcal/mol, while the total energy for the formation of Natural Deep Eutectic Solvent has been around -90331.40 kcal/mol. Herein, the binding energy for this formation process of the Natural Deep Eutectic Solvent can be calculated as below:
Ebinding= -90331.40 kcal/mol - (-69182.50 kcal/mol - 21044.70 kcal/mol) = -104.2 kcal/mol
Herein, a low value of Ebinding as observed in the above calculation suggests a low melting point of the methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvent, as compared with the constituent components.
The second part of our work is related to the extraction of glycerol from biofuel via the Natural Deep Eutectic Solvents. Initially, we have been built and optimized the geometrical structure of a pure glycerol, methyl linoleate, and their mixture as a biofuel with the Natural Deep Eutectic Solvent. Figure 5 has illustrated the results of the optimized structures of the glycerol, methyl linoleate-based biofuel in the presence of the Natural Deep Eutectic Solvent. It can be seen clearly that bromine ion acts as a connecting agent between the glycerol, methyltriphenylphosphonium and ethylene glycol. Moreover, the shortest distances between bromine and glycerol, between bromine and methyltriphenylphosphonium, and between bromine and ethylene glycol have been 2.43 A, 2 .62 A and 2.65 A, respectively.
Secondly, we have studied the molecular electrostatic maps for the geometrical structure of a pure glycerol, methyl linoleate, and their mixture as a biofuel with the Natural Deep Eutectic Solvent. Figure 6 has illustrated the results of molecular electrostatic maps of the glycerol, methyl linoleate, and their mixture as a biofuel with the Natural Deep Eutectic Solvent. It can be seen that the charges are localized around the bromine ion, which is located via glycerol, methyltriphenylphosphonium and ethylene glycol.
Thirdly, the HOMO and LUMO molecular orbitals have been represented for the geometrical structure of a glycerol, methyl linoleate, and their mixture as a biofuel with the Natural Deep Eutectic Solvent. Figure 7 has illustrated the results of HOMO-LUMO of the glycerol, methyl linoleate, and their mixture as a biofuel with the Natural Deep Eutectic Solvent. We can note from Figure 7 that the HOMO orbital is mainly located around bromine ion, while LUMO is populated around phenyl group of the formed Natural Deep Eutectic Solvent.
Fourthly, the total energy for glycerol has been -31376.50 kcal/mol, and the total energy for methyl linoleate has been -77595.70 kcal/mol, and the formation energy of the Natural Deep Eutectic Solvent has been -90331.40 kcal/mol, while the total energy for the extraction process of glycerol from biofuel by the Natural
Deep Eutectic Solvent has been around -199310.00 kcal/mol. Herein, the binding energy for this formation process of the Natural Deep Eutectic Solvent can be calculated as below:
Ebinding= -199310.00 kcal/mol - (-31376.50 kcal/mol -77595.70 kcal/mol -90331.40 kcal/mol) = -6.40 kcal/mol
Herein, a low value of Ebinding as observed in the above calculation suggesting a preferred extraction efficiency of the glycerol from methyl linoleate-based biofuel via the Natural Deep Eutectic Solvents.
5. Conclusion
In this work, the formation of methyltriphenylphosphonium bromide and ethylene glycol - based Natural Deep Eutectic Solvents and then the extraction of glycerol from biofuel via Natural Deep Eutectic Solvents have been studied via the quantum chemical calculations.
The first part of our work has demonstrated that bromine ion acts as a connecting agent between the methyltriphenylphosphonium and ethylene glycol according to the optimized structures, molecular electrostatic maps, molecular orbitals, and energies.
In the the second part of our work we have concluded that the bromine ion acts as an extracting and connecting agent within glycerol, the methyltriphenylphosphonium and ethylene glycol.
The current work could help us make the rational design and improve the extraction process of glycerol from biofuel by the Natural Deep Eutectic Solvents.
Funding: This research has been supported by the grant №AP08052504 from the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan.
Conflict of Interests: No conflict of interests.
