Научная статья на тему 'Ciliates in plankton of the Baltic Sea'

Ciliates in plankton of the Baltic Sea Текст научной статьи по специальности «Биологические науки»

CC BY
750
128
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Protistology
Область наук
Ключевые слова
BALTIC SEA / CILIATES / MIXOTROPHY / PLANKTON / SALINITY / SPECIES DIVERSITY

Аннотация научной статьи по биологическим наукам, автор научной работы — Mironova Ekaterina I., Telesh Irena V., Skarlato Sergei O.

The current knowledge about diversity and ecology of ciliates in the Baltic Sea is reviewed by analyzing the data from nearly 90 studies published since the end of the 18-th century. We revise the previous versions of the ciliate species checklists (Mironova et al., 2009; Telesh et al., 2008, 2009) and present the corrected checklist with the addition of the newly published data. Altogether, 743 species of ciliates are currently known for the Baltic Sea, which is more than in some other brackish-water seas (e.g. the Caspian and the Black Sea). Many species (172; 23% of the total number) were mentioned in the Baltic Sea only once and described in the taxonomic studies before the first half of the 20-th century. Relatively small part of species (76; ca. 10% of the total number) was observed in the most of the Baltic regions, and only 8 ciliate species were registered in all of them. Forty ciliate species were detected in the Baltic Sea for the first time during our 16-months-long investigations in the Neva Estuary in certain seasons of 2007 through 2010. The literature and our own data on composition and structure of ciliate communities, their seasonal dynamics and the role of ciliates in the pelagic ecosystems of different regions of the Baltic Sea are discussed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Ciliates in plankton of the Baltic Sea»

Protistology 8 (3), 81-124 (2014)

Protistology

Ciliates in plankton of the Baltic Sea

Ekaterina I. Mironova1, Irena V. Telesh2 and Sergei O. Skarlato1

1 Institute ofCytology, Russian Academy of Sciences, St. Petersburg, Russia

2 Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia

Summary

The current knowledge about diversity and ecology of ciliates in the Baltic Sea is reviewed by analyzing the data from nearly 90 studies published since the end of the 18-th century. We revise the previous versions of the ciliate species checklists (Mironova et al., 2009; Telesh et al., 2008, 2009) and present the corrected checklist with the addition of the newly published data. Altogether, 743 species of ciliates are currently known for the Baltic Sea, which is more than in some other brackish-water seas (e.g. the Caspian and the Black Sea). Many species (172; 23% of the total number) were mentioned in the Baltic Sea only once and described in the taxonomic studies before the first half of the 20-th century. Relatively small part of species (76; ca. 10% of the total number) was observed in the most of the Baltic regions, and only 8 ciliate species were registered in all of them. Forty ciliate species were detected in the Baltic Sea for the first time during our 16-months-long investigations in the Neva Estuary in certain seasons of 2007 through 2010. The literature and our own data on composition and structure of ciliate communities, their seasonal dynamics and the role of ciliates in the pelagic ecosystems of different regions of the Baltic Sea are discussed.

Key words: Baltic Sea, ciliates, mixotrophy, plankton, salinity, species diversity

Introduction

Ciliates represent the most completely studied group among the free-living heterotrophic protists (Foissner et al., 2008), mainly due to their relatively large cell sizes, bio-indication value, and importance in aquatic food webs. Generalization oflarge cumulative data arrays concerning ciliate taxonomy and ecology in various ecosystems has greatly advanced our knowledge ofprotistan biogeography. Different viewpoints on global distribution of unicellular eukaryotes, e.g. ciliates, from the ‘ubiquity model’ to the ‘moderate endemicity model’, have been widely discussed (Fenchel and Finlay, 2004; Finlay

et al., 2004; Foissner, 2004, 2008; Doherty et al., 2010). Recent studies of planktonic (the aloricate Oligotrichea) and benthic marine ciliates indicate that they match the moderate endemicity model (Agatha, 2011; Azovsky and Mazei, 2013).

Information about diversity of ciliates in the brackish-water Baltic Sea, which is characterized by the unique environmental conditions (e.g. the permanent large-scale salinity gradient) and relatively young geological age, can shed more light on the evolution of marine and freshwater fauna of protists.

Since the late 1920-s, more than 70 studies of ciliates were performed in the Baltic Sea, including

© 2014 The Author(s)

Protistology © 2014 Protozoological Society Affiliated with RAS

several fundamental taxonomic investigations (e.g. Kahl, 1930, 1931, 1932, 1935); thus, it is likely to be one of the most intensively studied regions in the world. Our previous reviews of the available data on ciliate diversity in the Baltic Sea indicated that the surprisingly large total species checklist included nearly 800 species (Mironova et al., 2009; Telesh et al., 2009). These results are in accordance with the new findings on biogeography of marine benthic ciliates, which established that the low-saline seas have the richest regional diversity if compared with the fully saline seas, the total species number being affected significantly by the investigation effort and water salinity (Azovsky and Mazei, 2013).

Our data indicate that the number of ciliate species currently known for the Baltic Sea is higher than in others brackish-water seas. For example, about 500 ciliate species are reported for the Black Sea (Kurilov, 2007), and 620 — for the Caspian Sea (Alekperov, 2007). The remarkable diversity of the Baltic ciliates reflects both, high investigation activity in this region and specificity ofthe Baltic Sea ecosystems. The viewpoint that the brackish-water Baltic Sea is generally poor in species, which was based on macrozoobenthos data (Remane, 1934; Jansson, 1972), has been seriously reconsidered; the novel ‘protistan species-maximum concept’ for plankton was established (Telesh et al., 2011a) and discussed (Ptacnik et al., 2011; Telesh et al., 2011b; Elliott and Whitfield, 2011; Whitfield et al.,

2012). Recently, this discussion was extrapolated to the other groups of aquatic organisms: the bacteria (Herlemann et al., 2011), macrophytes (Schubert et al., 2011), and macrozoobenthos (Filippenko,

2013). These investigations have attracted attention to the differences between biodiversity distribution patterns of planktonic microbes and multicellular, large benthic organisms in the salinity gradient, as well as to the mechanisms behind those differences (Telesh et al., 2013).

In this paper, we review the up-to-date knowledge on diversity and ecology of the Baltic ciliates, present the revised total species checklist with addition ofnew published data, and discuss our own recent results from the Neva Estuary (the Gulf of Finland, the eastern Baltic Sea).

Material and methods

About 90 taxonomic and ecological studies, which have been performed in the Baltic Sea since the end of the 18-th century, were used for the species list compiling (Muller, 1786; Stein, 1859a, 1859b, 1863, 1864, 1867; Quennerstedt, 1869; Mobius,

1888 (cited after Berger, 2006, 2008); Sauerbrey, 1928; Kahl, 1930, 1931, 1932, 1933, 1934, 1935; Purasjoki, 1947; Gaevskaya, 1948; Biernacka, 1948, 1952, 1962, 1963; Bock, 1952, 1953, 1960; Munch, 1956; Lindquist, 1959; Ax and Ax, 1960; Jaeckel, 1962; Czapik, 1962; Fenchel, 1967, 1968a, 1968b, 1969; Hartwig, 1974; Hirche, 1974; Hedin, 1974, 1975; Czapik and Jordan, 1976, 1977; Mazeikaite, 1978; Smetacek, 1981; Boikova, 1984a, 1984b, 1989; Kivi, 1986; Andrushaitis, 1987, 1990; Khlebovich, 1987; Mamaeva, 1987; Foissner, 1987; Axelsson and Norrgren, 1991; Arndt, 1991; Czapik and Fyda, 1992; Detmer et al., 1993; Schiewer, 1994; Klinkenberg and Schumann, 1994; Wiktor and Krajewska-Soltys, 1994; Kivi et al., 1996; Kivi and Setala, 1995; Uitto et al., 1997; Olli et al., 1998; Wasik et al., 1996; Witek, 1998; Smurov and Fokin, 1999; Jakobsen and Montagnes, 1999; Dietrich and Arndt, 2000; Garstecki et al., 2000; Gerlach, 2000; Dobberstein and Palm, 2000; Schmidt et al., 2002; Setala and Kivi, 2003; Setala, 2004; Johansson et al., 2004; Vannini et al., 2005; Granskog et al., 2006; Samuelsson et al., 2006; Aberle et al., 2007; Beusekom et al., 2007; Visse, 2007; Moorthi et al., 2008; Rychert, 2008, 2011; Rychert and P^czkowska, 2012; Rychert et al., 2013; Griniene et al., 2011; Griniene, 2012; Anderson et al., 2012, 2013; Majaneva et al., 2012; Majaneva, 2013; Mironova et al., 2012, 2013).

Data on species composition of ciliates obtained by RNA-stable isotope probing (Anderson et al., 2013) and 18S rRNA sequencing (Majaneva et al., 2012) were not included in the checklist, as only the morphological data were used in our study. Taxonomic information about validity and synonymy of the species names was taken from the Internet sources (the Encyclopedia of Life, http://www.eol.org; the World Ciliophora Database, accessed through the World Register of Marine Species, http://www.marinespecies.org/aphia.php; the World of Protozoa, Rotifera, Nematoda and Oligochaeta, http://www.nies.go.jp/chiiki1/protoz/ index.html; the Planktonic Ciliate Project on the Internet, http://www.zooplankton.cn/ciliate/intro. htm) and checked when possible, considering the recent revisions of some taxonomic groups (Warren and Paynter, 1991; Berger, 1999, 2001, 2006, 2008, 2011; Chen et al., 2008, 2010; Agatha, 2011; Ji et al., 2011; Vd’acny and Foissner, 2012).

Available data on the Baltic ciliates were grouped by study area according to classification of the Baltic Sea regions proposed by Ackefors (1969). The following regions were distinguished: the Baltic Proper (the area east of the Belt Sea and

the Sound, limited at the north by the Aland Sea and the Archipelago Sea, at the east — by the Gulf of Finland), the Western Baltic Sea (the Kiel Bight and the Mecklenburg Bight), the Northern Baltic Sea (the Aland Sea, the Archipelago Sea and the Gulf of Bothnia), the Southern Baltic Sea (the area of Gdansk Basin), the Eastern Baltic Sea (the Gulf of Riga, the Gulf of Finland). The data obtained from the Danish straits are not included in the present species list, as well as the information about ciliate fauna of the Baltic brackish-waters rockpools and lower reaches ofthe large rivers (e.g. Neva, Daugava, Vistula, Oder, and Neman).

