Научная статья на тему 'CONNECTION OF DISCIPLINARY APPROACHES IN ENGINEERING EDUCATION: POTENTIAL OF CONSTRUCTIVE TECHNOLOGIES'

CONNECTION OF DISCIPLINARY APPROACHES IN ENGINEERING EDUCATION: POTENTIAL OF CONSTRUCTIVE TECHNOLOGIES Текст научной статьи по специальности «Науки об образовании»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
polytechnic education / approaches to the education of engineers / duality / STEAM technology / convergence in education / transdisciplinarity / innovative design / integrated knowledge / политехническое образование / подходы в образовании инженеров / дуальность / технология STEAM / конвергенция в образовании / трансдисциплинарность / инновационное проектирование / интегрированное знание

Аннотация научной статьи по наукам об образовании, автор научной работы — Tatyana Yu. Krotenko

The situation in which the world currently finds itself reveals a number of problems in the training of engineers and stimulates the polytechnic education system to adapt and effectively develop in accordance with modern requirements. Current changes in the field of education are largely due to the discovery of resources that reinforce the concept of continuous, goal-oriented engineering learning. Training in a dual format is characterized by two key aspects: on the one hand, it is a deep theoretical training of future specialists in the field of design, programming and technology; on the other hand, it is the formation of students’ skills in solving specific production problems. Transdisciplinarity acts as the cornerstone and main direction in the progress of technological education. In educational methods, elements are beginning to be seen that can materialize the concepts of duality and transdisciplinarity in the form of specific educational courses. This article examines the relationship and interdependence of the factors described above. Despite noticeable transformations, the problems of engineering education remain relevant. The article undertakes an analysis of the key aspects and potential of the STEAM approach. The basis of the study is the analysis of theoretical concepts in the field of engineering economics, polytechnic education, technological entrepreneurship and the coordination of disciplinary approaches in the process of training future engineers. An analysis of scientific and practical research and the pedagogical process in the field of technological education was carried out. In November 2023, a survey of experts was conducted aimed at identifying problems and prospects for STEAM education. The research suggests that progress in the field of technology education can be stimulated by the development of transdisciplinary scientific works and projects, convergent technologies, as well as the practice of solving real problems through the joint efforts of specialists from various professional groups.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СОПРЯЖЕНИЕ ДИСЦИПЛИНАРНЫХ ПОДХОДОВ В ИНЖЕНЕРНОМ ОБРАЗОВАНИИ: ПОТЕНЦИАЛ КОНСТРУКТИВНЫХ ТЕХНОЛОГИЙ

Ситуация, в которой находится мир в настоящее время, выявляет ряд проблем в обучении инженеров и стимулирует систему политехнического образования к адаптации и эффективному развитию в соответствии с современными требованиями. Текущие изменения в области образования во многом обусловлены открытием ресурсов, которые подкрепляют концепцию непрерывного инженерного обучения, ориентированного на достижение определенной цели. Обучение в дуальном формате характеризуется двумя ключевыми аспектами: с одной стороны, это глубокая теоретическая подготовка будущих специалистов в области конструирования, программирования и технологии; с другой стороны, это формирование у студентов навыков решения конкретных производственных задач. Трансдисциплинарность выступает в роли краеугольного камня и основного направления в прогрессе технологического образования. В учебных методиках начинают просматриваться элементы, способные материализовать концепции дуальности и трансдисциплинарности в виде конкретных образовательных курсов. В данной статье рассматривается взаимосвязь и взаимозависимость описанных выше факторов. Несмотря на заметные трансформации, проблематика инженерного образования остается актуальной. В статье предпринят анализ ключевых аспектов и потенциала подхода STEAM. Основой проведенного исследования служит анализ теоретических концепций в области инженерной экономики, политехнического обучения, технологического предпринимательства и согласования дисциплинарных подходов в процессе подготовки будущих инженеров. Проведен анализ научных-практических исследований и педагогического процесса в сфере технологического образования. В ноябре 2023 г. был осуществлен опрос экспертов, направленный на выявление проблем и перспектив STEAM-образования. Исследование свидетельствуют о том, что прогресс в области технологического образования может быть стимулирован развитием трансдисциплинарных научных работ и проектов, конвергентных технологий, а также практикой решения реальных проблем совместными усилиями специалистов из различных профессиональных групп.

Текст научной работы на тему «CONNECTION OF DISCIPLINARY APPROACHES IN ENGINEERING EDUCATION: POTENTIAL OF CONSTRUCTIVE TECHNOLOGIES»

Научная статья

DOI: 10.15593/2224-9354/2024.2.2 УДК 377.031.4

T.Yu. Krotenko

CONNECTION OF DISCIPLINARY APPROACHES IN ENGINEERING EDUCATION: POTENTIAL OF CONSTRUCTIVE TECHNOLOGIES

The situation in which the world currently finds itself reveals a number of problems in the training of engineers and stimulates the polytechnic education system to adapt and effectively develop in accordance with modern requirements. Current changes in the field of education are largely due to the discovery of resources that reinforce the concept of continuous, goal-oriented engineering learning.

