Научная статья на тему 'Crystal and Molecular structures of Tris(3,5 – dinitrobenzoato) Disproziy (III) Dihidrat'

Crystal and Molecular structures of Tris(3,5 – dinitrobenzoato) Disproziy (III) Dihidrat Текст научной статьи по специальности «Химические науки»

CC BY
90
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
3 / 5 dinitrobenzoic acid / Ctystal structure / Disproziy / Unit cell / bidentanobridge liqands
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

In the crystal structure of the Tris(3,5 – dinitrobenzoato) Disproziy (III)dihidrat Dy C H N O H O n n n ( ) ( ) 7 3 2 63 2 2 [ ], disproziy ions are bridged by carboxylate qroups to from linear polymeric chains. The coordination around Dy is eightfold involving six O atoms from tris carboxylate qroups and two water O atoms. Within the polymeric chains, only the bridging type of bonding exists. The Dy-O distances of the bridging carboxylate qroups 2 2964 8 3530 17 . ( ) ( ) and 2. Å   are shorter than the Dy-O distances 2 441 2 2 509 2 . . ( ) ( ) −   Å involving the water molecules.

Текст научной работы на тему «Crystal and Molecular structures of Tris(3,5 – dinitrobenzoato) Disproziy (III) Dihidrat»

Crystal and Molecular structures of Tris- (3,5 - dinitrobenzoato) Disproziy (III) Dihidrat

монобромидного комплекса кобальта и ионов Со 3+. Так, продолжительность протекания процесса совпадает со временем существования в растворе ионов Со 3+ и монобромида кобальта. Полибромидные комплексы кобальта, по-видимому, не обладают каталитической активностью, так как изменение их концентраций не оказывает заметного влияния на скорость процесса, и при их разрушении реакция продолжается. С другой стороны, наибольшая начальная скорость превращения достигается в опытах с высокой концентрацией аммиака, отличающихся и более высокими концентрациями монобромид-ной формы КБК и Со 3+.

Выводы

1. Показано, что протекание реакции жидкофазного окислительного аммонолиза п-ксилола в растворе бензонитрила обусловлено наличием ионов Со 3+ и бромидных комплексов Со 2+ с растворителем. Наибольшей каталитической активностью обладает моно-обромидная форма КБК.

2. В ходе процесса происходит вытеснение ионов Br- из внутренней сферы комплексов молекулами NH3 , приводящее к изменению состава КБК и, в конечном итоге образованию каталитически не активных аммиакатных комплексов, после чего реакция прекращается.

Список литературы:

1. Suzuki K. e. a. Liqnid-Phase Ammooxidation ofMonoalkylbenzene under normal Pressure.//J. Japan. Petrol Jast. - 1971. - V. 14. - No 2. - P. 96-100.

2. А. С. 467066 (СССР). Способ получения толунитрила./Т. Н. Шахтахтинский и др. Опубл. Б. И. -1975. - № 14.

3. Кожарова Л. И., Шик Г. Л., Шахтахтинский Т. Н. Исследование состава кобальт-бромидного комплекса в бензонитриле.//Азерб. хим. журн. - 1979. - № 6. - С. 24-30.

4. Кожарова Л. И. Взаимодействие кислорода и аммиака с кобальт-бромидным катализатором жидкофазного окислительного аммонолиза.//Азерб. хим. журн. - 2009. - № 1. - С. 87-92.

5. Кожарова Л. И., Насири Ф. М., Султанова Р. С., Шахтахтинский Т. Н. Влияние кислорода и аммиака на формирование кобальт-бромидного катализатора окислительного аммонолиза./V Всероссийская конференция «Физико-химические процессы в конденсированных средах и на межфазных границах». - Фагран, 2010. - Том II. - С. 551-552.

6. Carter M. J., Rillema D. R., Bassolo J. Oxygen carrier and redox properties of Some neutral Cobalt Chelates.//J. Amer. Chem. Soc. - 1974. - V. 96. - P. 302-400.