Updated checklist of ciliates of the Baltic Sea

Altogether, 743 species of ciliates are currently known for the Baltic Sea (Appendix). The present species list is slightly shorter if compared with the lists published earlier (Mironova et al., 2009; Telesh et al., 2008, 2009). A number of ciliate species were erroneously included in the previous reviews due to inaccuracy in some of the reference Internet sources (e.g. the World Register of Marine Species, http://www.marinespecies.org/aphia.php). After the additional check of the species distribution data against the original papers we deleted certain species from the present version of the checklist of the Baltic ciliates. Some species were also excluded because their exact geographical location was not reported by the authors, although they have been mentioned as “marine”, “eurytopic”, or “euryhaline”.

The greater part of species in the present checklist (415, about 56% of the total ciliate species number) were described in the taxonomic studies which were carried out in the first half of the 20-th century (e.g. Sauerbrey 1928; Kahl, 1930, 1931, 1932, 1935), and for 239 of these species (32% of the total species number) re-descriptions by other authors are not known. Very often such ciliate species were mentioned in the Baltic Sea only once (172; 23% of species number), and for the majority ofthem the revision is needed (Foissner et al., 2008). Only small part of species (76; nearly 10% ofspecies number) were mentioned for the most of the Baltic regions, and just 8 ciliate species were registered in all of them (Didinium nasutum, Helicostomella subulata, Mesodinium pulex, Myrionecta rubra, Pelagostrobilidium spirale, Tintinnopsis baltica, T. campanula, T. tubulosa) (Appendix).

Forty species of ciliates were detected in the Baltic Sea for the first time during our 16-month-long investigations in the Neva Estuary in certain

seasons of 2007 through 2010 (Appendix). The detection of such a high number of new records during a rather short study period indicates the insufficiency of our knowledge on ciliate diversity in the Baltic Sea. Many of the newly revealed species are very small (< 25 ^m), and probably therefore they were not registered earlier (for example, Litonotus alpestris, Cinetochilum margaritaceum, Sphaerophrya stentori, Trochilia minuta, Strombidium emergens, Strombidium epidemum, Tintinnidium semiciliatum). However, according to the prediction based on the analysis of cumulative data from various habitats, the major part of ciliate diversity (> 80% species) may have not been revealed yet (Foissner et al., 2008); similar data are reported for planktonic aloricate Oligotrichea (Agatha, 2011). Application of different research methods (e.g. fine morphological analysis, fluorescent in situ hybridization, functional gene screening, environmental RNA technique) should greatly advance our knowledge on the actual protistan diversity and understanding of their peculiar distribution patterns in nature.

Major characteristics of ciliate communities in the Baltic plankton

Brief history of research

Pioneering studies of ciliates in the Baltic Sea dated back to the end of 18-th century (Muller, 1786). Early researches were focused on the benthic, in particular the interstitial ciliates (Stein, 1859a, 1863, 1864, 1867; Quennerstedt, 1869; Mobius, 1888; Sauerbrey, 1928). Investigations of the planktonic ciliates began later, in the 1940-s (Biernacka, 1948). Most of them dealt with the relatively large loricate tintinnids (Biernacka, 1948, 1952; Hedin, 1974, 1975); however, in some papers the information about aloricate ciliates was provided (Bock, 1960; Biernacka, 1963).

At first, researches focused mainly on the ciliate diversity, and several fundamental taxonomic studies were performed (Kahl, 1930, 1931, 1932, 1935). More attention to different aspects of ciliate ecology was given in the 1960-s (Fenchel, 1967, 1968a, 1968b, 1969; Czapik and Jordan, 1976, 1977). Since then, much information about composition, distribution, dynamics and role of ciliate communities was obtained for a variety of benthic (Klinkenberg and Schumann, 1994; Dietrich and Arndt, 2000; Garstecki et al., 2000) and pelagic ecosystems of the Baltic Sea (Mazeikaite, 1978; Smetacek, 1981; Andrushaitis, 1987; Boikova, 1989; Arndt, 1991; Kivi and Setala, 1995; Uitto et al.,

1997; Witek, 1998; Setala and Kivi, 2003; Johansson et al., 2004; Samuelsson et al., 2006; Beusekom et al., 2007; Rychert, 2008, 2011; Anderson et al., 2012; Griniene, 2012; Mironova et al., 2012, 2013; Mironova, 2013).

To date, the western Baltic Sea is the most extensively studied area: the highest numbers of publications (31) and ciliate species (about 600) are known for this region. Less information is available about ciliates of the eastern and the northern Baltic Sea (Appendix).

Community composition, dominants

In general, composition of dominant groups of ciliates in the Baltic plankton is typical for various pelagic ecosystems (Mironova et al.,

2009). The Baltic ciliate communities are mainly composed of different small aloricate oligotrichs (genera Strombidium, Strobilidium, Lohmaniella) (Smetacek, 1981; Boikova, 1989; Klinkenberg and Shumann, 1994; Kivi and Setala, 1995; Garstecki et al., 2000; Setala and Kivi, 2003; Johansson et al., 2004; Beusekom et al., 2007). The contribution of tintinnids is sometimes also high (Khlebovich, 1987; Boikova, 1989; Kivi and Setala, 1995; Johansson et al., 2004). Other abundant ciliate groups in the Baltic pelagic ecosystems are hymenostomatids (mainly small scuticociliates Cyclidium, Cristigera) and haptorids (genera Mesodinium, Didinium, Monodinium) (Garstecki et al., 2000; Johansson et al., 2004; Samuelsson et al., 2006). Almost all these taxa are numerous also in the Baltic Sea ice (Ikavalko and Thomsen, 1997; Granskog et al., 2006; Kaartokallio et al., 2007; Rintala et al., 2010; Majaneva et al., 2012).

Since low-salinity shallow coastal regions occupy vast areas of the Baltic Sea, the significant part of plankton diversity is formed by the freshwater, brackish-water and benthic species. For example, the majority of ciliate species in the Neva Estuary are typical for the habitats with broad spectrum of salinities: from 1 to > 30 PSU, including even the marine ciliates (e.g. Leegardiella sol, Strombidinopsis marina, Strombidium epidemum, S. wulffi, Pseudokeronopsis multinucleata) according to literature and the internet sources (Kurilov, 2003; Berger, 2006; the World Ciliophora Database, http:// www.marinespecies.org/aphia.php; the Planktonic Ciliate Project on the Internet, http://www. zooplankton.cn/ciliate/intro.htm). About 12% of ciliate species in the Neva Estuary are strictly freshwater (oligo-stenohalyne) species (Mironova et al., 2012; Mironova, 2013). In the plankton of

the Curonian Lagoon, the highest species diversity of ciliates was observed at 0—2 PSU, and it tended to decrease at > 4 PSU (Griniene, 2012).

As a rule, benthic and pelagic communities of ciliates show little taxonomic overlap (Garstecki et al., 2000); however, even in groups which are known as planktonic (e.g. aloricate Oligotrichea) several species are closely associated with the marine benthal (Agatha, 2011). Typical benthic ciliates (hypotrichs, prostomatids etc.) are occasionally found in plankton due to intensive bottom hashing in many Baltic coastal ecosystems (Khlebovich, 1987; Klinkenberg and Shumann, 1994; Gerlach, 2000; Samuelsson et al., 2006). According to our data, benthic and epiphytic ciliates constitute 64% of ciliate species richness in the plankton of the Neva Estuary, but euplanktonic species prevail numerically. However, local peaks of biomass formed by epiphytic sessilid ciliates (Mamaeva, 1987; Witek, 1998; Johansson et al., 2004; Mironova et al., 2012) and benthic species (Trithigmostoma sp., Lacrymarya spp.) are often registered in the Baltic plankton, sometimes even in winter (Mironova et al., 2012).

Although ciliate communities in various regions of the Baltic Sea are formed by the same taxonomic groups, composition of dominant species is different. For example, Rimostrombidium humile which dominated in the Neva Estuary has never been found in other regions of the Baltic Sea, except for the Tvarminne Storfjarden (Kivi, 1986). Meanwhile, the ciliates Leegardiella sol which were also numerous in the Neva Estuary were firstly reported for the Baltic Sea during our recent studies (Mironova et al., 2013).

Composition of pelagic ciliate communities changes significantly with depth; however, such data are still scarce for the Baltic Sea. In the Gdansk Basin, the deep-water ciliate community (composed of large Prorodon-like ciliates and Metacystis sp.) differs greatly from the epipelagic layer (Witek, 1998). In the Bornholm Basin, deep-water associations are also formed by the larger-sized ciliate species, if compared with the upper water layers (Setala and Kivi, 2003). Vertical distribution of some planktonic ciliates can change as a result of their active vertical migrations. For example, mixotrophic ciliate Myrionecta rubra moves from the deep layers to the euphotic zone during the vernal bloom in the northern Baltic and thus acts as a peculiar nutrient pump, which makes nutrients available to non-migrating species (Olli et al., 1998).

Species diversity substantially decreases in the anoxic depths (below 120 m) of the central Baltic Sea (Detmer et al., 1993). There are few data about specific ciliate fauna of the Baltic pelagic redoxiclines; however, several ciliates belonging to the genera Metopus, Metacystis, cf. Strombidium, cf. Mesodinium, cf. Coleps, closely related to Euplotes rariseta, Cardiostomatella vermiforme (98% sequence identity), and Prostomatea were recognized in these habitats (Detmer et al., 1993; Anderson et al., 2012, 2013).

SEASONALITY

The majority of ciliate species in the Baltic plankton is ‘seasonal’ and only several species occur all year round (Johansson et al., 2004; Mironova, 2013). In the same season, composition of dominants varied between different regions of the Baltic Sea. For example, in the Bornholm Basin the summer peak was formed by Helicostomellasubulata, Strombidium sp. and Myrionecta rubra (Beusekom et al., 2007), in the northern Baltic — by oligotrichs from the genera Strombidium, Strobilidium, Lohma-niella, Tintinnopsis (Kivi and Setala, 1995), and in the southern Baltic — by oligotrichs and small scuticociliates (Garstecki et al., 2000).