Training in a dual format is characterized by two key aspects: on the one hand, it is a deep theoretical training of future specialists in the field of design, programming and technology; on the other hand, it is the formation of students' skills in solving specific production problems. Transdisciplinarity acts as the cornerstone and main direction in the progress of technological education. In educational methods, elements are beginning to be seen that can materialize the concepts of duality and transdisciplinarity in the form of specific educational courses. This article examines the relationship and interdependence of the factors described above.

Despite noticeable transformations, the problems of engineering education remain relevant. The article undertakes an analysis of the key aspects and potential of the STEAM approach. The basis of the study is the analysis of theoretical concepts in the field of engineering economics, polytechnic education, technological en-trepreneurship and the coordination of disciplinary approaches in the process of training future engineers.

An analysis of scientific and practical research and the pedagogical process in the field of technological education was carried out. In November 2023, a survey of experts was conducted aimed at identifying problems and prospects for STEAM education. The research suggests that progress in the field of technology education can be stimulated by the development of transdisciplinary scientific works and projects, convergent technologies, as well as the practice of solving real problems through the joint efforts of specialists from various professional groups.

Keywords: polytechnic education, approaches to the education of engineers, duality, STEAM technology, convergence in education, transdisciplinarity, innovative design, integrated knowledge.

Introduction. Metaphor plays a key role not only in making our ideas easier for others to understand, but also in our own understanding of things. It is not just a tool of expression metaphor is also an important tool of thinking. It serves as a tool of the mind that allows us to reach the farthest reaches of our conceptual space. Objects that are closest to us, easily mastered, allow the mind to penetrate to distant and elusive concepts. Metaphor thus extends the «limits» of our intellect. A «silver bullet» acts as a metaphor for a technological breakthrough, representing a comprehensive solution to complex issues or problems. In conditions of unstable economic growth, constantly developing technologies, including digital ones, require adequate engineering education. On the other hand, technological education, exhausted from continuous reforms, in turn, yearns for a solution similar to a «silver bullet» [1, p. 18].

© Кротенко Т.Ю., 2024

Tatyana Yu. Krotenko - Cand. Sc. (Philosophy), Associate Professor, Department of Management Theory and Organization, State University of Management, e-mail: krotenkotatiana@rambler.ru.

Modern philosophy of vocational training puts forward «duality» as one of the key aspects in the training of new wave engineers. This approach includes not only deep theoretical training, but also develops in future specialists the ability to effectively solve production problems. The second important and distinctive direction in the development of polytechnic education is transdisciplinarity. The «lines of demarcation» that previously strictly defined the boundaries between different fields of knowledge are now almost imperceptible. The boundaries between individual disciplines are becoming less rigid than they were 10-20 years ago, much more flexible and adaptive. In areas of crossroads of still «hostile» subject areas, the emergence of previously unimaginable areas of academic research takes place [2, p. 65].

Another result of the transdisciplinary approach is the activity and remarkable achievements of collaborative experimental communities, their impressive research products, which become the starting point for new experiments. Simultaneously, innovative technological designs are being founded on transdisciplinary concepts. The STEAM education model used in educational institutions today is the practical application of ideas stemming from a transdisciplinary approach. It brings together different disciplines: science (S), technology (T), engineering (E), art (A) and mathematics (M). The purpose of introducing this model, widely recognized in the field of pedagogy and engineering, is to counter the traditional isolation of academic disciplines, offering instead integrated and practical knowledge [3, p. 70]. Behind this lies a pedagogically sound desire to move forward together with students, using an interdisciplinary approach to knowledge. This represents an alternative to traditional teaching methods, which often ignore methodological knowledge and prefer to simply accumulate and memorize facts and information from many different subject areas [4, p. 7].

Unfortunately, modern methods of testing and assessing knowledge have largely moved the educational process away from the development of useful skills. It is these skills that, with a high degree of probability, ensure the applicability of acquired knowledge in real, multidisciplinary practice, bring the younger generation closer to engineering work and modern high-tech professions, and provide an opportunity for career growth in the technical field [5, p. 15].

For knowledge to effectively serve diverse practice, knowledge itself must be multifactorial and voluminous. At the same time, educators should avoid the desire to bombard students with a mass of information that grows exponentially at the boundaries of incompatible subject areas.

Materials and methods. Theoretical and practical facets of engineering education were analyzed using the methodological foundations derived from the web content of official pages of Russian secondary and higher educational institutions. This also facilitated the presentation of proposed arguments and conclusions. The key indicators were mentions in the description of the educational activities of these educational organizations of such terms as «engineering economics», «technological education», «interdisciplinary», «innovation», «STEAM education», «engineering design», «engi-

neering entrepreneurship». We drew attention to the positions of expert teachers working in schools, colleges and polytechnic universities, who in their daily activities are faced with current problems and opportunities for teaching within the framework of STEAM direction. In this study, various methods were used, including an analytical approach, generalization and systematization of theoretical and practical views on engineering economics, polytechnic education, transdisciplinarity, convergence in the educational field and the continuity of the learning process of a modern engineer. In addition, a review of individual scientific, pedagogical and experimental experience in the field of education was conducted, and a series of expert interviews were organized in November 2023. A comparison and generalization of the opinions of survey participants was carried out.