ТАБ^И ТЕРЕЦ ЭВТЕКТИКАЛЬЩ ЕР1ТК1ШТЩ МЕТИЛТРИФЕНИЛФОСФОРЛЫ БРОМИД1 ЖЭНЕ ЭТИЛЕНГЛИКОЛ НЕГ1З1НДЕГ1 ТУЗ1ЛУ МЕЗАНИЗМ1Н ЖЭНЕ ОНЫЦ БИООТЫНДЫ ТАЗАЛАУДА ЦОЛДАНЫЛУЫН ЕСЕПТ1К ЖОЛМЕН ЗЕРТТЕУ
Ж.А Сайлау1*, Н.Ж. Алмас2, Ц. Тоштай1, А А. Алдонгаров3, Е.А Аубакиров1
'эл-Фараби атындагы К,азац ¥лттыц ynrnepcumemi, Алматы, Казахстан 2Astana IT University, Астана, Казахстан
3Л.Н. Гумилев атындагы Еуразия ¥лттыц Университетi, Астана, Казахстан E-mail: sailau. online@gmail. com
Туйшдеме. Kipime. Биодизель-казiрri тавда дэстYрлi отынньщ эргYрлi TYрлерiн алмастыра алатын тиiмдi отынньщ TYрi. Биоотынньщ баска отын TYрлерiнен кептеген артыкшылыктары бар, оньщ шшде жацартылатын, аз тутангыш жэне дэстYрлi отынмен салыстырганда арзанырак, парниктiк газдар шыгуыньщ азаюы жэне тагы баска. Дегенмен, аукымды ендiрiстегi биоотын ендiрiсшщ негiзгi мшдет оньщ глицерин, су, метанол, сабын/катализатор, бос майкышкылдары, глицеридтер жэне тагы баска кажетйз коспаларын тазартумен байланысты. Бул жерде глицеринб иоотынньщ кажетаз коспасы болып табылады, ол I) жанармай багыньщ TYбiнде тундыру, II) декантация, III) козгалткыштьщ узак жумыс iстеу проблемалары, IV) орнату акаулары, V) инжектордьщ ластануы, VI) сактау мэселесi жэне баскалар. Демек, глицериндi жоюдьщ кептеген жолдары бар жэне мунда
бiр балама - табиги терец эвтектикалык ерiткiштер аркылы биодизельден глицериндi алу. Табиги терец евтектикалык ерiткiштер баска ерiткiштерден артьщшылыгы багасы арзан, экологияга зиянсыз, денсаулыкка каушиз, кол жетiмдi жэне тагы баска артыкшылыктары бар. Бул жумыстыц мацсаты табиги терец эвтектикалык ерiткiш ретшде метилтрифенилфосфоний бромидi мен этиленгликоль коспасыналып, биоотыннан глицериндi осы коспамен ке^ру. ЭдктемеЫ. Бiз табиги терец эвтектикалык ер^юштер ретiнде метилтрифенилфосфоний бромидiнiц жэне этиленгликольдщ TYзiлу механизмiн зерттедiк, содан кешн HyperChem багдарламалык жасактамасын пайдалана отырып, кванттык химиялык есептеулердi енпзу аркылы табиги терец эвтектикалык ер^юштер аркылы биоотыннан глицериндi алдык. Ж^мыстыц нэтижелерi. Нэтижелер оцтайландырылган курылымдарга, байланыс узындыгына, энергияларга жэне тагы баскага сэйкес бром, метилтрифенилфосфоний жэне этиленгликоль арасында KYШтi иондык жэне ковалентпк езара эрекеттесулердiц бар екенiн керсетед^ Цорытынды. Биоотыннан глицериндi алу непзшен табиги терец эвтектикалык ерiткiштiц бром ионы аркылы ЖYзеге асырылады, ал табиги терец эвтектикалык ергтюштщ курылымы осы процестен кейiн езгерiссiз калады, бул оныц турактылыгын бiлдiредi жэне кайта пайдалануга болатын керсетедi.