Most studies provide information only about dominant species, whereas the detailed data on seasonal dynamics ofthe Baltic ciliate communities, concerning also rare and common though not numerous species, are still scarce (Griniene, 2012; Mironova et al., 2012). During the recent studies, several species associations, which replaced each other during the seasonal succession, were distinguished by the Analysis of Similarity (ANOSIM) of ciliate community structure. Their number and composition varied in the different regions of the Baltic Sea. For example, two seasonal associations of ciliates typical for warm (late April—October) and cold period (October—early April) were revealed in the Neva Estuary (Mironova et al., 2012), while four seasonal associations (winter, early spring, late spring and summer/autumn) were distinguished in the Curonian Lagoon (Griniene, 2012)

The seasonal shift of ciliate communities from large predatory ciliates in spring to small oligotrichs (pico/nano-filterers) and epiphytic peritrichs (mainly pico-filterers) in summer was reported for various regions of the Baltic Sea (Smetacek, 1981; Witek, 1998; Johansson et al., 2004; Samuelsson et al., 2006; Mironova et al., 2012). Although in general the summer assemblages of ciliates are quite similar in different Baltic areas, during other seasons no

such uniformity was discovered. For example, the early spring dominance of large predatory ciliates is often observed in the Baltic ecosystems (e.g. Smetacek, 1981; Setala and Kivi, 2003), while in the Curonian Lagoon small pico/nano- feeders (40% of the total ciliate abundance) prevailed in this period (Griniene, 2012).

The late spring peak of the relatively large algivorous oligotrichs (mostly tintinnids) commonly follows the diatom bloom in various ecosystems, e.g. in the Baltic Sea (Smetacek, 1981; Andrushaitis, 1987; Johansson et al., 2004; Griniene, 2012); however, this peak was not observed in the Neva Estuary (Mironova et al., 2012).

During the winter, when the grazing pressure of mesozooplankton declines, the share oflarge ciliates in the Baltic plankton can increase. However, in the Curonian Lagoon and the Neva Estuary large ciliates in winter are represented by different taxonomic and ecological groups — the planktonic algivorous tintinnids (Griniene, 2012), and the benthic predatory and bactivorous ciliates, respectively (Mironova et al., 2012). Such increase in proportions of large ciliates in winter does not support the conventional view on the seasonal succession of ciliates (Montagnes et al., 1988), although it is sometimes observed in various aquatic ecosystems (see Griniene, 2012 and references therein).

Trophic structure of ciliate communities

Ciliates of various size classes (12—190 ^m) and feeding types are present in the Baltic plankton almost all year round; thus, they potentially consume the wide spectrum of food objects: from bacteria to other protists and even small metazoans (e.g. rotifers) (Smetacek, 1981; Jonsson, 1986; Kivi and Setala, 1995; Johansson et al., 2004; Mironova et al., 2012). Species with both, generalistic and specialistic feeding strategies occur among the Baltic planktonic ciliates (Kivi and Setala, 1995); however, the majority feed on a wide range of objects (Mironova, 2013).

Typically in ciliate communities, pico- and nano-filterers feeding on bacteria, algae, and heterotro-phic flagellates dominate (up to 90% of total abundance, 70% ofspecies richness). They are represented mostly by different oligotrichids, choreotrichids and, to a lesser extent, by peritrichs and scuticociliates (Kivi and Setala, 1995; Samuelsson et al., 2006; Griniene, 2012; Mironova et al., 2012,

2013). Predatory ciliates occur in plankton almost throughout the whole year, but in low numbers (up to 11% of average annual abundance), except for

certain seasons (e.g. early spring, mid-summer, winter) when their share increases significantly (Smetacek, 1981; Setala and Kivi, 2003; Johansson et al., 2004; Mironova et al., 2012). Most of them are large nano/micro-interceptors (feed on other ciliates and metazoans) belonging to haptorids and pleurostomatids, and the minority — small pico/nano-interceptors (order Prorodontida, Cyclotrichida). Sometimes even parasitic species (suctorian ciliate Sphaerophrya stentori) are registered in plankton, but their contribution to the ciliate community is negligible (Mironova et al., 2012).

Seasonal changes affect composition and abundance of all trophic groups. The development of pico/nano-filterers (mainly algivorous ciliates) is explicitly timed to the phytoplankton growth period, and epiphytic sessilid ciliates highly depend on the cyanobacteria blooms (Mamaeva, 1987; Witek, 1998; Johansson et al., 2004; Samuelsson et al., 2006; Griniene, 2012; Mironova et al., 2012). However, the factors controlling seasonal alterations in composition of other groups (for example, predatory ciliates) are not so obvious and require further investigation (Mironova et al., 2012).

Oligotrich ciliates, which dominate in various pelagic ecosystems, are capable of switching from heterotrophic feeding mode (pico/nano-filtration) to mixotrophic, by using kleptoplastids from their algal prey. According to our results (obtained using epifluorescence microscopy), in the Neva Estuary the majority of the observed oligotrich species (75%) can be mixotrophic (genera Strombidium, Strombidinopsis, Limnostrombidium, Pelagostrom-bidium, Rimostrombidium, Pelagostrobilidium, Leegardiella, Laboea, Tintinnopsis). In the coastal waters, their average annual contribution was low (9% of total abundance), while in July mixotrophic ciliates were the most numerous trophic guild, both in the coastal waters and in the open estuary: up to 34% and 67% of total abundance, respectively (Mironova et al., 2012, 2013).

In summer, share of mixotrophs in the open Neva Estuary (28-67% of total abundance) at most stations exceeds the average values of about 30%, reported for various other marine estuarine systems (Dolan and Perez, 2000; Pitta and Giannakourou, 2000 and references therein). These results indicate that the role of mixotrophic chloroplast-sequeste-ring ciliates in Baltic plankton can be significant; however, the data about their abundance in other Baltic regions are still absent. Quantitative information is provided only about one mixotrophic ciliate with cryptophycean endosymbionts — Myrionecta

rubra, which is known as the indicator of eutro-phication (Smetacek, 1981; Olli et al., 1998; Witek, 1998; Setala and Kivi, 2003; Johansson et al. 2004; Beusekom et al. 2007; Rychert and P^czkowska, 2012). This mixotrophic ciliate is common in various Baltic pelagic ecosystems and sometimes forms the great part of total primary production (Leppanen and Bruun, 1986; Witek, 1998; Jaanus et al., 2007; Beusekom et al., 2007).

In the last decades, interest to ecology of mixo-trophic protists has increased greatly due to their high abundance reported for diverse aquatic environments (Stoecker et al., 1987; Bouvier et al., 1998; Dolan and Perez, 2000; Pitta and Giannakourou, 2000). However, so far there are no appropriate tools available for the correct estimation oftheir numbers in situ. Epifluorescense microscopy methods can provide the overstated results because not only true mixotrophic organisms with kleptoplastids fluoresce but also some algivorous ciliates, which have recently ingested their algal prey (Sherr et al.,

1986). Interestingly, our results showed that even in one sample among ciliates of the same species, the individuals both, with plastids and without them can occur, which possibly reflects intraspecific diversity of trophic strategies realized under similar environmental conditions. Relative abundance of mixotrophic ciliates in the meso-eutrophic Neva Estuary confirms that mixotrophy in marine oligotrichs is not closely linked to the exploitation of oligotrophic environments, but probably serves a variety of purposes (Dolan and Perez, 2000).

There are many unresolved questions considering the advantages of mixotrophy over strict heterotrophic feeding in the range of environmental conditions (e.g. salinity, nutrient availability, light conditions, turbulence). Further studies of factors, which control the diversity and distribution of mixotrophic ciliates, are necessary for the precise evaluation of their role in production and transfer of organic matter in the pelagic food webs.

Abundance, biomass, distribution

At present, much information about spatial variability of ciliate abundance and biomass in different regions of the Baltic Sea is available, concerning coastal and open waters, surface and deep-water layers (Table 1).

As a rule, abundance and biomass of ciliates in the near-shore waters (maximum 88-92 x 103 ind L-1, 56-220 ^g C L-1) (Smetacek, 1981; Garstecki et al., 2000; Griniene, 2012) is significantly higher than in the offshore zone (maximum 8-28 x 103 ind L-1, 7-63

Table 1. Abundance, biomass and production of planktonic ciliates reported from the various regions

of the Baltic Sea in different seasons.

Region Abundance (X103 ind L-1) Biomass (Mg c L-1) Daily production Source

July: 5.6-16.3 pg C L-1

Neva Estuary (coastal waters) 0.12-10.3 1-53 (average 7.8 pg C L-1) 0.05-0.25 mg L-1 (average 0.12 mg L-1) July: 0.1-6.2 pg C L-1 Mironova et al., 2012

Neva Estuary (open waters) 0-1.9 0-2.4 (average 1.8 pg C L-1) 0-0.05 mg L-1 (average 0.03 mg L-1) Mironova et al., 2013

Neva Bay 0.1-8 0.9-63.3a average 0.25 mg L-1 e Khlebovich, 1987

Curonian Lagoon (coastal waters) 0.9-91.7 0.9-88.3 0.62-36.8 pg C L-1 Griniene, 2012

Shallow inlets of the Southern Baltic 0.2-88 0-220 - Garstecki et al., 2000

Kiel Bight 2-92 0-56b - Smetacek, 1981

Gdansk Basin (open waters) 0-28 0-23b 22.65-62.55 g C m-3 y-1 f Witek, 1998

Various regions of the open Baltic Sead 0-20 0-6.7b'c - Setala and Kivi, 2003

Central Bornholm Basin - 130-300 - Beusekom et al., 2007

Landsort Deep (the northern Baltic Proper) 0-9 0-20b average 3.5 pg C L-1 Johansson et al., 2004

Notes: a Carbon mass recalculated from the data on wet mass.

b Myrionecta rubra Jankowski 1976 [syn. Mesodinium rubrum Lohmann 1908] excluded.

c Found above the thermocline. At the deep oxic/anoxic water interface, another maximum of ciliate carbon (28.8 pg C L-1) was detected. d Data for July-August.

e Data for May-October, calculated by «physiological» method (Khlebovich, 1987). f Annual potential production calculated for 0-30 m layer.

- No data.

C L-1) (Khlebovich, 1987; Witek, 1998; Setala and Kivi 2003; Johansson et al., 2004; Dahlgren et al.,

2010). However, some exceptions exist: for example, the surprisingly high biomass of ciliates (130-330 ^g C L-1) was observed in the open waters of the Bornholm Basin (Beusekom et al., 2007), while in the shallow mesotrophic Neva Estuary ciliate abundance and biomass were among the lowest in the Baltic Sea (Mironova et al., 2013).

During seasonal succession, 1 or 2 peaks of ciliate abundance usually occur in different Baltic pelagic ecosystems. The first peak is usually registered in spring (Smetacek, 1981; Khlebovich, 1987; Andrushaitis, 1987; Witek, 1998; Johansson et al., 2004; Samuelsson et al., 2006), the second

— in summer (Andrushaitis, 1987; Witek, 1998; Griniene, 2012) or in autumn (Smetacek, 1981; Khlebovich, 1987; Samuelsson et al., 2006).