We asked fifty-seven participants a set of questions:

• What is your vision for STEAM technology?

• What, from your point of view, is the relevance and potential of the STEAM approach in the context of education?

• In what aspects do you see the superiority of STEAM technology compared to other techniques?

• What changes will the STEAM approach bring to the current educational landscape?

• At what stage of readiness is a modern school for the introduction of STEAM technologies?

Results. The majority of participants in our study agreed that engineering thinking and methods are the basis for STEAM technologies - this is the opinion of 88 % of respondents. For example, creating a full or partial model of a proposed product usually involves the use of 3D prototyping, which significantly reduces the time it takes to develop an experimental model. Thus, additive manufacturing becomes a kind of "workaround" technology, where after creating a CAD model, 3D printing follows. Translating a mental image into a technical concept is a task that is easily solved by people with an engineering approach to the worldview [6, p. 21]. First, the task is formulated in such a way that the expected outcome matches the plan as closely as possible. Then there is a detailed analysis of possibilities and implementation paths, which requires knowledge in various fields. This contributes to the formation and constant enrichment of a general scientific model of the world among students [7, p. 25]. In accordance with the STEAM model, students receive deep theoretical knowledge and immediately apply it in practice. Mathematics, physics, chemistry, biology, theory and practice of art are studied in conjunction and with the aim of solving a specific technological problem [8, p. eleven].

The majority of respondents (67 %) emphasize the active development of educational programs based on the STEAM model. Universities and technology parks are opening their gates to technology companies that have built experimental educational zones in their space. In such STEAM centers, pupils and students get the

chance to do real scientific work, as well as take part in engineering projects [9, p. 63]. About 72% of respondents develop this topic, arguing that Olympiads, robot fests, and tournaments are places for demonstrating and developing practical engineering skills, as well as competitive platforms that require up-to-date competencies and launch a «social elevator» to leading technical universities, and after appropriate education - to a company that is attractive for work [10, p. 79]. This format of interaction represents a mutual benefit for the university (allows testing of STEAM programs, provides the necessary industrial expertise with additional funding), students (provides guaranteed high-quality, individualized, hybrid training with skills that are in demand in the market, with an emphasis on teamwork and project activities, revealing their potential and adapting to the requirements of future employers), and technology companies (helps solve the problem with personnel and fulfill a number of strategic objectives of the company).

The use of STEAM technology allows us to look at educational traditions from a new angle, enriching their rational aspects with modern positive elements [11, p. 281]. Engineering design, based on the principles of STEAM, is becoming an important and dynamically developing area [12, p. 43]. Its significance increases as it represents scientific, humanitarian and artistic aspects in equal measure. 75 % of respondents stated this in various contexts. Here we are talking about the development of not only logical, but also creative thinking. The implementation of engineering solutions through technological entrepreneurship is an example of the synthesis of science and art [13, p. 35]. More than 78 % of respondents emphasize the relevance and effectiveness of this approach.

STEAM learning differs significantly from the classical approach: instead of pre-presenting educational material before practical tasks, STEAM first encourages experimentation and problem solving through trial and error, and then provides theoretical knowledge. This aspect was emphasized as important by 82 % of respondents.

Dialogues with participants in scientific research highlight the importance of transforming secondary and higher education to stimulate scientific and technological progress in Russia. According to 64 % of study participants, in order to increase the role of secondary schools in the scientific growth of the country, it is critical to pay attention to the insufficient preparation of students in the field of natural sciences. This is confirmed by the low level of interest in chemistry, physics, biology and poor results on the Unified State Exam and the Unified State Exam in these disciplines. One of the ways to solve the problem could be to change the approach to teacher training, develop their interdisciplinary knowledge and skills, develop experience in independent work and management of interdisciplinary research projects, as well as create a communicative space that can provide students with tools to solve emerging problems. problems and issues related to natural science training.

Modern students are a determining factor for the progress of our nation; they shape the image of its future. Therefore, it is extremely important to develop in them

skills and abilities that guarantee not only their personal success and well-being, but also support those competencies that serve as the key to the success of the country in which they grow up and in which they will live in the future.

There are several barriers to solving this problem today. It was said above that one of the key ones is the relatively low level of natural science education of a significant part of Russian schoolchildren. This level is largely determined by knowledge of chemistry and physics. The unsatisfactory results of graduates in general and unified exams in these subjects (especially over the last three years) indicate precisely this: achievements in the field of theory in these disciplines leave much to be desired. The number of students who received more than 80 points on the Unified State Exam in chemistry and physics is surprisingly small. It follows from this that modern school graduates are not sufficiently prepared to master disciplines related to technological production in higher and secondary specialized educational institutions (which, in turn, rely on knowledge of chemistry and physics). Regrettably, the educational institution fails to establish the requisite foundation for the emergence of proficient engineers, designers, or «technicians» - with the term being used in its most dignified sense - in the nation within a span of four to six years. This indicates a genuine threat to the country's technological sovereignty, which, we believe, directly depends on the quality of trained specialists.