Туйшда сездер: метилтрифенилфосфор бромид,этиленгликоль, глицерин, биоотын,экстракция
Сайлау Жасулан Асхатулы курс докторанты
Алмас Нурлан Жумабекулы l^i курс постдокторанты
Тоштай Цайнаубек PhD доктор
Алдонгаров Ануар Акылханоеич PhD доктор, доцент
Аубакирое Ермек Айтцазыулы химия гылымдарыныц докторы, профессор
ВЫЧИСЛИТЕЛЬНОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА ОБРАЗОВАНИЯ ПРИРОДНОГО ГЛУБОКОГО ЭВТЕКТИЧЕСКОГО РАСТВОРИТЕЛЯ НА ОСНОВЕ МЕТИЛТРИФЕНИЛФОСФОНИИ БРОМИДА И ЭТИЛЕНГЛИКОЛЯ И ЕГО ПРИМЕНЕНИЯ В ОЧИСТКЕ БИОТОПЛИВА
Ж.А. Сайлау1*, Н.Ж. Алмас2, К. Тоштай1, А.А. Алдонгаров3, Е.А Аубакирое1
'Казахский Национальный Университет имени аль-Фараби, Алматы, Казахстан 2Astana IT University, Астана, Казахстан
3Евразийский Национальный Университет имени Л.Н. Гумилева, Астана, Казахстан E-mail: sailau. online@gmail. com
Резюме. Введение. Биодизель - эффективное топливо, способное сегодня заменить различные виды традиционного топлива. Биотопливо имеет много преимуществ по сравнению с другими видами топлива, в том числе возобновляемость, менее воспламеняющееся и более дешевое, чем традиционное топливо, более низкие выбросы парниковых газов и многое другое. Однако основная проблема производства биотоплива в крупномасштабном производстве связана с очисткой его нежелательных примесей, таких как глицерин, вода, метанол, мыло/катализатор, свободные жирные кислоты, глицериды и другие. Здесь глицерин является нежелательной примесью биотоплива, которая приводит к проблемам, включая I) отложение на дне топливного бака, II) декантацию, III) проблемы с долговечностью двигателя, IV) проблемы с настройками, V) загрязнение форсунок, VI) проблемы с хранением и другие. Следовательно, существует множество способов удаления глицерина, и в данном случае одной из альтернатив является извлечение глицерина из биодизельного топлива с помощью натуральных растворителей глубокой эвтектики. Преимущества природных глубинных эвтектических растворителей перед другими растворителями заключаются в их дешевизне, экологичности, безопасности для здоровья, доступности и т.д. Целью данной работы является удаление глицерина из биотоплива смесью метилтрифенилфосфония бромида и этиленгликоля в качестве природного растворителя глубокой
эвтектики. Методология. Мы исследовали механизм образования бромистого метилтрифенилфосфония и этиленгликоля в качестве природных растворителей глубокой эвтектики, а затем извлекли глицерин из биотоплива с помощью природных растворителей глубокой эвтектики путем реализации квантово-химических расчетов с использованием программного обеспечения Нурег^ет. Результаты. Результаты показывают сильные ионные и ковалентные взаимодействия между бромом, метилтрифенилфосфонием и этиленгликолем в соответствии с оптимизированными структурами, длинами связей, энергиями и т. д. Заключение. Извлечение глицерина из биотоплива в основном осуществляется ионом брома природного растворителя глубокой эвтектики, при этом структура природного растворителя глубокой эвтектики после этого процесса остается неизменной, что свидетельствует о его стабильности и возможности повторного использования.
Ключевые слова: метилтрифенилфосфоний бромид, этиленгликоль, глицерин, биотопливо, экстракция
Сайлау Жасулан Асхатулы докторант 3-го курса
Алмас Нурлан Жумабекович постдокторант1-го курса
Тоштай Кайнаубек доктор PhD
Алдонгаров Ануар Акылханович доктор PhD, доцент
Аубакиров Ермек Айтказынович доктор химических наук, профессор
References
1. Flexer V., Brun N., Courjean O., Backov R., Mano, N. Porous mediator-free enzyme carbonaceous electrodes obtained through integrative chemistry for biofuel cells. Energy & Environmental Science, 2011, 4(6), 2097-2106.
2. Labbe N. J., Seshadri V., Kasper T., Hansen N., OBwald P., Westmoreland, P. R. Flame chemistry of tetrahydropyran as a model heteroatomic biofuel. Proceedings of the Combustion Institute,2013, 34(1), 259-267.