Data on ciliate abundance and biomass from different regions of the Baltic Sea indicate high spatial variability of these characteristics (Table 1). Abundance and biomass of ciliates positively correlate with the primary production, which

increases with eutrophication in many Baltic ecosystems (Arndt, 1991; Garstecki et al., 2000; Samuelsson et al., 2006), and significantly decreases with salinity (Griniene, 2012). Salinity and latitude factors influence the ciliate biovolume (explaining 12—24% ofthe variation) in the northern Baltic Sea (Samuelsson et al., 2006). The biomass of ciliates was found to be strongly affected by predation of mesozooplankton, while the production may be bottom-up limited by the resources (Samuelsson et al., 2006).

The majority of studies provide information about ciliate numbers in the upper mixed water layer, while data on vertical distribution of these protists in the Baltic Sea are still scarce. Maximum of ciliate abundance is typically registered in the euphotic zone, while biomass of ciliates in deep-water layers is sometimes comparable to the surface values (Witek, 1998), or even higher (Klinkenberg and Shumann, 1994), due to occurrence of large benthic and particle-associated ciliates in the bottom layer. In addition, peaks of ciliate abundance can be observed in the redoxcline zone (below 100 m) in

the central Baltic Sea; however, their magnitude is much lower (10%) than the surface water maxima (Detmer et al., 1993; Setala and Kivi, 2003).

Role of ciliates in the Baltic plankton

Due to high growth and reproduction rates of planktonic ciliates (Hansen et al., 1997), their production in the Baltic Sea often exceeds the production of crustacean microzooplankton and rotifers (Andrushaitis, 1987). In some Baltic ecosystems, ciliate biomass is relatively low and forms less than 13% of the total zooplankton biomass in summer (Lohmann, 1908, cited after Arndt, 1991; Witek, 1998), while sometimes protozoan biomass values are similar or even higher than the biomass of mesozooplankton (Arndt, 1991).

According to our calculations using the equation proposed by Muller and Geller (1993), maximal daily growth rates of planktonic ciliates in the Neva Estuary range from 1.2 to 2.5 day-1 (average 1.8 ± 0.1 day-1) in summer and do not exceed 0.69 day-1 (average 0.2 ± 1 day-1) during the cold period of the year (October-April). These results are similar to maximal growth rates reported for other pelagic environments (Nielsen and Ki0rboe, 1994), including the Gulf of Riga (Andrushaitis, 1987), and are much higher than the values obtained in the Neva Estuary earlier (Khlebovich, 1987).

The comparison of ciliate production values in various regions of the Baltic Sea is complicated because different calculation methods were used; however, the available data are summarized in the Table 1. The highest ciliate production (max 36.8 ^g C L-1 day-1) was reported for the Curonian Lagoon (Griniene, 2012), while the surprisingly low values were obtained in the shallow meso-eutrophic Neva Estuary (5.6-16.3, average 7.8 ^g C L-1 day-1 in summer), especially in the open part of the estuary (0.1-6.2, average 1.82 ^g C L-1 day-1). It is the result of relatively low total abundance of ciliates in the Neva Estuary (Mironova et al., 2013), which is atypical for such highly productive ecosystems as estuaries (Urrutxurtu et al., 2003). Low production values are usually more common for the oligotrophic open areas of the Baltic Sea; for example, in the northern Baltic the average ciliate production constitutes 3.5 ^g C L-1 day-1 (Johansson et al., 2004).

Daily average ciliate production values are equal to 20% of primary production and 30% of bacterial production in different regions of the Baltic Sea (Khlebovich, 1987; Witek, 1998). As reported for various aquatic ecosystems, planktonic ciliates

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

are able to consume from 40 to 60% of primary production in summer (Pierce and Turner, 1992), or even more (Maar et al., 2004). In the Baltic Sea, the maximum values are reported for the Curonian Lagoon, where (according to the results of dilution experiments) ciliates potentially consume 76% of daily picophytoplankton production at the freshwater site and 130% of nanophytoplankton production at the brackishwater site (Griniene, 2012). In other regions, evaluation of the potential carbon consumption of ciliates give lower values -55% ofthe summer primary production in the open northern Baltic (Johansson et al., 2004) and 12-15% of the gross primary production in the Gdansk Basin (Witek, 1998).

Estimation of ciliate filtration rates in the open central Baltic revealed that ciliate communities in summer can be clearing on average close to 50% (up to maximal 125%) of the water volume per day (Setala and Kivi, 2003). In the coastal part of the Neva Estuary, ciliates also may potentially consume up to 47-70% of pico- and nanoplankton per day, while in the open estuary their grazing role is insignificant and, due to low abundances, ciliates could consume only less than 1% of primary production.

Contribution of ciliates to the decomposition of organic matter constitutes 0.6-20.4% of the total daily destruction performed by zooplankton in various Baltic ecosystems, and often exceeds the overall organic matter decomposition by rotifers and crustaceans (Khlebovich, 1987; Andrushaitis,

1987).

To date, several studies concerning the role of planktonic ciliates as predators in the Baltic ecosystems are available (e.g. Kivi and Setala, 1995; Kivi et al., 1996; Setala and Kivi, 2003; Aberle et al., 2007; Moorthi et al., 2008; Griniene, 2012); however, less is known about their role as the prey. Field studies provide some indirect evidences oftop-down control of ciliate communities, for example, the inverse relationships between ciliate and meso-zooplankton abundances (Smetacek, 1981; Arndt, 1991; Kivi et al., 1993, 1996; Johansson et al., 2004), and the occurrence of ciliate markers in copepod lipids (Peters et al., 2006). However, experimental data about mesozooplankton grazing on ciliates in the Baltic ecosystems are still scarce (McKellar and Hobro, 1976; Tiselius, 1989; Koski et al., 2002). By these results, contribution of ciliates to the diet of different copepods varies greatly — from negligible values (Tiselius, 1989) to 50% of the total ingested carbon (Koski et al., 2002). As reported for various environments, the share of ciliates in copepod diet

is often higher and constitutes 64-99% (average 81%) of the total ingested carbon (Schnetzer and Caron, 2005). However, it highly depends on the trophic conditions (Saiz and Calbet, 2011) and other factors. More numerical data on the importance of ciliates in copepod nutrition in the Baltic Sea is needed. The grazing impact of other abundant groups of zooplankton (e.g. rotifers, cladocerans, ctenophores) and fish larvae on ciliate communities in the Baltic Sea is still poorly studied (Arndt et al.,1990; Spittler et al., 2007; Dickmann et al., 2007; Majaneva et al., 2013); meanwhile, it can be significant, as reported from different other aquatic ecosystems (Stoecker and Capuzzo, 1990; Gilbert and Jack, 1993).

The importance ofdata about the role ofprotists in the Baltic pelagic food webs for understanding of ecosystem functioning is obvious, as pointed out in the review by Arndt (1991) more than 20 years ago. Since then, several studies of trophic interactions within microbial loop and classical grazing food chain have been performed. They provide information about energy flows through the pelagic food webs in relation to different environmental conditions in various regions of the Baltic Sea (Schiewer and Jost, 1991; Lignell et al., 1993; Uitto et al., 1997; Sandberg, 2007), including even the deep-water anoxic environments (Setala, 1991; Detmer et al., 1993; Anderson et al., 2012, 2013).

However, our knowledge about the organization of the microbial loop in the Baltic Sea is rather schematic yet, mainly due to the lack of detailed information about the taxonomic, size and trophic structure of protistan communities. For example, the assumption that all small ciliates, especially nanociliates (< 20 ^m) are bactivorous, can result in serious mistakes in the ecosystem modelling, because this abundant size group is functionally diverse and includes bactivorous, algivorous, mixo-trophic, omnivorous and predatory species (Mironova et al., 2012). In spite of this, rough separation of size categories is often carried out without the taxonomic analyses of ciliates (and, consequently, without the correct trophic grouping). This approach is commonly used when calculating the productivity of plankton, and it leads to certain inaccuracy in evaluation of the grazing impact of ciliate communities. Moreover, the intraspecific eco-physiological diversity of ciliates should be taken into account. For example, mixotrophic ciliates at certain environmental conditions can switch their feeding mode and alternately act as either producers or strict consumers of pico- and nano

- plankton. Ignoring planktonic oligotrichs, which

dominate in various pelagic environments, can lead to incorrect estimation of primary pro-duction, growth rates and top-down control of ciliate communities. Further development of specific research methods (e.g. for mixotrophy detection in the environmental samples) and their adequate combination with the taxonomic species identification and trophic analysis of the planktonic food webs can provide new essential information about the structure of ciliate communities and the functional role of these protists in the Baltic pelagic ecosystems.

Acknowledgements

This work was funded by grants 13-04-00703 and 14-04-31759 from the Russian Foundation for Basic Research, grant 5142.2014.4 for the Leading Scientific School on Production Hydrobiology, the RAS Programs “Biodiversity” and SPbSC 20132-10, and the IB/BMBF grants RUS 09/038 and 01DJ12107.

References

Aberle N., Lengfellner K. and Sommer U. 2007. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia. 150 (4), 668-681.

Ackefors H. 1969. Ecological zooplankton investigations in the Baltic proper 1963-1965. Inst. Mar. Res., Lysekil, Ser. Biol. Rep. 18, 1-139.

Agatha S. 2011. Global diversity of aloricate oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water. PLoS One. 6: e22466. doi:10.1371/journal.pone.0022466.

Alekperov I. 2007. Fauna of free-living ciliates in Azerbaijan: modern studies and perspectives. Protistology. 5, 11.

Anderson R., Winter C. and J&gens K. 2012. Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. Mar. Ecol. Prog. Ser. 467, 1-14.

Anderson R., Wylezich C., Glaubitz S., Labrenz M. and J&gens K. 2013. Impact ofprotist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ. Microbiol. 15, 1580-1594.

Andrushaitis A.G. 1987. Microzooplankton as a component of coastal plankton communities in the Baltic Sea. PhD dissertation, Moscow. 150 p. (in Russian).

Andrushaitis A.G. 1990. The rate ofmultiplica-tion of mass species of plankton ciliates in the Gulf

of Riga. Protozoology. 13, 17—25 (in Russian, with English summary).

Arndt H. 1991. On the importance ofplanktonic protozoans in the eutrophication process of the Baltic Sea. Int. Rev. Hydrobiol. 76, 387—396.

Arndt H., Schroder C. and Schnese W. 1990. Rotifers of the genus Synchaeta - an important component of the zooplankton in the coastal waters of the southern Baltic. Limnologica. 21, 233-235.

Ax P. and Ax R. 1960. Experimentelle Unter-suchungen uber die Salzgehaltstoleranz von Ciliaten aus dem Brackwasser und SuBwasser. Biol. Zbl. 79, 7-31.