Often, debates about the need for science education for schoolchildren seem ridiculous, especially in current realities. On the contrary, teaching physics and chemistry requires increased attention [14, p. 95]. Discussions about the importance of a deep understanding of these disciplines in school may seem unnecessary, since physics and chemistry cover almost all aspects of natural phenomena and are closely related not only to epistemology and philosophy, but also to everyday life. Any phenomenon, whether in life or nature, can be viewed from different angles and explained from the perspective of various disciplines. Nonetheless, contemporary Russian graduates encounter hurdles in elucidating numerous natural occurrences via the tenets of physics and chemistry. This is primarily due to the fact that these subjects are frequently imparted with inadequate depth, or are wholly omitted from the high school syllabus, a distinctive trait of today's specialized education [15, p. 247].

We must realize that what is at stake here is not simply the scientific literacy of each young individual, but the vulnerability to doubt of their ability to solve the practical problems that confront them in social life. Typically, these tasks represent an interdisciplinary challenge. There has always been a belief in the diversity and usefulness of physical science for explaining a wide range of natural phenomena, in its inextricable connection with epistemology and philosophy. However, contrary to common sense and expediency, today the importance of scientific literacy has faded into the background, which naturally led to a critically noticeable deficit of this literacy [16-19].

A series of studies devoted to the quality of education in schools indicates that modern graduates of Russian schools do not have sufficiently developed competen-

cies in the field of natural sciences. Consequently, when they become students, they are not able to act confidently in educational and life contexts related to natural science and technological processes.

Another problem that still remains unresolved is the fragmentation of knowledge across various disciplines. Although at first glance everything seems in order: terms such as «meta-subject educational results», «interdisciplinary concepts» and «universal learning activities» have become an integral part of the vocabulary of teachers and are actively used in their plans and reports. However, in reality, teachers rarely go beyond the boundaries of their subject, and students, accordingly, are practically devoid of ideas about the content of other disciplines, and sometimes even about their existence (this is about the question of the «picture of the world» of future professionals).

Reasons and quite logical justifications can be found for such isolation: actions within the framework of an interdisciplinary approach often lead to the fact that the results in specific disciplines remain invisible, which contradicts existing plans (according to 18 % of respondents); there is no clear and consistent picture of the organization of the educational process, since there is a lack of knowledge in related and other areas (47 %); there is a clear shortage of personnel to implement ambitious educational projects (36 %); significant technological problems and enormous labor costs arise in preparing the educational program (61 %); there is a noticeable discrepancy between the educational program and the curriculum (33 %); teachers are faced with a lack of teaching materials and, most importantly, educational resources for applying this approach (23 %) [20, p. 9].

Discussions. The Soviet and post-Soviet educational system cannot be accused of indifference to improving the quality of education. On the contrary, thanks to the inexhaustible reform potential, the desire to improve the educational process at all levels was constantly palpable, and measures were actively implemented to improve the quality of education. However, the field of science remained untouched by reforms. Disciplines such as physics, chemistry and mathematics have always been taught at a high theoretical level. But with regard to natural scientific literacy and the practical application of scientific achievements, one can note the insufficiency of training programs. Nevertheless, the state found ways to compensate for strategic mistakes in education, for example, through the import of high-tech goods or technologies. However, previously these shortcomings were not so obvious and did not have such an impact on the development of the country.

Thus, the problem of accelerating the technological progress of our country is becoming increasingly important. This entails the need for a more responsible approach to creating human resources that would be adapted for living in Russia and working in areas of its economy that require high scientific and technological knowledge [21-24].

Two key aspects play a decisive role in solving this problem:

1) This is the desire of every applicant or graduate of an educational institution to contribute to the good of their native country. This approach is formed under the

influence of the family and the long educational process organized by the school. Assuredly, the detailed and high-caliber instruction of humanities subjects, such as literature, geography, history, and social studies, among others, is pivotal. These subjects sketch a comprehensive worldview for an individual, shaping them into a competent professional;

2) The second factor under discussion is the capacity to reap benefits, a premise inherently associated with scientific disciplines.

We also delve into the issue of technological sovereignty, which is indeed foundational. This concept reflects a nation's capability to sustain the operation of its industrial sector, alongside scientific and technological advancement, thereby effectively utilizing its unique technologies and infrastructure. This, in turn, ensures economic independence, defense capability and the formation of balanced import and export policies. Consequently, today's world requires highly skilled workers, educated engineers, technologists and designers - those same «technical geniuses», dreamers and creators. The foundation of their technical literacy is laid through disciplines such as mathematics, physics and chemistry. One should acknowledge that the exceptional theoretical teaching quality in these disciplines, a hallmark of the Russian educational system, doesn't invariably correlate with the acquisition of equivalent high-level practical abilities, which are instrumental in driving technological advancement and national superiority. Undoubtedly, the development of natural science literacy by students should be accompanied by the formation of a worldview focused on love for the Motherland and the desire to benefit society.

Conclusion. If an educational institution is unable to fulfill its responsibilities, this entails profound risks. One of them is the threat to the nation associated with the inability to form a comprehensive, high-tech sovereignty. On the other hand, this poses a threat to the independence of students, who must look for useful and socially significant ways to use their abilities in order not to become a generation of «unnec-essary people». A threat also arises for the schools themselves, secondary and higher education, since they risk losing the state's trust in their ability to solve important educational and training tasks that are significant for society. Currently, one of these tasks is to ensure technological sovereignty. This is not a new problem. Not only the courage of the soldiers, but also the intellectual potential of the nation, the technological knowledge that was formed at a high level by the Soviet school before the Second World War, made it possible to create inventions and discoveries that accelerated the path to victory. Can the modern educational system contribute to the scientific and technological development of the country?