Maharramov Abel Mamedali oglu, Rector of Baku State University, Azerbaijan Republic Movsumov Elman Mahammed oglu, Azerbaijan State Agrarian University, professor Asgerov Rizvan Kamil oglu, Baku State University, dosent Kasumova Samira Ali kizi, dissertant E-mail: elman1@mail.ru

Crystal and Molecular structures of Tris- (3,5 - dinitrobenzoato) Disproziy (III) Dihidrat

Abstract: In the crystal structure of the Tris- (3,5 - dinitrobenzoato) Disproziy (Ill)dihidrat [Dyn (C7H3N2O6)3n (H2O )2n ],disproziy ions are bridged by carboxylate qroups to from linear polymeric 17

17

Section 3. Inorganic chemistry

chains. The coordination around Dy is eightfold involving six O atoms from tris carboxylate qroups and two water O atoms. Within the polymeric chains, only the bridging type of bonding exists. The Dy-O distances of the bridging carboxylate qroups [2.2964(8) and 2.3530(17)Ä ] are shorter than the Dy-O distances [2.441(2)-2.509(2)Ä ] involving the water molecules.

Keywords: 3,5 dinitrobenzoic acid, Ctystal structure, Disproziy, Unit cell, bidentano- bridge liqands.

Introduction

Review of the corrently known crystal structures of Lantanide carboxylates shows that, complex structures include mainly dimery, simplect dimer in the structure is a dimery with two bidenate bridging carboxylate groups [1; 2; 3]. In the present study, we describe the structure of the Dy (III) complex, which shows only the bridging type of bonding within the polymeric chain.

In all our descriptions structures of aqua complexes, the water molecules coordinated to the central metals as a neytral liqands [4; 5; 6]. As a shown in the description structure of complexes,

Table 1. - Crystal data and :

the molecules of water is used to supplement the coordination number of metals and filling voidsto the formation of a hydrogen bonds for the formation of a polymeric structure.

Experimental

Single crystal of (3,5-(NO2)-C6H3CO2)3 Dy • • 2H2O for X-ray difractiion analysis prepared by the reaction of aqueous solutions of Dy (NO3)3 • 6H2O and sodium 3,5-dinitrobenzo-ate taken in a relation 1^3. The mixture of the solutions heated to boiling was cooled to room temperature. After several days, brown crystals preparated from the mixture. jcture refinement for Dy (III)

Empirical formula C21 H14 N6 O20.50

Formula weight 837.30

Temperature 570 (2)K

Wavelength 0.71073Ä

Crystal system triclinic

Space group P-1

Unit cell dimensions a = 9.2840 (7)Ä b = 11.5190(8) Ä c = 13.7390 (10) Ä

volume 1397.061 (18) Ä 3 a = 107.6250 (10)° ß = 90.570 (2)° Y = 93.5100 (10)°

Z 2

Density (calculated) 1.990 Mg/m 2

Absorption coefficient 2.639 mm-1

F(000) 822

Crystal size Theta range for 0.20 x 0.20 x 0.20 mm

data collections ° 1.86 to 33.29

index ranges -14 <= 14; -17 <= 17; -20 <= 21

Reflections collected 22068

Independent reflections 10571 [R (int ) = 0.0285]

completeness to theta = 33.29° 98.1 %

Max. and min. transmission 0.6204 and 0.6204

Refinement method full- matrix least-

Data/restraints/ parameters squares on F 2 10571/8/470

Goodness -of fit on F 2 1.047

Final R indices R1 = 0.0317

[1 > 2sigma(1)] wR2 = 0.0729

R indices (all data) R1 = 0.0404,

Largest diff. peak and hole wR2 = 0.0773 2.983 and -1.175e.Ä-3

18

Crystal and Molecular structures of Tris- (3,5 - dinitrobenzoato) Disproziy (III) Dihidrat

Table 2. - Atomic coordinates (x 10 4) and equivalent isotropic displacement parameters (A 2 x 10 3)

Atoms x y z U (eq)

1 2 3 4 5

Dy1 2299 (1) 120 (1) 4916 (1) 21 (1)

O (l) 1705 (2) 2203 (2) 5375 (2) 32 (1)

O (2) 553(2) -1465 (2) 4650 (2) 33 (1)

O (3) 947 (2) 101 (2) 3490 (1) 31 (1)

O (4) 1427 (2) 443 (2) 6595 (1) 30 (1)