Axelsson B. and Norrgren L. 1991. Parasite frequency and liver anomalies in three-spined stickleback, Gasterosteus aculeatus (L.), after longterm exposure to pulp mill effluents in marine mesocosms. Arch. Environ. Contam. Toxicol. 21, 505-513.

Azovsky A.I. and Mazei Yu. A. 2013. Do microbes have macroecology? Large-scale patterns in the diversity and distribution of marine benthic ciliates. Glob. Ecol. Biogeogr. 22, 163-172.

Berger H. 1999. Monograph ofthe Oxytrichidae (Ciliophora, Hypotrichia). Monogr. Biol. 78, 1-1080.

Berger H. 2001. Catalogue of ciliate names 1. Hypotrichs. Verlag, Salzburg.

Berger H. 2006. Monograph ofthe Urostyloidea (Ciliophora, Hypotricha). Monogr. Biol. 85, 1-1304.

Berger H. 2008. Monograph of the Amphisi-ellidae and Trachelostylidae (Ciliophora, Hypotricha). Monogr. Biol. 88, 1-737.

Berger H. 2011. Monograph ofthe Gonostoma-tidae and Kahliellidae (Ciliophora, Hypotricha). Monogr. Biol. 90, 1-741.

Beusekom van J.E.E., Mengedoht D., Augustin C.B., Schilling M., Boersma M. 2007. Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002-2003 during the German GLOBEC Project. Int. J. Earth Sci. 98, 251-260.

Biernacka I. 1948. Tintinnoinea w Zatoce Gdanskiej i wodach przyleglych. Biul. Morsk. Lab. Rybackiego w Gdyni. 4, 73-91.

Biernacka I. 1952. Studia nad rozrodem niekto-rych gatunkow rodzaju Tintinnopsis Stein. Ann. Univ. M. Curie-Sklodowska. 6, 211-247.

Biernacka I. 1962. Die Protozoenfauna in der Danziger Bucht. 1. Die Protozoen in einigen Biotopen der Seekuste. Pol. Arch. Hydrobiol. 10, 39-109.

Biernacka I. 1963. Die Protozoenfauna in der Danziger Bucht. 2. Die Charakteristik der Protozoen in untersuchten Biotopen der Seekuste. Pol. Arch. Hydrobiol. 11, 17-75.

Bock K.J. 1952. Zur Okologie der Ciliaten des marinen Sandgrundes der Kieler Bucht I. Kieler Meeresforsch. 9, 77-89.

Bock K.J. 1953. Zur Oekologie der Ciliaten des marinen Sandgrundes der Kieler Bucht II. Kieler Meeresforsch. 9, 252-256.

Bock K. J. 1960. Biologische Untersuchungen, insbesondere der Ciliatenfauna, in der durch Ab-wasser belasteten Schlei (westliche Ostsee). Kieler Meeresforschungen. 16, 57-68.

Boikova E.E. 1984a. Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia. Suppl. 3, 23-32.

Boikova E.E. 1984b. Benthos infusoria in the coastal area of the Gulf of Riga. In: Hydrobiology of the Gulf of Riga. Zinatne, Riga, pp. 120-127 (in Russian, with English summary).

Boikova E.E. 1989. Prosteishiye - biomonitory morskoi sredy. Zinatne, Riga (in Russian).

Bouvier T., Becquevort S. and Lancelot C. 1998. Biomass and feeding activity of phagotrophic mixotrophs in the north-western Black Sea during the summer 1995. Hydrobiologia. 363, 289-301.

Calbet A. and Saiz E. 2005. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157-167.

Chen X., Song W., Warren A., Al-Rasheind K., Al-Farraj S., Al-Quraishy S. and Gong J. 2008. Redefinition of two marine suctorian ciliates, Ephelota gemmipara (Hertwig, 1876) Butschli,

1889 and E. crustaceorum Haller, 1880 (Ciliophora, Suctoria), with a brief description of the asexual reproduction process in E. gemmipara. Acta Proto-zool. 47, 113-124.

Chen X., Wang Y., Long H., Al-Rasheid K.A., Warren A. and Song W. 2010. Morphological studies on two marine colepid ciliates from Qingdao, China, Nolandia orientalis spec. nov. and Pinacocoleps similis (Kahl, 1933) comb. nov. (Ciliophora, Colepidae). Eur. J. Protistol. 46, 254-262.

Czapik A. 1962. Mikrofauna slonawego jeziora Ptasi Raj (La microfaune du lac saumatre Ptasi Raj). Pol. Arch. Hydrobiol. 10, 371-378 (in Polish, with Russian and French summaries).

Czapik A. and Jordan A. 1976. Les Cilies psammophilles de la mer Baltique aux environs de Gdansk. Acta Protozool. 15, 423-445.

Czapik A. and Jordan A. 1977. Les Cilies psammophilles de la mer Baltique aux environs de Gdansk (Partie 2). Acta Protozool. 16, 165-168.

Czapik A. and Fyda J. 1992. Contribution a la connaissance des cilies psammophiles de la Baltique. Acta Protozool. 31, 109-114.

Dahlgren K., Andersson A., Larsson U., Hajdu

S. and Bamstedt U. 2010. Planktonic production and carbon transfer efficiency along a north-south gradient in the Baltic Sea. Mar. Ecol. Prog. Ser. 409, 77-94.

Detmer A., Giesenhagen H., Trenkel V., dem Venne H., and Jochem F. 1993. Phototrophic and heterotrophic pico- and nanoplankton in anoxic depths of the central Baltic Sea. Mar. Ecol. Prog. Ser. 99, 197-203.

Dickmann M., Mollmann C. and Voss R. 2007. Feeding ecology of Central Baltic sprat Sprattus sprattus larvae in relation to zooplankton dynamics: implications for survival. Mar. Ecol. Prog. Ser. 342, 277-289.

Dietrich D. and Arndt H. 2000. Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol. 136, 309-322.

Dobberstein C. and Palm H. 2000. Trichodinid ciliates (Peritrichia: Trichodinidae) from the Bay of Kiel, with description of Trichodina claviformis sp. n. Folia Parasitol. 47, 81-90.

Doherty M., Tamura M., Costas B.A., Ritchie M.E., McManus G.B. and Katz L.A. 2010. Ciliate diversity and distribution across an environmental and depth gradient in Long Island Sound, USA. Environ. Microbiol. 12, 886-898.

Dolan J.R. and Perez M.T. 2000. Costs, benefits and characteristics of mixotrophy in marine oligo-trichs. Freshw. Biol. 45, 227-238.

Elliott M. and Whitfield A.K. 2011. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 94, 306-314.

Fenchel T. 1967. The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with metazoans in various types of sediments. Ophelia. 4, 121-137.

Fenchel T. 1968a. The ecology ofmarine microbenthos. II. The food of marine benthic ciliates. Ophelia. 5, 73-121.

Fenchel T. 1968b. The ecology ofmarine microbenthos. III. The reproductive potential of ciliates. Ophelia. 5, 123-136.

Fenchel T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with the special reference to the ciliated protozoa. Ophelia. 6, 1-182.

Fenchel T. and Finlay B.J. 2004. The ubiquity of small species: patterns of local and global diversity.

BioScience. 54, 777—784.

Filippenko D.P. 2013. Salinity factor influence on mollusk settlements structure in the lagoons of the southern Baltic Sea. Proc. Zool. Inst. RAS, Suppl. 3. 207-213.

Finlay B.J., Esteban G.F. and Fenchel. T. 2004. Protist diversity is different? Protist. 155, 15-22.

Foissner W. 1987. Neue und wenig bekannte hypotriche und colpodide Ciliaten (Protozoa: Ciliophora) aus Boden und Moosen. Zool. Beitr. (N.F.). 31, 187-282.

Foissner W. 2004. Ubiquity and cosmopolitanism of protists questioned. SIL News. 43, 6-7.

Foissner W. 2008. Protist diversity and distribution: some basic considerations. Biodivers. Conserv.

17, 235-242.

Foissner W., Chao A. and Katz L.A. 2008. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17, 345-363.

Gaevskaya N. 1948. Guide of flora and fauna of northern seas. Sovetskaya Nauka, Moscow (in Russian).

Garstecki T., Verhoeven R., Wickham S. and Arndt H. 2000. Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Freshw. Biol. 45, 147-167.

Gerlach S. 2000. Checkliste der Fauna der Kieler Bucht und eine Bibliographie zur Biologie und Oekologie der Kieler Bucht: Die Biodiversitat in der deutschen Nord- und Ostsee. Bundesanstalt fur Gewasserkunde, Koblenz.

Gilbert J.J. and Jack J.D. 1993. Rotifers as predators on small ciliates. Hydrobiologia. 255/256, 247-253.

Granskog M., Kaartokallio H., Kuosa H., Thomas D. and Vainio J. 2006. Sea ice in the Baltic Sea: A review. Estuar. Coast. Shelf Sci. 70, 145-160.

Griniene E. 2012. Diversity and functional role of plankton ciliates in a eutrophic coastal lagoon. PhD dissertation. Klaipeda. 124 p.

Griniene E., Mazeikaite S. and Gasiunaite Z.R. 2011. Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40, 86-95.

Hansen P.J., Bj0rnsen P.K. and Hansen B.W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-^m body size range. Limnol. Oceanogr. 42, 687-704.

Hartwig E. 1974. Verzeichnis der im Bereich der deutschen MeeresMste angetroffenen interstitiellen Ciliaten. Mitt. hamb. zool. Mus. Inst. 71, 7-21.

Hedin H. 1974. Tintinnids of the Swedish west coast. Zoon. 2, 123-133.

Hedin H. 1975. On the ecology of Tintinnids of the Swedish west coast. Zoon. 3, 125-140.

Herlemann D.P.R., Labrenz M., Jurgens K. Bertilsson S., Waniek J.J. and Andersson A.F. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571-1579. http://dx.doi.org/10.1038/ ismej.2011.41.

Hirche H.J. 1974. Die Copepoden Eurytemora affinis Poppe und Acartia tonsa Dana und ihre Besiedlung durch Myoschiston centropagidarum Precht (Peritricha) in der Schlei. Kieler Meeres-forschungen. 30, 43-64.

Ikavalko J. and Thomsen H.A. 1997. The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur. J. Protistol. 33, 229-243.

Jaanus A., Andersson A., Hajdu S., Huseby S., Jurgensone I., Olenina I., Wasmund N. and Toming K. 2007. Shifts in the Baltic Sea summer phytoplankton communities in 1992-2006. HEL-COM Indicator Fact Sheets, http://www.helcom. fi/environment2/ifs/en_GB/cover.