STEAM technology is closely related to given goals and has significant advantages in relation to other methods used to train engineers (IT specialists, Big Data specialists, software developers, information security specialists, designers of robotic systems and automatic devices, programmers working with neural networks). STEAM-based education includes elements of transdisciplinary and project-based

learning. As a result, we are seeing the emergence of the desired integrated form, which opens up opportunities for using the knowledge acquired during school and university years to create a useful product [25, p. 212].

In the context of educational strategy, we observe the development of critical thinking, and most importantly, the ability to think autonomously, which is extremely important, but difficult to achieve within the framework of a theoretical approach. This strengthens the confidence of pupils and students that they have chosen the right direction and are aware of their professional impact. Implementing technological ideas using modern tools strengthens their self-esteem and also allows them to gain a deeper understanding of their involvement in engineering. Teamwork provides an opportunity to test yourself as a leader or participant in a discussion, as well as make decisions together. The concept of duality of polytechnic education is embodied in specific projects that are important for the country's economy. This confirms the need for disciplinary synthesis in engineering education.

References

1. Stegnii V.N. Orientatsii studentov tekhnicheskogo vuza na tsennost' vysshego obrazovaniia v budushchem v usloviiakh tsifrovizatsii [Orientations of engineering university students at the value of higher education in future in the context of digitalization]. PNRPU Sociology and Economics Bulletin, 2023, no. 1, pp. 8-19. DOI: 10.15593/2224-9354/2023.1.1.

2. Rozin V.M. Refleksiia osnovanii mezhdistsiplinarnogo izucheniia sotsial'nosti [Reflection of the bases of interdisciplinary study of sociality]. Voprosy filosofii, 2020, no. 1, pp. 64-73. DOI: 10.21146/0042-8744-2020-1-64-73.

3. Danilaev D.P., Malivanov N.N. Kadrovoe obespechenie sistemy tekhnologicheskogo obrazovaniia molodezhi: problemy i puti resheniia [The technology education system staffing: Problems and solutions]. Vysshee obrazovanie v Rossii, 2021, no. 1, pp. 60-72. DOI: 10.31992/0869-3617-2021-30-1-60-72.

4. Zheregelia A.V. Osobennosti upravleniia sovremennoi organizatsiei pri realizatsii strategii tsifrovoi transformatsii [Features of modern organization management when implementing a digital transformation strategy]. Vestnik universiteta, 2023, no. 1, pp. 5-13. DOI: 10.26425/1816-4277-2023-1-5-13.

5. Brianskaia O.L. Modeli obucheniia, primeniaemye v sovremennoi mirovoi praktike vysshikh uchebnykh zavedenii [Teaching models used in modern world practice of higher education institutions]. Pedagogicheskie nauki, 2021, no. 5, pp.13-17.

6. Luksha P.O., Kushnir M.E., Chekalova L. "Nam nuzhen sleduiushchii perekhod - k cheloveku ekosistemnomu". Razgovor ob obrazovanii budushchego ["We need the next transition - to ecosystem man." Conversation about education of the future]. Obrazovatel'naiapolitika, 2021, no. 2, pp. 16-24. DOI: 10.22394/2078-838X-2021-2-16-24.

7. Merenkov A.V., Mel'nikova O.Ia. Praktiki organizatsii podgotovki inzhenernykh kadrov, vostrebovannykh industrii 4.0 [Organizational practices for the training of engineering personnel in demand by industry 4.0]. Inzhenernoe obrazovanie, 2021, no. 29, pp. 23-33. DOI: 10.54835/18102883_2021_29_2.

8. Didkovskaia Ia.V., Vishnevskii Iu.R., Lugin D.A. Innovatsionnyi potentsial molodezhi: motivatsiia uchastiia i bar'ery realizatsii molodezhnykh startapov [Innovation potential of young people: Motivation to make a startup and related obstacles]. PNRPU Sociology and Economics Bulletin, 2021, no. 1, pp. 8-20. DOI: 10.15593/2224-9354/2021.1.1.

9. Kondrat'ev V.V., Kazakova U.A. Ontologiia formirovaniia predstavleniia ob inzhenere innovatsionnogo tipa [Ontology of forming the image of innovative engineer]. Inzhenernoe obrazovanie, 2022, no. 31, pp. 58-66. DOI: 10.54835/ 18102883_2022_31_6.

10. Blinov V.I., Sergeev I.S. Veer vozmozhnostei: professional'noe obrazovanie 2020-2035 [Integration, convergence, or dismantling of the system? Scenario solutions in the development of vocational education: 2020-2035]. Obrazovatel'naia politika,

2020, no. 1, pp. 76-87. DOI: 10.22394/2078-838X-2020-1-76-86.