O (5) 4301 (2) 1072 (2) 5895 (2) 33 (1)

O (6) 3405 (2) -1321 (2) 3591 (2) 33 (1)

O (7) 3280 (2) -1350 (2) 5660(2) 34 (1)

O (8) 3752 (2) 1277 (2) 3939 (2) 37 (1)

O (9) 2808 (3) 6578 (2) 6804 (2) 60 (1)

O (10) 1131(3) 7830 (2) 7070 (2) 58 (1)

O (11) -3832(3) 6292 (3) 6386 (3) 78 (1)

O (12) -4370 (3) 4353 (3) 579 (2) 57 (1)

O (13) -3437 (3) -701 (3) -124 (2) 61 (1)

O (14) -2233 (4) -1658 (3) -1418 (2) 68 (1)

O (15) 2768 (4) -2282(4) -944 (2) 76 (1)

O (16) 3574 (3) -2185 (3) 539 (2) 70 (1)

O (17) 8163 (3) 5485 (3) 8561 (2) 61 (1)

O (18) 6707 (3) 6468 (2) 9689 (2) 60 (1)

O (19) 1622 (3) 5269 (3) 9265 (3) 93 (1)

O (20) 867 (3) 3585 (3) 8145 (2) 59 (1)

O (21A) 5279(16) 900 (10) 2157(10) 75 (3)

O (21b) 5067 (18) 321 (11) 2059 (11) 75 (3)

N (1) 1548 (3) 6797 (2) 6817 (2) 39 (1)

N (2) -3510(3) 5234 (3) 6096 (2) 42 (1)

N (3) -2377 (3) -1210(3) -501 (2) 44 (1)

N (4) 2631 (3) -2072 (3) -36 (2) 48 (1)

N (5) 6991(3) 5616 (2) 8972 (2) 42 (1)

N (6) 1824 (3) 4343 (3) 8587 (2) 47 (1)

C (1) -108 (3) 3610 (2) 5840 (2) 25 (1)

C (2) 923 (3) 4593 (2) 6173 (2) 28 (1)

C (3) 454 (3) 5761 (2) 6489 (2) 30 (1)

C (4) -981 (3) 6007 (2) 6485 (2) 33 (1)

C (5) -1960(3) 5012 (2) 6136 (2) 31 (1)

C (6) -1594(3) 3817 (2) 5821 (2) 28 (1)

C (7) 382 (3) 2329 (2) 5495 (2) 25 (1)

C (8) -141 (3) -795(2) 1869 (2) 28 (1)

C (9) -1326(3) -819 (2) 1237 (2) 31 (1)

C (10) -1160 (3) -1246 (3) 185(2) 33 (1)

C (11) 104 (4) -1679 (3) -254 (2) 38 (1)

C (12) 1249 (3) -1646 (3) 405 (2) 35 (1)

C (13) 1158(3) -1207 (3) 1455 (2) 32 (1)

C(14) -222 (3) -333(2) 3020 (2) 25(1)

19

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Section 3. Inorganic chemistry

1 2 3 4 5

C (15) 5007(3) 2763 (2) 7316(2) 25 (1)

C (16) 6137 (3) 3601 (2) 7792 (2) 27 (1)

C (17) 5809 (з) 4695 (2) 8487(2) 32 (1)

C (18) 4411 (з) 4973 (3) 8758(2) 37 (1)

C (19) 3330 (з) 4096 (2) 8295 (2) 33 (1)

C (20) 3584 (3) 3007 (2) 7572(2) 29 (1)

C(21) 5318(2) 1624 (2) 6480(2) 231(1)

Table 3. - Bond lengths [ Ä ]

Bond d, Ä Bond d, Ä Bond d, Ä

DY1-O (5) 2.2964 (18) O (17)-N (5) 1.213 (4) C (5)-C (6) 1.386 (4)

DY1-O (2) 2.3051 (18) O (18)-N (5) 1.226 (3) C (6)-H (6) 0.9300

DY1-O (3) 2.3103 (19) O (19)-N (6) 1.212 (4) C (7)-O (2)#1 1.247 (3)

DY1-O (6) 2.3530 (17) O (20)-N (6) 1.222 (4) C(8)-C(13) 1.387 (4)