Jaeckel S. 1962. Die Tierwelt der Schlei. Ubersicht einer Brackwasserfauna. Schr. naturw. Ver. Schlesw. Holst. 33, 11-32.

Jakobsen H. and Montagnes D. 1999. A redescription of Balanion comatum Wulff, 1919 (Prorodontida, Ciliophora), with notes on its cultivation and behaviour. J. Euk. Microbiol. 46, 198-205.

Jansson B.-O. 1972. Ecosystem approach to the Baltic problem. Ecol. Bull., Stockholm. 16, 1-82.

Ji D., Shin M.K., Choi J.K., Clamp J.C., Al-Rasheid K.A. and Song W. 2011. Redescriptions of five species of marine peritrichs, Zoothamnium plumula, Zoothamnium nii, Zoothamnium wang, Pseudovorticella bidulphiae, and Pseudovorticella marina (Protista, Ciliophora). Zootaxa. 2930, 47-59.

Johansson M., Gorokhova E., Larsson U. 2004. Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26, 67-80.

Jonsson P.R. 1986. Particle size selection, feeding rates and growth dynamics of marine plankton oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33, 265-277.

Kaartokallio H., Kuosa H., Thomas D.N., Granskog M.A. and Kivi K. 2007. Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biol. 30, 183-197.

Kahl A. 1930. Urtiere oder Protozoa I: Wimper-tiere oder Ciliata (Infusoria) 1. Allgemeiner Teil und Prostomata. Tierwelt Dtl. 18, 1—180.

Kahl A. 1931. Urtiere oder Protozoa I: Wimper-tiere oder Ciliata (Infusoria) 2. Holotricha auBer den im 1. Teil behandelten Prostomata. Tierwelt Dtl. 21, 181-398.

Kahl A. 1932. Urtiere oder Protozoa I: Wimper-tiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Dtl. 25, 399-650.

Kahl A. 1933. Ciliata libera et ectocommensalia. Die Tierwelt der Nord-und Ostsee 23. Teil II, c3, 29-146.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Kahl A. 1934. Suctoria. Die Tierwelt der Nord-und Ostsee 26. Teil II, c5, 184-226.

Kahl A. 1935. Urtiere oder Protozoa I: Wimper-tiere oder Ciliata (Infusoria) 4. Peritricha und Chonotricha. Tierwelt Dtl. 30, 651—886.

Khlebovich T.V. 1987. Planktonic ciliates. In: Neva Bay: hydrobiological investigations (Eds: Winberg G.G. and Gutelmakher B.L.). Nauka, Leningrad, pp. 77-82 (in Russian).

Kivi K. 1986. Annual succession of pelagic protozoans and rotifers in the Tvarminne Storf-jarden, SW coast of Finland. Ophelia. Suppl. 4, 101-110.

Kivi K. and Setala O. 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 119, 125-137.

Kivi K., Kaitala S., Kuosa H., Kuparinen J., Leskinen E., Lignell R., Marcussen B. and Tamminen T. 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38, 893905.

Kivi K., Kuosa H. and Tanskanen S. 1996. An experimental study on the role of crustacean and microprotozoan grazers in the planktonic food web. Mar. Ecol. Prog. Ser. 136, 59—68.

Klinkenberg G. and Schumann R. 1994. Microorganism activity in aggregate layers in shallow eutrophic brackish water as influenced by wind induced mixing; an experimental approach. Neth. J. Aquat. Ecol. 28, 421—426.

Koski M., Schmidt K., Engstro m-O st J., Viitasalo M., Jynasdyttir S.H., Repka S. and Sivo-nen K. 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodula-ria spumigena. Limnol. Oceanogr. 47, 878-885.

Kurilov A.V. 2003. Features ofplanktonic cilia-tes assemblages in the Black Sea lagoon and estuaries of various types. Biologiya Morya. 64, 7—12.

Kurilov A.V. 2007. A synopsis of the Black Sea fauna of planktonic ciliates. Protistology. 5, 47.

Leppanen J.-M. and Bruun J.E. 1986. The role of pelagic ciliates including the autotrophic Mesodinium rubrum during the spring bloom of 1982 in the open northern Baltic proper. Ophelia. Suppl.

4, 147-157.

Lignell R., Heiskanen A.S., Kuosa H., Gunder-sen K. and Kuuppo-Leinikki P. 1993. Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Mar. Ecol. Prog. Ser. 94, 239—252.

Lindquist A. 1959. Studien fiber das Zooplankton der Bottensee II. Zur Verbreitung and Zusammen-setzung des Zooplanktons. Inst. Mar. Res., Lysekil, Ser. Biol. Rep. 11, 1-136.

Lohmann H. 1908. Untersuchungen zur Fest-stellung des vollstandigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters., Abt. Kiel, N.F. 10, 129-370.

Maar M., Nielsen T., Gooding S., Tonnesson K, Tiselius P., Zervoudaki S., Christou E, Sell A. and Richardson K. 2004. Trophodynamic function of copepods, appendicularians and protozooplankton in the late summer zooplankton community in the Skagerrak. Mar. Biol. 144, 917-933.

Majaneva M. 2013. Linking taxonomy and environmental 18S-rRNA-gene sequencing of Baltic Sea protists. PhD dissertation (article-based), Helsinki. 50 p.

Majaneva M., Rintala J.-M., Piisila M., Fewer P.D. and Blomster J. 2012. Comparison of wintertime nano-sized eukaryotic communities in the Baltic Sea ice and water, based on sequencing of the 18S rRNA gene. Polar Biol. 35, 875-889.

Majaneva S., Setala O., Gorokhova E. and Lehti-niemi M. 2013. Feeding of the Arctic ctenophore Mertensia ovum in the Baltic Sea: evidence ofthe use of microbial prey. J. Plankton Res. 36, 91—103.

Mamaeva N.V. 1987. Baltic pelagic ciliates in May — June 1984. In: Baltic ecosystems in May — June 1984 (Eds: Koblenz-Mishke O.I. and Belyaeva G.A.). AN SSSR, Moscow, pp. 152—160 (in Russian).

Mazeikaite S.I., 1978. Zooplankton of the northern part of the Curonian Lagoon in 1974 and 1975. Acad. Sci. Lithuanian SSR. 64, 55—56 (in Russian).

McKellar H. and Hobro R. 1976. Phytoplan-kton-zooplankton relationships in 100-liter plastic bags. Contrib. Asko Lab. Contr. 13, 1—83.

Mironova E.I. 2013. Species diversity, community structure and role of planktonic ciliates in the Neva Estuary (Gulf of Finland, Baltic Sea). PhD

dissertation, St. Petersburg. 179 p.

Mironova E., Telesh I. and Skarlato S. 2009. Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol. 1, 13—24.

Mironova E., Telesh I. and Skarlato S. 2012. Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34, 208—220.

Mironova E.I., Telesh I.V. and Skarlato S.O. 2013. Planktonic ciliates ofthe Neva Estuary (Baltic Sea): community structure and spatial distribution. Acta Protozool. 52, 13-23.

Mobius K. 1888. Bruchsfficke einer Infusorien-fauna der Kieler Bucht. Arch. Naturgesch. 54, 81-116.

Montagnes D.J.S., Lynn D.H., Roff J.C. and Taylor W.D. 1988. The annual cycle of heterotro-phic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99, 21—30.

Moorthi S., Hillebrand H., Wahl M. and Ber-ninger U. 2008. Consumer diversity enhances secondary production by complementarity effects in experimental ciliate assemblages. Estuaries and Coasts. 31, 152-162.

Mffller O.F. 1786. Animalcula Infusoria Fluvia-tilia et Marina, quae Detexit, Sytematice Descripsit et ad Vivum Delineari Curavit. Molleri, Hauniae.

Muller H. and Geller W. 1993. Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126, 315-327.

Mйnch H.-D. 1956. Spirotriche und peritriche Ciliaten, Rotatorien und Archianneliden aus dem Kйstengrundwasser. (Anhang: Oligochaeten und Copepoden). Wiss. Z. Ernst Moritz Arndt-Univ. Greifswald, Mathematisch-naturwissenschaftliche Reihe. 5, 433-436.

Nielsen T.G. and Ki0rboe T. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39, 508—519.

Olli K., Heiskanen A. and Lohikari K. 1998. Vertical migration ofautotrophic micro-organisms during a vernal bloom at the coastal Baltic Sea -coexistence through niche separation. Hydrobio-logia. 363, 179-189.

Palm H. and Dobberstein R. 1999. Occurrence of trichodinid ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use as a biological indicator. Parasitol. Res. 85, 726— 732.

Peters J., Renz J., van Beusekom J., Boersma M. and Hagen W. 2006. Trophodynamics and seasonal

cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol. 149, 1417-1429.

Pierce R. and Turner J. 1992. Ecology ofplank-tonic ciliates in marine food webs. Rev. Aquat. Sci.

6, 139-181.

Pitta P. and Giannakourou A. 2000. Planktonic ciliates in the oligotrophic Eastern Mediterranean: vertical, spatial distribution and mixotrophy. Mar. Ecol. Prog. Ser. 194, 269-282.

Ptacnik R., Olli K., Lehtinen S., Tamminen T. and Andersen T. 2011. Does plankton diversity peak at intermediate salinities? Comment on Telesh et al. (2011). Mar. Ecol. Prog. Ser. 432, 291-292.

Purasjoki K.J. 1947. Quantitative Untersuchun-gen №er die Mikrofauna des Meeresbodens in der Umbegung der Zoologischen Station Tvarminne an der Sйdkuste Finnlands. Soc. Sci. Fenn. Comm. Biol. 9, 1-24.

Quennerstedt A. 1869. Bidrag till sveriges infu-sorie-fauna. III. Acta Univ. Lund. 6, 1—35.

Remane A. 1934. Die Brackwasserfauna. Ver-handlungen der Deutschen Zoologischen Gesell-schaft. Greifswald. 36, 34—74.

Rintala J.-M., Piiparinen J. and Uusikivi J. 2010. Drift-ice and under-ice water communities in the Gulf of Bothnia (Baltic Sea). Polar Biol. 33, 179-191.

Rychert K. 2008. Particle size selectivity of two marine ciliates — Balanion comatum Wullf and Strombidium sp. Pol. J. Ecol. 56, 251—257.

Rychert K. 2011. Communities ofheterotrophic protists (protozoa) in the near-bottom zone of the Gdansk Basin. Oceanol. Hydrobiol. Stud. 40, 68-73.

Rychert K. and P^czkowska M. 2012. Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (central Pomerania). Baltic coastal zone. 16, 97-102.