11. Rogozin D.M., Solodovnikova O.B., Ipatova A.A. Kak prepodavateli vuzov vosprinimaiut tsifrovuiu transformatsiiu vysshego obrazovaniia [How university teachers view the digital transformation of higher education]. Voprosy obrazovaniia, 2022, no. 1, pp. 271-300. DOI: 10.17323/1814-9545- 2022-1-271-300.

12. Osipova L.B. Osobennosti professional'noi sotsializatsii studentov v sisteme srednego professional'nogo obrazovaniia [Features of professional socialization of students in the system of secondary vocational education]. PNRPU Sociology and Economics Bulletin, 2023, no. 1, pp. 33-45. DOI: 10.15593/22249354/2023.1.3.

13. Oreshina M.N. Primenenie iskusstvennogo intellekta v innovatsionnoi deiatel'nosti promyshlennykh predpriiatii [The use of artificial intelligence in the innovation activities of industrial enterprises]. E-Management, 2021, vol. 4, no. 1, pp. 29-37. DOI: 10.26425/2658-3445-2021-4-1-29-37.

14. Pokholkov Iu.P. Podkhody k otsenke i obespecheniiu kachestva inzhenernogo obrazovaniia [Approaches to the assessment and quality assurance of engineering education]. Inzhenernoe obrazovanie, 2022, no. 31, pp. 93-106. DOI: 10.54835/18102883_2022_31_10.

15. Baskakova M.E., Soboleva I.V. Novye grani funktsional'noi negramotnosti v usloviiakh tsifrovoi ekonomiki [New dimensions of functional illiteracy in the digital economy]. Voprosy obrazovaniia, 2019, no. 1, pp. 244-263. DOI: 10.17323/ 1814-9545-2019-1-244-263.

16. Aganbegian A.G. O prioritetnom razvitii sfery ekonomiki znanii [On priority development of knowledge economy]. Ekonomicheskoe vozrozhdenie Rossii,

2021, no. 1 (67), pp. 15-22. DOI: 10.37930/1990-9780-2021-1-67-15-22.

17. Azoev G.L. Formirovanie novykh vostrebovannykh kompetentsii v oblasti tsifrovogo marketinga dlia ukrepleniia kadrovogo potentsiala i uskoreniia diversifikatsii oboronno-promyshlennogo kompleksa [Formation of new in-demand digital marketing competencies to strengthen human resource capacity and accelerate the diversification of defence industry complex]. E-Management, 2021, vol. 4, no. 4, pp. 66-76. DOI: 10.26425/2658-3445-2021-4-4-66-76.

18. Bodrunov S.D. Tekhnologicheskii progress: predposylki i rezul'tat sotsiogumanitarnoi orientatsii ekonomicheskogo razvitiia [Technological progress: Prerequisite and result of the socio-humanitarian direction of economic development]. Ekonomicheskoe vozrozhdenie Rossii, 2022, no. 1 (71), pp. 5-13. DOI: 10.37930/1990-9780-2022-1-71-5-13.

19. Stozhko D.K., Stozhko K.P. Sovershenstvovanie informatsionnykh tekhnologii upravleniia v usloviiakh makroekonomicheskoi nestabil'nosti [Improving information technologies of management under macroeconomic instability]. PNRPU Sociology and Economics Bulletin, 2021, no. 2, pp. 124-137. DOI: 10.15593/2224-9354/2021.2.10.

20. Romanova I.N. Nepreryvnoe obrazovanie pri podgotovke inzhenernykh kadrov [Lifelong education in engineering staff training]. Inzhenernoe obrazovanie, 2020, no. 28, pp. 7-10.

21. Chernavin Iu.A. Tsifrovoe obshchestvo: teoreticheskie kontury skladyvaiushcheisia paradigmy [Digital society: Theoretical outlines of the emerging paradigm]. Tsifrovaia sotsiologiia, 2021, vol. 4, no. 2, pp. 4-12. DOI: 10.26425/2658-347X-2021-4-2-4-12.

22. Molodchik N.A., Bragina D.S. Vneshnie i vnutrennie tsifrovye ekosistemy: rossiiskie praktiki [External and internal digital ecosystems: Russian practices]. PNRPU Sociology and Economics Bulletin, 2023, no. 1, pp. 142-158. DOI: 10.15593/2224-9354/2023.1.11.

23. Losev A.S. Printsipy upravleniia chelovecheskim kapitalom v tsifrovoi ekonomike [Principles of human capital management in the digital economy]. PNRPU Sociology and Economics Bulletin, 2022, no. 3, pp. 132-147. DOI: 10.15593/2224-9354/2022.3.10.

24. Arsaliev Sh.M.Kh., A.S. Andrienko Sistema pedagogicheskikh uslovii formirovaniia etnokul'turnoi kompetentnosti v polikul'turnom obrazovatel'nom prostranstve vysshei shkoly [The system of pedagogical conditions for ethnocultural competence formation in a higher school polycultural educational environment]. Informatika, vychislitel'naia tekhnika i inzhenernoe obrazovanie, 2019, no. 3 (36), pp.31-39.

25. Artemova O.V., Logacheva N.M., Savchenko A.N. Vliianie global'nykh vyzovov na kachestvo zhizni naseleniia rossiiskikh regionov v period pandemii [Effects of global challenges on life quality in Russian regions during the pandemic]. PNRPU Sociology and Economics Bulletin, 2022, no. 3, pp. 191-213. DOI: 10.15593/2224-9354/2022.3.14.