DY1-O (4) 2.3814 (18) O (21A)-H (21A) 0.82 (2) C (8)-C (9) 1.388 (4)

DY1-O (1) 2.3903 (18) O (21a)-H (21H) 0.82 (2) C (8)-C (14) 1.513 (3)

DY1-O (7) 2.441 (2) O (21A)-H (21c) 1.40 (5) C (9)-C (10) 1.392 (4)

DY1-O (8) 2.509 (2) O (21a)-H (21D) 1.00 (10) C (9)-H (9) 0.9300

O (1)-C (7) 1.253 (3) O (21b)-H (21a) 1.46 (3) C(10)-C(11) 1.376 (4)

O (2)-C (7)#1 1.247 (3) O (21B)-H (21b) 0.88 (11) C (n)-C (12) 1.381 (4)

O (3)-C (14) 1.253 (3) O (21b)-H (21C) 0.82 (2) C (11)-H (11) 0.9300

O (4)-C (14)#1 1.258 (3) O (21b)-H (21D) 0.83 (2) C(12)-C(13) 1.381 (4)

O (5)-C (21) 1.243 (3) N(1)-C(3) 1.476 (4) C (13)-H (13) 0.9300

O (6)-C (21)#2 1.252 (3) N (2)-C (5) 1.480 (4) C (14)-O (4)#1 1.258 (3)

O (7)-H (7A) 0.820 (18) N(3)-C(10) 1.475 (4) C(15)-C(16) 1.392 (3)

O (7)-H (7b) 0814 (18) N (4)-C (12) 1.471 (4) C (15)-C (20) 1.394 (3)

O (8)-H (8A) 0813 (19) N(5)-C(17) 1.471 (4) C(15)-C(21) 1.505 (3)

O (8)-H (8b) 0.817 (18) N(6)-C(19) 1.479 (4) c (16)-c (17) 1.385 (3)

O (9)-N (1) 1.211 (4) C (1)-C (6) 1.388 (3) C (16)-H (16) 0.9300

O (10)-N (1) 1.222 (3) C (1)-C (2) 1.396 (3) C(17)-C(18) 1.383 (4)

O (11)-N (2) 1.219 (4) C (1)-C (7) 1.507 (3) C(18)-C(19) 1.381 (4)

O (12)-N (2) 1.216 (4) C (2)-C (3) 1.382 (4) C (18)-H (18) 0.9300

O (13)-N (3) 1.216 (4) C (2)-H (2) 0.9300 C (19)-C (20) 1.379 (3)

o (h)-n (3) 1.220 (4) C (3)-C (4) 1.379 (4) C (20)-H (20) 0.9300

O (15)-N (4) 1.206 (4) C (4)-C (5) 1.379 (4) C(21)-O (6)#2 1.252 (3)

O (16)-N (4) 1.212 (4) C (4)-H (4) 0.9300

Table 4. - Bond angles [°]

Angle w, deg. Angle w, deg. Angle w, deg.

1 2 3 4 5 6

O (5)-DY1-O (2) 144.23 (8) C (7)-O (1)-DY (1) 130.07 (16) C (5)-C (6)-C (1) 118.5 (2)

O (5)-DY1-O (3) 142.21 (7) DY1-O (7)-H (7A) 121 (3) O (2)-C (7)-O (1) 124.2 (2)

O (2)-DY1-O (3) 73.37 (7) O (9)-N (1)-O (10) 123.7 (3) O (2)-C (7)-C (1) 118.1 (2)

O (5)-DY1-O (6) 100.05 (6) O (9)-N (1)-C (3) 118.2 (2) O(1)-C (7)-C (1) 117.7 (2)

O (2)-DY1-O (6) 81.90 (7) O (10)-N (1)-C (3) 118.0 (3) C (13)-C (8)-C (9) 120.5 (2)

O (3)-DY1-O (6) 77.39 (7) O (12)-N (2)-O (11) 124.7 (3) C (13)-C (8)-C (14) 118.0 (2)

20

Crystal and Molecular structures of Tris- (3,5 - dinitrobenzoato) Disproziy (III) Dihidrat