3. Lucassen A., Labbe N., Westmoreland P. R., Kohse-Hoinghaus K. Combustion chemistry and fuel-nitrogen conversion in a laminar premixed flame of morpholine as a model biofuel. Combustion and flame, 2011, 158(9), 1647-1666.
4. Gude, V. G. (Ed.). Green chemistry for sustainable biofuel production. CRCPress, 2018.
5. Wen D., Liu W., Herrmann A. K., &Eychmuller A. A membraneless glucose/O2 biofuel cell based on Pd aerogels. Chemistry-A European Journal, 2014, 20(15), 4380-4385.
6. Liu Y., Wang M., Zhao F., Liu B., Dong S. A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix. Chemistry-A European Journal, 2005, 11(17), 4970-4974.
7. Liu T., & Khosla C. Genetic engineering of Escherichia coli for biofuel production. Annual review of genetics, 2010, 44, 53-69.
8. Vaz S. A renewable chemistry linked to the Brazilian biofuel production. Chemical and Biological Technologies in Agriculture, 2014, 1(1), 1-6.
9. Bhosale M. V. K., Kulkarni S. G., Kulkarni P. S. Ionic liquid and biofuel blend: a low-cost and high performance hypergolic fuel for propulsion application. ChemistrySelect, 2016, 1(9), 1921-1925.
10. Cooney M. J., Svoboda V., Lau C., Martin G., Minteer S. D. Enzyme catalysed biofuel cells. Energy & Environmental Science, 2008, 1(3), 320-337.
11. Paiva A., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R. C. Natural deep eutectic solvents-solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2014, 2(5), 1063-1071.
12. Liu Y., Friesen J. B., McAlpine J. B., Lankin D. C., Chen S. N., Pauli G. F. Natural deep eutectic solvents: properties, applications, and perspectives. Journal of natural products, 2018, 81(3), 679-690.
13. Dai Y., van Spronsen J., Witkamp G. J., Verpoorte R., Choi Y. H. Natural deep eutectic solvents as new potential media for green technology. Analytica chimica acta,2013, 766, 61-68.
14. Misan A., Nadpal J., Stupar A., Pojic M., Mandic A., Verpoorte R., Choi Y. H. The perspectives of natural deep eutectic solvents in agri-food sector. Critical reviews in food science and nutrition, 2020, 60(15), 2564-2592.
15. Yang Z. Natural deep eutectic solvents and their applications in biotechnology. Application of ionic liquids in biotechnology, 2018, 31-59.
16. De los AngelesFernandez M., BoiteuxJ., Espino M., Gomez F. J., Silva, M. F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica chimica acta, 2018, 1038, 1-10.
17. Yang T. X., Zhao L. Q., Wang J., Song G. L., Liu H. M., Cheng H., Yang, Z. Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 2017, 5(7), 5713-5722.
18. Hayyan M., Mjalli F. S., Hashim M. A.,Al Nashef, I. M. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 2010, 91(1), 116-120.
19. Shahbaz K., Mjalli F. S., Hashim M. A., Al-Nashef, I. M. Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. Journal of applied sciences, 2010, 10(24), 3349-3354.
20. Shahbaz K., Mjalli F. S., Hashim M. A., Al Nashef, I. M. Using deep eutectic solvents based on methyl triphenylphosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy & Fuels, 2011, 25(6), 2671-2678.
21. Daneshjou S., Khodaverdian S., Dabirmanesh B., Rahimi F., Daneshjoo S., Ghazi F., Khajeh K. Improvement of chondroitinases ABCI stability in natural deep eutectic solvents. Journal of Molecular Liquids, 2017, 227, 21-25.
22. Cunha S. C., & Fernandes J. O.Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry, 2018, 105, 225-239.
23. Aroso I. M., Paiva A., Reis R. L., Duarte A. R. C. Natural deep eutectic solvents from choline chloride and betaine-Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.
24. Bajkacz S., & Adamek J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food analytical methods, 2018, 11(5), 1330-1344.
25. Elstner, M., Jalkanen, K. J., Knapp-Mohammady, M., Frauenheim, T., &Suhai, S. Energetics and structure of glycine and alanine based model peptides: Approximate SCC-DFTB, AM1 and the PM3 methods in comparison with the DFT, HF and MP2 calculations. Chemical Physics, 2001, 263(2-3), 203219.