Список литературы

1. Стегний, В.Н. Ориентации студентов технического вуза на ценность высшего образования в будущем в условиях цифровизации / В.Н. Стегний // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. - 2023. - № 1. - С. 8-19. Б01: 10.15593/2224-9354/2023.1.1

2. Розин, В.М. Рефлексия оснований междисциплинарного изучения социальности / В.М. Розин // Вопросы философии. - 2020. - № 1. - С. 64-73. Б01: 10.21146/0042-8744-2020-1-64-73

3. Данилаев, Д.П. Кадровое обеспечение системы технологического образования молодежи: проблемы и пути решения / Д.П. Данилаев, Н.Н. Малива-нов // Высшее образование в России. - 2021. - № 1. - С. 60-72. Б01: 10.31992/0869-3617-2021-30-1-60-72

4. Жерегеля, А.В. Особенности управления современной организацией при реализации стратегии цифровой трансформации / А.В. Жерегеля // Вестник университета. - 2023. - № 1. - С. 5-13. Б01: 10.26425/1816-4277-2023-1-5-13

5. Брянская, О. Л. Модели обучения, применяемые в современной мировой практике высших учебных заведений / О.Л. Брянская // Педагогические науки. - 2021. - № 5. - С. 13-17.

6. Лукша, П. О. «Нам нужен следующий переход - к человеку экосистем-ному». Разговор об образовании будущего / П.О. Лукша, М.Э. Кушнир, Л. Че-калова // Образовательная политика. - 2021. - № 2. - С. 16-24. Б01: 10.22394/2078-838Х-2021-2-16-24

7. Меренков, А.В. Практики организации подготовки инженерных кадров, востребованных индустрий 4.0 / А.В. Меренков, О.Я. Мельникова // Инженерное образование. - 2021. - № 29. - С. 23-33. Б01: 10.54835/18102883_2021_29_2

8. Дидковская, Я.В. Инновационный потенциал молодежи: мотивация участия и барьеры реализации молодежных стартапов / Я.В. Дидковская, Ю Р. Вишневский, Д.А. Лугин // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. - 2021. - № 1. - С. 8-20. Б01: 10.15593/2224-9354/2021.1.1

9. Кондратьев, В.В. Онтология формирования представления об инженере инновационного типа / В.В. Кондратьев, У.А. Казакова // Инженерное образование. - 2022. - № 31. - С. 58-66. Б01: 10.54835/18102883_2022_31_6

10. Блинов, В.И. Веер возможностей: профессиональное образование 2020-2035 / В.И. Блинов, И.С. Сергеев // Образовательная политика. - 2020. -№ 1. - С. 76-87. Б01: 10.22394/2078-838Х-2020-1-76-86

11. Рогозин, Д.М. Как преподаватели вузов воспринимают цифровую трансформацию высшего образования / Д.М. Рогозин, О.Б. Солодовникова,

А.А. Ипатова // Вопросы образования. - 2022. - № 1. - С. 271-300. DOI: 10.17323/1814-9545- 2022-1-271-300

12. Осипова, Л.Б. Особенности профессиональной социализации студентов в системе среднего профессионального образования / Л.Б. Осипова // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. - 2023. - № 1. - С. 33-45. DOI: 10.15593/2224-9354/2023.1.3

13. Орешина, М.Н. Применение искусственного интеллекта в инновационной деятельности промышленных предприятий / М.Н. Орешина // E-Management. -2021. - Т. 4, № 1. - С. 29-37. DOI: 10.26425/2658-3445-2021-4-1-29-37

14. Похолков, Ю.П. Подходы к оценке и обеспечению качества инженерного образования / Ю.П. Похолков // Инженерное образование. - 2022. - № 31. -С. 93-106. DOI: 10.54835/18102883_2022_31_10

15. Баскакова, М.Е. Новые грани функциональной неграмотности в условиях цифровой экономики / М.Е. Баскакова, И.В. Соболева // Вопросы образования. - 2019. - № 1. - С. 244-263. DOI: 10.17323/1814-9545-2019-1-244-263

16. Аганбегян, А.Г. О приоритетном развитии сферы экономики знаний / А.Г. Аганбегян // Экономическое возрождение России. - 2021. - № 1(67). -С. 15-22. DOI: 10.37930/1990-9780-2021-1-67-15-22

17. Азоев, Г.Л. Формирование новых востребованных компетенций в области цифрового маркетинга для укрепления кадрового потенциала и ускорения диверсификации оборонно-промышленного комплекса / Г.Л. Азоев // E-Management. - 2021. - Т. 4, № 4. - С. 66-76. DOI: 10.26425/2658-3445-20214-4-66-76

18. Бодрунов, С.Д. Технологический прогресс: предпосылки и результат социогуманитарной ориентации экономического развития / С. Д. Бодрунов // Экономическое возрождение России. - 2022. - № 1(71). - С. 5-13. DOI: 10.37930/1990-9780-2022-1-71-5-13

19. Стожко, Д.К. Совершенствование информационных технологий управления в условиях макроэкономической нестабильности / Д.К. Стожко, К.П. Стожко // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. - 2021. - № 2. -С. 124-137. DOI: 10.15593/2224-9354/2021.2.10

20. Романова, И.Н. Непрерывное образование при подготовке инженерных кадров / И.Н. Романова // Инженерное образование. - 2020. - № 28. - С. 7-10.