1 2 3 4 5 6

O (5)-DY1-O (4) 78.72 (7) O (12)-N (2)-C (5) 118.0 (3) C (9)-C (8)-C (14) 121.5 (2)

O (2)-DY1-O (4) 78.55 (7) O (11)-N (2)-C (5) 117.3 (3) C (8)-C (9)-C (10) 118.0 (3)

O (3)-DY1-O (4) 126.01 (6) O (13)-N (3)-O (14) 124.1 (3) C (11)-C (10)-C (9) 123.2 (3)

O (6)-DY1-O (4) 142.18 (7) O (13)-N (3)-C (10) 118.2 (3) C (11)-C (10)-N (3) 117.7 (3)

O (5)-DY1-O (1) 79.19 (7) o (h)-n (3)-c (10) 117.7 (3) C (9)-C (10)-N (3) 119.0 (3)

O (2)-DY1-O (1) 121.96 (7) O (15)-N (4)-O (16) 123.6 (3) C (10)-C (11)-C (12) 116.6 (3)

O (3)-DY1-O (1) 79.43 (7) O (15)-N (4)-C (12) 118.5 (3) C (n)-C (12)-C (13) 122.8 (3)

O (6)-DY1-O (1) 139.59 (7) O (16)-N (4)-C (12) 117.9 (3) C (11)-C (12)-N (4) 118.2 (3)

O (4)-DY1-O (1) 77.85 (7) O (17)-N (5)-O (18) 124.9 (3) C (13)-C (12)-N (4) 119.0 (3)

O (5)-DY1-O (7) 72.76 (7) O (17)-N (5)-C (17) 118.0 (2) C (12)-C (13)-C (8) 118.9 (3)

O (2)-DY1-O (7) 73.78 (7) O (18)-N (5)-C (17) 117.1 (3) O (3)-C (14)-O (4)#1 126.9 (2)

O (3)-DY1-O (7) 138.25 (7) O (19)-N (6)-O (20) 124.2 (3) O (3)-C (14)-C (8) 115.4 (2)

O (6)-DY1-O (7) 73.12 (7) O (19)-N (6)-C (19) 117.9 (3) O (4)#1-C (14)-C (8) 117.7 (2)

O (4)-DY1-O (7) 70.47 (7) O (20)-N (6)-C (19) 117.9 (3) C (16)-C (15)-C (20) 120.3 (2)

O (0-DY1-O (7) 140.91 (7) C (6)-C (1)-C (2) 120.2 (2) C (16)-C (15)-C (21) 119.8 (2)

O (5)-DY1-O (8) 71.49 (8) C (6)-C (1)-C (7) 120.6 (2) C (20)-C (15)-C (21) 119.8 (2)

O (2)-DY1-O (8) 140.41 (7) C (2)-C (1)-C (7) 119.2 (2) C (17)-C (16)-C (15) 118.5 (2)

O (3)-DY1-O (8) 71.86 (7) C (3)-C (2)-C (1) 118.4 (2) C (18)-C (17)-C (16) 122.9 (2)

O (6)-DY1-O (8) 72.61 (7) C (3)-C (2)-H (2) 120.8 C (18)-C (17)-N (5) 118.3 (2)

O (4)-DY1-O (8) 138.55 (7) C (1)-C (2)-H (2) 120.8 C (16)-C (17)-N (5) 118.9 (3)

O (0-DY1-O (8) 68.89 (7) C (4)-C (3)-C (2) 123.3 (2) C (19)-C (18)-C (17) 116.5 (2)

O (7)-DY1-O (8) 124.16 (7) C (4)-C (3)-N (1) 118.4 (2) C (20)-C (19)-C (18) 123.3 (2)

C (7)-O (1)-DY (1) 113.16 (15) C (2)-C (3)-N (1) 118.3 (2) C (20)-C (19)-N (6) 118.5 (3)

C (7)#-O (2)-DY (1) 179.42 (17) C (5)-C (4)-C (3) 116.3 (2) C (18)-C (19)-N (6) 118.2 (2)

C (14)-O (3)-DY (1) 141.60 (17) C (4)-C (5)-C (6) 123.3 (2) C (19)-C (20)-C (15) 118.4 (2)