Rychert K., Spich K., Laskus K., P^czkowska M., Wielgat-Rychert M., and Sojda G. 2013. Composition ofprotozoan communities at two sites in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42, 268-276.

Saiz E. and Calbet A. 2011. Copepod feeding in the ocean: scaling patterns, composition oftheir diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia. 666, 181-196.

Samuelsson K., Berglund J. and Andersson A. 2006. Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28, 345-359.

Sandberg J. 2007. Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic Sea. Ecol. Model. 201, 243-261.

Sauerbrey E. 1928. Beobachtungen №er einige neue oder wenig bekannte marine Ciliaten. Arch. Protistenkd. 62, 355—407.

Schiewer U. 1994. Vorkommen und Bedeutung der Protozoen in der DarB-Zingster Boddenkette. Rostock. Meeresbiol. Beitr. 2, 77—83.

Schiewer U. and Jost G. 1991. The microbial food web in eutrophic shallow estuaries of the Baltic Sea. Int. Rev. Hydrobiol. 76, 339—350.

Schmidt K., Koski M., Engstrom-Ost J. and Atkinson A. 2002. Development of Baltic Sea zooplankton in the presence of a toxic cyanobacterium: a mesocosm approach. J. Plankton Res. 24, 979-992.

Schnetzer A. and Caron D.A. 2005. Copepod grazing impact on the trophic structure of the microbial assemblage of the San Pedro Channel, California. J. Plankton Res. 27, 959—971.

Schubert H., Feuerpfeil P., Marquardt R., Telesh I. and Skarlato S. 2011. Macroalgal diversity along the Baltic Sea salinity gradient challenges Remane’s species minimum concept. Mar. Pollut. Bull. 62, 948-1956.

Setala O. 1991. Ciliates in the anoxic deep water layer of the Baltic. Arch. Hydrobiol. 122, 483—492.

Setala O. 2004. Studies on planktonic brackish water microprotozoans with special emphasis on the role ciliates as grazers. Doctoral dissertation, Helsinki. 48 p.

Setala O. and Kivi K. 2003. Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32, 287-297.

Sherr E.B., Sherr B.F., Fallon R.D. and Newell S.Y. 1986. Small aloricate ciliates as a major component ofthe marine heterotrophic nanoplankton. Limnol. Oceanogr. 31, 177—183.

Smetacek V. 1981. The annual cycle of proto-zooplankton in the Kiel Bight. Mar. Biol. 63, 1—11.

Smurov A. and Fokin S. 1999. Resistance of Paramecium species (Ciliophora, Peniculia) to salinity of environment. Protistology. 1, 43—53.

Spittler P., Brenning U. and Arlt G. 2007. Protozoans — the first food of larval herring (Clupea harengus L.). Int. Revue ges. Hydrobiol. Hydrogr. 75, 597-603.

Stein F. 1859a. Der Organismus der Infusion-sthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet. I. Abtheilung. Allgemeiner Theil und Naturgeschichte der hypotrichen Infu-sionsthiere. Engelmann, Leipzig.

Stein F. 1859b. Characteristik neuer Infusorien-Gattungen. Lotos. 9, 57—60.

Stein F. 1863. Neue Infusorienformen in der Ostsee. Amtliche Berichte Deutscher Naturforscher und ^rzte in Karlsbad. 37. Versammlung im September 1862, 161-162, 165-166.

Stein F. 1864. Uber den Proteus tenax von O. F. MUller und Uber die Infusoriengattungen Distigma Ehrbg. und Epiclintes Stein. Sber. K. bohm. Ges. Wiss. year 1864, 41—46.

Stein F. 1867. Der Organismus der Infusion-sthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet. II. Abtheilung. 1) Darstellung der neuesten Forschungsergebnisse Uber Bau, Fortpflanzung und Entwickelung der Infusion-sthiere. 2) Naturgeschichte der heterotrichen Infusorien. Engelmann, Leipzig.

Stoecker D.K. and Capuzzo J.M. 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12, 891—908.

Stoecker D.K., Michaels A.E. and Davis L.H. 1987. A large fraction of marine planktonic ciliates can contain functional chloroplasts. Nature. 326, 790-792.

Telesh I., Postel L., Heerkloss R., Mironova E. and Skarlato S. 2008. Zooplankton of the Open Baltic Sea: Atlas. BMB publication No. 20. Meereswiss. Ber. 73, 1—251.

Telesh I., Postel L., Heerkloss R., Mironova E. and Skarlato S. 2009. Zooplankton of the Open Baltic Sea: Extended Atlas. BMB Publication No. 21. Meereswiss. Ber. 76, 1—290.

Telesh I.V., Schubert H. and Skarlato S.O. 2011a. Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 421, 1—11.

Telesh I.V., Schubert H. and Skarlato S.O. 2011b. Protistan diversity does peak in the horoha-linicum of the Baltic Sea: Reply to Ptacnik et al. Mar. Ecol. Prog. Ser. 432, 293—297.

Telesh I., Schubert H. and Skarlato S. 2013. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 135, 317-327.

Tiselius P. 1989. Contribution of aloricate ciliates to the diet of Acartia clausi and Centropages hamatus in coastal waters. Mar. Ecol. Prog. Ser.

56, 49-56.

Uitto A., Heiskanen A.S., Lignell R., Autio R. and Pajuniemi R. 1997. Summer dynamics of the coastal planktonic food web in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 151, 27—41.

Urrutxurtu I., Orive E. and de la Sota A. 2003. Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57, 1169—1182.

Vannini C., Petroni G., Verni F. and Rosati G. 2005. A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb. Ecol. 49, 434—442.

Vd’acny P. and Foissner W. 2012. Monograph of the dileptids (Protista, Ciliophora, Rhynchosto-matia). Denisia. 31, 1—529.

Visse M. 2007. Detrimental effect of peritrich ciliates (Epistylis sp.) as epibionts on the survival of the copepod Acartia bifilosa. Proc. Est. Acad. Sci. Biol. Ecol. 56, 173-178.

Warren A. and Paynter J. 1991. A revision of Cothurnia (Ciliophora: Peritrichida) and its morphological relatives. Bull. Br. Mus. Nat. Hist. Zool.

57, 17-59.

Wasik A., Mikolajczyk E. and Ligowski R. 1996. Agglutinated loricae of some Baltic and Antarctic Tintinnina species (Ciliophora). J. Plankton Res.

18, 1931-1940.

Whitfield A.K., Elliott M., Basset A., Blaber

S.J.M. and West R.J. 2012. Paradigms in estuarine ecology — A review of the Remane diagram with a suggested revised model for estuaries. Estuar. Coast. Shelf Sci. 97, 78-90.

Wiktor K. and Krajewska-Soltys A. 1994. Occurrence of epizoic and parasitic protozoans on Calanoida in the Southern Baltic. Bull. Sea Fish. Inst. 132, 13-25.

Witek M. 1998. Annual changes of abundance and biomass of planktonic ciliates in the Gdansk Basin, Southern Baltic. Int. Rev. Hydrobiol. 83, 163-182.

Address for correspondence: Ekaterina Mironova. Institute of Cytology, Russian Academy of Sciences Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia; e-mail: [email protected]

Appendix

CHECKLIST OF CILIATES OF THE BALTIC SEA

Species composition of planktonic and benthic ciliates in the Baltic Sea (BP - Baltic Proper; WBS - Western Baltic Sea; NBS - Northern Baltic Sea, SBS - Southern Baltic Sea; EBS - Eastern Baltic Sea; "+" present; no sign = species not found; species in bold are the first records of the authors).

Molecular data on species composition of the Baltic ciliates (e.g. Euplotes rariseta Curds, West and Dorahy, 1974, Euplotopsis muscicola (Kahl, 1932) Borror and Hill, 1995, Moneuplotes crassus Dujardin, 1841, Euplotoides daida-leos (Diller and Kounaris, 1966) Borror and Hill, 1995) available from Majaneva et al. (2012) and Anderson et al. (2013) are not included; only morphological data were used in this study.

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 Acaryophrya collaris (Kahl, 1926) Dingfelder, 1962 (Syn.*: A. mamillata Kahl, 1927; Balanophrya collaris Kahl, 1926; Holophrya collaris Kahl, 1926) + +

2 Acineria incurvata Augustin, Foissner & Adam, 1987 (Syn.: Litonotus binucleatus Kahl, 1933; L. pictus f. binucleatus Kahl, 1933) +

3 Acineta sp. +

4 Acineta amphiasci Precht, 1935 +

5 Acineta compressa Claparede & Lachmann, 1859 (Syn.: A. cucullus Clapare'de & Lachmann, 1860; A. papillifera Keppen, 1888) +

6 Acineta flava Kellicott, 1885 (Syn.: A. papillifera Keppen, 1888) +

7 Acineta foetida Maupas, 1881 + +

8 Acineta laomedeae Precht, 1935 +

9 Acineta pyriformis Stokes, 1891 +

10 Acineta schulzi Kahl, 1934 +

11 Acineta sulcata Dons, 1927 (Syn.: A. benesaepta Schulz, 1933) +

12 Acineta tuberosa Ehrenberg, 1834 + + +

13 Actinobolina vorax Wenrich, 1929 (Syn.: Actinobolus vorax +

Wenrich, 1929)

14 Amphileptus agilis Penard, 1922 (Syn.: Hemiophrys agilis Penard, 1922; Litonotus agilis Penard, 1922) + +

15 Amphileptus filum Gruber, 1884 (Syn.: Hemiophrys filum Gruber, 1884; Litonotus filum Gruber, 1884) + +

16 Amphileptus marinus (Kahl, 1931) Song, Wilbert & Hu, 2004 (Syn.: Hemiophrys marina Kahl, 1930) + +

17 Amphileptus inquieta Biernacka, 1963 +

18 Amphileptus pleurosigma (Stokes, 1884) Foissner, 1984 (Syn.: Hemiophrys pleurosigma (Stokes, 1884) Kahl, 1931; Litonotus pleurosigma Stokes, 1884) ? +

19 Amphisiella annulata (Kahl, 1932) Borror, 1972 (Syn.: Holosticha annulata Kahl, 1932) + +

20 Amphisiella capitata (Perejaslawzewa, 1886) Borror, 1972 (Syn.: Oxytricha capitata Perejaslawzewa, 1886; A. marioni Gourret & Roeser, 1888) +

21 Amphisiella milnei (Kahl, 1932) Horvath, 1950 + +

22 Amphorella sp. +

23 Amphorides quadrilineata Claparede & Lachmann, 1858 (Syn.: Tintinnus quadrilineatus Claparede & Lachmann, 1858) +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