21. Чернавин, Ю.А. Цифровое общество: теоретические контуры складывающейся парадигмы / Ю.А. Чернавин // Цифровая социология. - 2021. - Т. 4, № 2. - С. 4-12. DOI: 10.26425/2658-347X-2021-4-2-4-12

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

22. Молодчик, Н.А. Внешние и внутренние цифровые экосистемы: российские практики / Н.А. Молодчик, Д.С. Брагина // Вестник Пермского национального исследовательского политехнического университета. Социально-

экономические науки. - 2023. - № 1. - С. 142-158. DOI: 10.15593/22249354/2023.1.11

23. Лосев, А.С. Принципы управления человеческим капиталом в цифровой экономике / А.С. Лосев // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. -2022. - № 3. - С. 132-147. DOI: 10.15593/2224-9354/2022.3.10

24. Арсалиев, Ш.М.Х. Система педагогических условий формирования этнокультурной компетентности в поликультурном образовательном пространстве высшей школы / Ш.М.Х. Арсалиев, А.С. Андриенко // Информатика, вычислительная техника и инженерное образование. - 2019. - № 3(36). - С. 31-39.

25. Артемова, О.В. Влияние глобальных вызовов на качество жизни населения российских регионов в период пандемии / О.В. Артемова, Н.М. Логачева, А. Н. Савченко // Вестник Пермского национального исследовательского политехнического университета. Социально-экономические науки. - 2022. -№ 3. - С. 191-213. DOI: 10.15593/2224-9354/2022.3.14

Оригинальность 95 %

Received 15.02.2024 Accepted 05.03.2024 Published 27.05.2024

Т.Ю. Кротенко

СОПРЯЖЕНИЕ ДИСЦИПЛИНАРНЫХ ПОДХОДОВ

В ИНЖЕНЕРНОМ ОБРАЗОВАНИИ: ПОТЕНЦИАЛ КОНСТРУКТИВНЫХ ТЕХНОЛОГИЙ

Ситуация, в которой находится мир в настоящее время, выявляет ряд проблем в обучении инженеров и стимулирует систему политехнического образования к адаптации и эффективному развитию в соответствии с современными требованиями. Текущие изменения в области образования во многом обусловлены открытием ресурсов, которые подкрепляют концепцию непрерывного инженерного обучения, ориентированного на достижение определенной цели.

Обучение в дуальном формате характеризуется двумя ключевыми аспектами: с одной стороны, это глубокая теоретическая подготовка будущих специалистов в области конструирования, программирования и технологии; с другой стороны, это формирование у студентов навыков решения конкретных производственных задач. Трансдисциплинарность выступает в роли краеугольного камня и основного направления в прогрессе технологического образования. В учебных методиках начинают просматриваться элементы, способные материализовать концепции дуальности и трансдисциплинарности в виде конкретных образовательных курсов. В данной статье рассматривается взаимосвязь и взаимозависимость описанных выше факторов.

Несмотря на заметные трансформации, проблематика инженерного образования остается актуальной. В статье предпринят анализ ключевых аспектов и потенциала подхода STEAM. Основой проведенного исследования служит анализ теоретических концепций в области инженерной экономики, политехнического обучения, технологического предпринимательства и согласования дисциплинарных подходов в процессе подготовки будущих инженеров.

Проведен анализ научных-практических исследований и педагогического процесса в сфере технологического образования. В ноябре 2023 г. был осуществлен опрос экспертов, направленный на

выявление проблем и перспектив STEAM-образования. Исследование свидетельствуют о том, что прогресс в области технологического образования может быть стимулирован развитием трансдисциплинарных научных работ и проектов, конвергентных технологий, а также практикой решения реальных проблем совместными усилиями специалистов из различных профессиональных групп.

Ключевые слова: политехническое образование, подходы в образовании инженеров, дуальность, технология STEAM, конвергенция в образовании, трансдисциплинарность, инновационное проектирование, интегрированное знание.

Кротенко Татьяна Юрьевна - канд. филос. наук, доцент кафедры теории и организации управления ФГБОУ ВО «Государственный университет управления», г. Москва, е-таИ; кго-tenkotatiana@rambler.ru.

Поступила 15.02.2024 Одобрена 05.03.2024 Принята к публикации 27.05.2024

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Вклад автора 100 %.

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом:

Кротенко, Т.Ю. Сопряжение дисциплинарных подходов в инженерном образовании: потенциал конструктивных технологий / Т.Ю. Кротенко // Вестник ПНИПУ. Социально-экономические науки. - 2024. - № 2. - С. 24-37.

Please cite this article in English as:

Krotenko T.Yu. Connection of disciplinary approaches in engineering education: potential of constructive technologies. PNRPUSociology and Economics Bulletin, 2024, no. 2, pp. 24-37.

i Надоели баннеры? Вы всегда можете отключить рекламу.