Научная статья на тему 'CYANOBACTERIA AS A FEEDSTOCK FOR THE PRODUCTION OF BIOFUELS'

CYANOBACTERIA AS A FEEDSTOCK FOR THE PRODUCTION OF BIOFUELS Текст научной статьи по специальности «Промышленные биотехнологии»

CC BY
12
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CYANOBACTERIA / PHOTOSYNTHESIS / BIOFUELS / BIOHYDROGEN

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — Bozieva Ayshat M., Sinetova Maria A., Kupriyanova Elena V., Voloshin Roman A., Zharmukhamedov Sergey K.

В настоящее время во всем мире разрабатываются и широко внедряются различные технологии использования биомассы фототрофных микроорганизмов в энергетических и сырьевых целях, среди которых особое внимание привлекают цианобактерии и микроводоросли как потенциальные производители так называемого биотоплива "третьего поколения” - биоводорода. Разработка эффективных методов получения различных видов топлива из сырья биологического происхождения и его использование в сочетании с традиционными ископаемыми видами топлива позволят решить многие проблемы в энергетическом секторе. Целью нашего исследования была оценка характеристик, важных для потенциальных продуцентов биоводорода, таких как фотосинтетическая активность и скорость роста штаммов цианобактерий.Currently, all over the world, various technologies for using the biomass of phototrophic microorganisms for energy and raw material purposes are being developed and widely implemented, among which cyanobacteria and microalgae attract special attention as potential producers of so called "third generation” biofuel - biohydrogen. The development of effective methods for obtaining various types of fuel from raw materials of biological origin and its use in conjunction with traditional fossil fuels will solve many problems in the energy sector. The purpose of this study was to assess the characteristics important for potential biohydrogen producers, such as photosynthetic activity and growth rate of cyanobacterial strains.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CYANOBACTERIA AS A FEEDSTOCK FOR THE PRODUCTION OF BIOFUELS»

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ

Естественно-математические науки

УДК 579.69

Ayshat M. Bozieva1 Maria A. Sinetova1, Elena V. Kupriyanova1, Roman A. Voloshin1, Sergey K.

2 12 Zharmukhamedov , Suleyman I. Allakhverdiev '

1 K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,

Botanicheskaya Street 35, Moscow 127276, Russia

2 Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow

Region 142290, Russia

Corresponding author: Ayshat M. Bozieva, [email protected] CYANOBACTERIA AS A FEEDSTOCK FOR THE PRODUCTION OF BIOFUELS

Abstract. Currently, all over the world, various technologies for using the biomass of phototrophic microorganisms for energy and raw material purposes are being developed and widely implemented, among which cyanobacteria and microalgae attract special attention as potential producers of so called "third generation" biofuel - biohydrogen. The development of effective methods for obtaining various types of fuel from raw materials of biological origin and its use in conjunction with traditional fossil fuels will solve many problems in the energy sector.

The purpose of this study was to assess the characteristics important for potential biohydrogen producers, such as photosynthetic activity and growth rate of cyanobacterial strains.

Keywords: Cyanobacteria, Photosynthesis, Biofuels, Biohydrogen

Аннотация. В настоящее время во всем мире разрабатываются и широко внедряются различные технологии использования биомассы фототрофных микроорганизмов в энергетических и сырьевых целях, среди которых особое внимание привлекают цианобактерии и микроводоросли как потенциальные производители так называемого биотоплива "третьего поколения" - биоводорода. Разработка эффективных методов получения различных видов топлива из сырья биологического происхождения и его использование в сочетании с традиционными ископаемыми видами топлива позволят решить многие проблемы в энергетическом секторе.

Целью нашего исследования была оценка характеристик, важных для потенциальных продуцентов биоводорода, таких как фотосинтетическая активность и скорость роста штаммов цианобактерий.

Introduction

Hydrogen (H2) is a universal, efficient and sustainable source of energy. Hydrogen does not emit pollutants when used and it can be produced by living organisms. As a result of hydrogen oxidation, water is formed, which makes it possible to use it as an environmentally friendly energy carrier. All this makes H2 an attractive option in the search for renewable, environmentally friendly alternatives to fossil fuels [1-6].

The promising candidates capable of photobiological hydrogen production are cyanobacteria and microalgae. These are the only organisms capable of both oxygenic photosynthesis and hydrogen production [7,8]. Cyanobacteria are characterized by the ability to use sunlight as the only source of energy for hydrogen production, to survive in extreme conditions, and also to grow on relatively simple nutrient media [7,9,10].

Materials and methods

The objects of this work were the following collection strains of cyanobacteria: Synechocystis sp. PCC 6803 GT (control), Cyanobacterium sp. IPPAS B-1200, Dolichospermum

5

© Bozieva A.M. , Sinetova M.A., Kupriyanova E.V., Voloshin R.A., Zharmukhamedov S.K., Allakhverdiev S.I., 2022

sp. IPPAS B-1213 and Sodalinema gerasimenkoae IPPAS B-353. The cultivation of cyanobacteria in laboratory conditions was carried out photoautotrophically in glass vessels with 200 mL of an appropriate culture medium (BG-11, Zarruka, BG-11-N, S), under average illumination of 230 |imol photons/ (m s) from warm white LED and aeration with a sterile air-gas mixture enriched with 1.5% CO2. The cultivation temperature mode was selected in accordance with the temperature optimum for each strain. For the Dolichospermum sp. IPPAS B-1213 the optimum temperature for cultivation was determined during the experiment. The culture growth was evaluated based on the increase in optical density at 750 nm (OD750) and the biomass. To obtain dry biomass the samples were sedimented via centrifugation and washed with distilled water, and the pellet was dried in preweighed tubes for 24 h at 80°C.