C (14)-O (4)-DY (1) 136.11 (16) C (4)-C (5)-N (2) 118.2 (2) O (5)-C (21)-O (6)#2 124.8 (2)

C (21)-O (5)-DY (1) 175.47 (17) C (6)-C (5)-N (2) 118.5 (3) O (5)-C (21)-C (15) 117.7 (2)

O (6)#2-C (21)-C (15) 117.4 (2)

Results and discussion

In the polymeric molecule of complex Dy (III), the Dy atoms coordinated by sixs oxygen atoms of the trys carboxylic group, and two atoms O of the molecul water. Coordination number of Dy is eight (Fig. 1). Crystal structure consists of altemating along the axis “b” in the two- dimensional periodic layers. Fig. 1 shows projection of the structure in planes (100). As can be seen from the structure of the molecule can be split into indential chaind parallel to axis “a”. From these proejections can be seen that, there is an analojy between the way patch reference environment of neghiboring atoms in the Dy structure and Ce atoms in the tetramer Ce (3,5-di-nitrobenzoato)3 • dihidrate [4].

The distance between the Dy atoms of oxygen of the carboxyle groups bidantate- cyclic liqand 2.3103 (19)Ä and 2.3814 (18)Ä, and bridging

carboxylate qroups Dy-O (5) 2.2964 (18)Ä, Dy-O (6) 2.3530 (17)Ä. In diference the structure (4-H2N-C6H4CO2)3Dy • 3H2O [x] and Nd (4-H2N-C6H4-CO2)3 • H2O [x] one of carboxylate qroups coordinated to the metals by xelating type [n], Dy (1)-O (1) = 2.283 (3)Ä and Dy (1)-O (4) = 2.263 (2)Ä. C-O distance in the carboxylic qroups are equivalents and the average is 1.245Ä. The average value of the bond lengths in the aromatic rings 1,41 Ä within exactly the same as with a standart value of 1.395 Ä for the aromatic C-C bonds.The average value of the anqles in the benzole rings are 120°. Distance between carbon atoms of the phenyl ring and karboxyl group-C = 1.507 (3)Ä with the de-tault values for the other metal complexs derivatives of benzoic acid.

For cyclic — bidentate liqand maximum observed compared with other liqands dihedral

21

Section 3. Inorganic chemistry

anqle 20° between the phenyl ring and the of the carboxyl groups.

Corresponding anqles to the other two liqands not outclasses 9 °. Apparently a velatively lage degree on associated the requirments of the packqe.

As in neighboring layers and between them are carried out in hydrogen bonds involvinq hydrogen atoms of water molecules.

In all our dicryptions structures of aqua complexes, the water molecules coordinated to the central metals as a neytral liqands. As a shown in the description structure complexes Dy (III), the molecules of water is used bunly to supplement the coordination number of metals and filling voids to the formation of a hydrogen bonds for the formation of a polymeric structure.

Fig 1. The molecular structure of Dy (III) with the atom-numbering scheme and ellipsoide drawn at the 50 % probability level

References:

1. Hiyalov M. S., Amiraslanov i. R., Mamedov Ch. S. and Movsumov E. M.//J. Struct. Chem. (USSR). -1981. - T. 22. - Р. 113-119.

2. Nawaz Tahir M., Dinger Ülkü and Movsumov Elman M. Acta cryst. - 1996. - C 52, 1449-1451.

3. Nawaz Tahir M., Dinger Ülkü, Movsumov Elman M. and Tuncer Hökelek. Acta cryst. - 1997. -C 53, 176-179.

4. Nawaz Tahir M., Dinger Ülkü and Movsumov Elman M. Acta cryst. - 1996. - C 52, 593-595.

5. Hiyalov M. S., Amiraslanov 1 R., Mamedov Ch. S. and Movsumov E. M. DAN Azerb. SSR. - 1981. -T. 37. -Р. 42-45.

6. Hiyalov M. S., Amiraslanov i. R., Mamedov Ch. S. and Movsumov E. M.//Russion Journal of Coordination Chemisrty. - 1981. - T. 7. - Р. 445-449. 22

22

i Надоели баннеры? Вы всегда можете отключить рекламу.