The pigment composition was analyzed spectrophotometrically in a methanol extract as described in the protocol [11]. The oxygen evolution rate was measured using a Clark electrode consisting of a platinum cathode and a silver anode immersed in a KCl solution and separated from the test solution by a teflon membrane (Oxytherm System, Hansatech). Mathematical data processing was carried out using OriginPro 9.1 software.

Results and discussion

The following results were obtained in the experiments: it has been found that the optimal cultivation temperature for cyanobacteria Dolichospermum sp. IPPAS B-1213 was 35°C. On the 6th day of cultivation, OD750 of Dolichospermum sp. IPPAS B-1213 culture was 6.829, while the initial OD750 was 0.004. Dolichospermum sp. IPPAS B-1213 and Cyanobacterium sp. IPPAS B-1200 showed photosynthetic activity of 122 and 129 |imol O2 mg-1 Chl h-1, respectively. For the Sodalinema gerasimenkoae IPPAS B-353 the oxygen evolution rate was 181 prnol O2 mg-1 Chl h-1.

The best biomass doubling times were obtained for Cyanobacterium sp. IPPAS B-1200 and Dolichospermum sp. IPPAS B-1213 - 5.4 and 8.1 hours, respectively. The results of the study allow us to conclude that the cells of the selected strains of cyanobacteria are highly active: they have a high potential for growth and photosynthesis, which is an important requirement for cyanobacteria, which can be promising hydrogen producers. The data obtained allow us to reasonably assume that the selected strains can be used as the potential effective generators of molecular hydrogen.

Conclusions

Cyanobacteria, which have higher photosynthetic efficiency compared to that of plants and algae, can better serve for the purpose of hydrogen production in a more economical and environmentally sustainable manner, and can replace a significant portion of fossil fuels [12,13]. Cyanobacteria are a promising source of biomass for biofuel production due to their rapid growth and high productivity. The search and characterization of previously unexplored strains of cyanobacteria are necessary to identify the most promising biofuel producers.

Acknowledgement

The results were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation (project No. 121033000136-4) and with the support from Russian Science Foundation (project No. 22-44-08001).

REFERENCES

1. Aziz M. Integrated hydrogen production and power generation from microalgae // International Journal of Hydrogen Energy. - 2016. - 41. - P.104-112.

2. Khetkorn W., Rastogi R.P., Incharoensakdi A., Lindblad P., Madamwar D., Pandey A., Larroche C. Microalgal hydrogen production - a review // Bioresource Technology. - 2017. -243. - P.1194-1206.

3. Kufryk G. Advances in utilizing cyanobacteria for hydrogen production // Advances in Microbiology. - 2013. - 3. - P.60-68.

4. Hosseini S.E. and Wahid M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development // Renewable and Sustainable Energy Reviews. - 2016. - 57. - P.850-866.

5. Edwards P.P., Kuznetsov V.L., David W.I.F. Hydrogen Energy // Philosophical Transactions of the Royal Society. - 2007. - 365(1853). - P.1043-1056.

6. Nath K., Najafpour M.M., Voloshin R.A., Balaghi S.E., Tyystja E., Timilsina R., Eaton-Rye J.J., Tomo T., Nam H.G., Nishihara H., Ramakrishna S., Shen J.-R., Allakhverdiev S.I. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies // Photosynthesis Research. - 2015. - 126. - P.237-247.

7. Lindblad P. The potential of using cyanobacteria as producers of molecular hydrogen. Editor(s): Miyake J, Igarashi Y, Rogner M, Biohydrogen III. - 2004. - P.75-82.

8. Parmar A., Singh N.G., Pandey A., Gnansounou E., Madamwar D. Cyanobacteria and microalgae: A positive prospect for biofuels // Bioresource technology. - 2011. - 102. -P.10163-10172.

9. Skizim N.J., Ananyev G.M., Krishnan A., Dismukes G.Ch. Metabolic pathways for photobiological hydrogen production by nitrogenase- and hydrogenase-containing unicellular cyanobacteria Cyanothece // The Journal of Biological Chemistry. - 2012. - 287(4). - P.2777-2786.

10. Sadvakasova A.K., Kossalbayev B.D., Zayadan B.K., Bolatkhan K., Alwasel S., Najafpour M.M., Tomo T., Allakhverdiev S.I. Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity // Renewable and Sustainable Energy Reviews. - 2020. - 133. - P.110054.

11. Zavrel T., Sinetova M.A., Cerveny J. Measurement of сhlorophyll a and сarotenoids ^^entra^on in сyanobacteria // Bio-protocol. - 2015. - 5(9). - e1467.

12. Farrokh P., Sheikhpour M., Kasaeian A., Asadi H., Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review // Biotechnology Progress. - 2019. -35(5). - e2835.

13. Zahra Z., Choo D.H., Lee H., Parveen A. Cyanobacteria: Review of Current Potentials and Applications // Enviroments. - 2020. - 7(13).

Информация об авторах

А.М. Бозиева - аспирант;

М.А. Синетова - кандидат биологических наук;

Е.В. Куприянова - кандидат биологических наук;

Р.А. Волошин - кандидат биологических наук;

С.К. Жармухамедов - кандидат биологических наук;

С.И. Аллахвердиев - доктор биологических наук.

Information about the authors

A.M. Bozieva - PhD student;

M.A. Sinetova - PhD;

E.V. Kupriyanova - PhD;

R.A. Voloshin - PhD;

S.K. Zharmukhamedov - PhD;

S.I. Allakhverdiev - Doctor of Science (Biology).

i Надоели баннеры? Вы всегда можете отключить рекламу.