24 Anigsteinia clarissima (Anigstein, 1912) Isquith, 1968 (Syn.: Blepharisma clarissimum Kahl, 1928; A. clarissimum Kahl, І928) + +

25 Anigsteinia longissima Kahl, 1928 +

26 Anigsteinia salinarum (Florentin, 1899) Isquith, I968 (Syn.: Blepharisma salinarum Florentin, 1899; A. salinaria Kahl, 1928) + +

27 Anophrys sarcophaga Cohn, 1866 +

28 Anteholosticha arenicola (Kahl, 19З2) Berger, 200З (Syn.: +

Holosticha arenicola Kahl, 19З2)

29 Anteholosticha brevis (Kahl, 19З2) Berger, 200З (Syn.: Holosticha brevis Kahl, 19З2; Keronopsis longicirrata Gelei & Szabados, 1950; Holosticha rostrata Vuxanovici, 196З) +

ЗО Anteholosticha extensa (Kahl, 19З2) Berger, 200З (Syn.: +

Holosticha extensa Kahl, 19З2)

ЗІ Anteholosticha grisea (Kahl, 19З2) Berger, 200З (Syn.: Holosticha +

grisea Kahl, 19З2)

З2 Anteholosticha monilata (Kahl, 1928) Berger, 200З (Syn.: H. monilata Kahl, 1928; Keronopsis monilata Kahl, 1928) + +

ЗЗ Anteholosticha multistilata (Kahl, 19З2) Berger, 200З (Syn.: Keronopsis multistilata Kahl, 1928; Holosticha multistilata Kahl, 19З2) +

З4 Anteholosticha pulchra (Kahl, 19З2) Berger, 200З (Syn.: Keronopsis pulchra Kahl, 19З2) + +

З5 Apiosoma sp. +

З6 Apotrachelocerca arenicola Xu et al., 2012 (Syn.: Tracheloraphis arenicola (Sauerbrey, 1928) Dragesco, 1960; Trachelocerca arenicola Kahl, 19ЗЗ) +

З7 Arcuseries scutellum (Cohn, 1866) Huang, Chen, Song & Berger, 2014 (Syn.: Anteholosticha scutellum (Cohn, 1866) Berger, 200З; Oxytricha scutellum Cohn, 1866) + +

З8 Aristerostoma marinum Kahl, 19З1 +

З9 Ascobius simplex Dons, 1918 (Syn.: Semifolliculina simplex +

Dons, 1918)

40 Askenasia sp. + + +

4І Askenasia stellaris (Leegaard, 1920) Kahl, 19З0 (Syn.: Lohmanniella stellaris Leegaard, 1920) + + +

42 Askenasia volvox (Eichwald, 1852) Kahl, 19З0 (Syn.: A. elegans Blochmann, 1895; Halteria volvox Claparede & Lachmann, 1858; Trichodina volvox Eichward, 1852) +

4З Aspidisca sp. + + +

44 Aspidisca aculeata (Ehrenberg, 18З8) Mansfeld, 1926 +

45 Aspidisca angulata Bock, 1952 +

46 Aspidisca binucleata Kahl, 19З2 +

47 Aspidisca cicada ("Muller, 1786) Claparede & Lachmann, 1858 (Syn.: A. costata (Dujardin, 1842) Stein, 1859; A. sulcata Kahl, 19З2; Coccudina costata Dujardin, 1841; Trichoda cicada Muller, 1786) + +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

48 Aspidisca dentata Kahl, 1928 +

49 Aspidisca fusca Kahl, 1928 +

50 Aspidisca leptaspis Fresenius, 1865 (Syn.: A. tridentata Dragesco, 196З; A. baltica Borror, 1968; A. caspica Agamaliev, 1967; A. crenata Fabre-Domergue, 1885; A. hexeris Quennerstedt, 1869; A. lyncaster Fleury et al., 1986; A. orthopogon Deroux & Tuffrau, 1965; A. psammobiotica Burkovsky, 1970; A. pulcherrima Kahl, 19З2; A. pulcherrima f. baltica Kahl, 19З2; A. sedigita Quennerstedt, 1867) + +

51 Aspidisca lyncaster (Muller, 177З) Stein, 1859 (Syn.: Trichoda lyncaster Muller, 177З; Kerona lyncaster (Muller, 1776) Muller, 1786) +

52 Aspidisca lynceus (Muller, 177З) Ehrenberg, 18З0 (Syn.: Trichoda lynceus Muller, 177З) +

5З Aspidisca major f. faurei Dragesco, 1960 +

54 Aspidisca mutans Kahl, 19З2 +

55 Aspidisca polystyla Stein, 1859 (Syn.: A. plana Perejaslawzeva, 1886) +

56 Aspidisca robusta Kahl, 19З2 +

57 Aspidisca steini Buddenbrock, 1920 (Syn.: A. aculeata Agamaliev, 1974; A. aculeata Borror, 1965; A. glabra Kahl, 1928; A. hyalina Dragesco, 1960) + +

58 Aspidisca turrita (Ehrenberg, 18З1) Claparede & Lachmann, 1858 (Syn.: Euplotes turritus Ehrenberg, 18З1) + +

59 Atopochilodon distichum Deroux, 1976 +

60 Australothrix gibba (Claparede & Lachmann, 1858) Blatterer & Foissner, 1988 (Syn.: Holosticha gibba (Muller, 1786) Stein, 1859; Oxytricha gibba Claparede & Lachmann, 1858; Paraurostyla gibba (Muller, 1786) Borror, 1972) +

61 Australothrixzignis (Entz, 1884) Blatterer & Foissner, 1988 (Syn.: Uroleptus zignis Entz, 1884) + +

62 Avelia gigas Dragesco, 1960 +

6З Balanion sp. + +

64 Balanion comatum Wulff, 1922 + + + +

65 Balladyna elongata Roux, 1901 +

66 Biholosticha discocephalus (Kahl, 19З2) Berger, 200З (Syn.: Holosticha discocephalus Kahl, 19З2) +

67 Blepharisma sp. + +

68 Blepharisma dileptus Kahl, 1928 +

69 Blepharisma hyalinum Perty, 1852 (Syn.: B. lateritium f. minima Roux, 1902) +

70 Blepharisma steini Kahl, 19З2 (Syn.: B. lateritium Claparede & Lachmann, 1858) +

71 Blepharisma tardum Kahl, 1928 +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

72 Blepharisma undulans Stein, 1868 +

73 Blepharisma vestitum Kahl, 1928 +

74 Brachonella spiralis (Smith, 1894) Jankowski, 1964 (Syn.: +

Metopus spiralis Smith, 1897; M. contortus Levander, 1894)

75 Bursaria sp. +

76 Bursaria truncatella Muller, 1773 +

77 Bursaridium pseudobursaria (Faure-Fremiet, 1924) Kahl, 1927 (Syn.: B. difficile Kahl, 1927; Thylakidiumpseudobursaria Faure-Fremiet, 1924) +

78 Bursella spumosa Schmidt, 1921 + +

79 Bursellopsis nigricans (Lauterborn, 1894) Foissner, Berger & Schaumburg, 1999 (Syn.: Holophrya nigricans Lauterborn, 1894) + +

80 Caenomorpha sp. +

81 Caenomorpha levanderi Kahl, 1927 +

82 Calyptotricha lanuginosa (Penard, 1922) Wilbert & Foissner, +

1980

83 Carchesium gammari Precht, 1935 +

84 Carchesium jaerae Precht, 1935 +

85 Carchesium polypinum (Linnaeus, 1758) Ehrenberg, 1830 (Syn.: C. corymbosum Penard, 1922; Sertularia polypina Linnaeus, 1758) +

86 Carchesium steinii Wrzesniowski, 1877 (Syn.: Epistylis steinii +

Wrzesniowski, 1877)

87 Cardiostomatella mononucleata Dragesco, 1960 +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

88 Cardiostomatella vermiforme (Kahl, 1928) Corliss, 1960 + +

89 Caudiholosticha setifera (Kahl, 1932) Berger, 2003 (Syn.: Holosticha setifera Kahl, 1932; H. obliqua Kahl, 1928) + +

90 Caudiholosticha viridis (Kahl, 1932) Berger, 2003 (Syn.: Holosticha +

viridis Kahl, 1932)

91 Certesia quadrinucleata Fabre-Domergue, 1885 (Syn.: C. ovata +

Vacelet, 1960)

92 Chaenea gigas Kahl, 1933 +

93 Chaenea teres (Dujardin, 1841) Kent, 1881 (Syn.: C. elongata Kahl, 1926; C. limicola Kahl, 1928) + +

94 Chaenea vorax Quennerstedt, 1867 (Syn.: Lagynus elongatus +

Maupas, 1883)

95 Chilodonella calkinsi Kahl, 1928 (Syn.: C. pediculatus Kahl, 1928; Chlamydonellopsis calkinsi Kahl, 1928) + + +

96 Chilodonella cyprini (Moroff, 1902) Strand, 1928 +

97 Chilodonella helgolandica Kahl, 1935 + +

98 Chilodonella nana Kahl, 1928 +

99 Chilodonella uncinata Ehrenberg, 1838 (Syn.: Chilodon unci- +

natus Ehrenberg, 1838; Chilodonella dentata Fouque, 1876)

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

100 Chilodontopsis caudata Kahl, 19ЗЗ +

101 Chilodontopsisdepressa (Perty, 1852) Blochmann, 1895 (Syn.: Chilodon depressus Perty, 1852) +

102 Chilodontopsis elongata (Kahl, 1928) Corliss, 1960 + +

10З Chilodontopsis oblonga Maupas, 188З (Syn.: Nassula oblonga +

Maupas, 188З)

104 Chilodontopsis ovalis Biernacka, 196З +

105 Chlamydodon cyclops Entzsen, 1884 +

106 Chlamydodon major (Kahl, 19З1) Carey, 1994 +

107 Chlamydodon mnemosyne Ehrenberg, 18З8 (Syn.: C. apsheronica +

Aliev, 1987; C. pedarius Kaneda, 195З)

108 Ciliofaurea arenicola Dragesco, 1960 +

109 Ciliofaurea mirabilis Dragesco, 1960 +

110 Cinetochilum margaritaceum Perty, 1852 (Syn.: Cyclidium margaritaceum Ehrenberg, 18З0; Glaucoma margaritaceum Claparede & Lachmann, 1858) +

111 Climacostomum gigas Meunier, 1907 +

112 Climacostomum virens Ehrenberg, 18ЗЗ (Syn.: Bursaria virens Ehrenberg, 18ЗЗ; Leucophrys curvilata Stokes, 1886; Spirostomum virens Ehrenberg, 18З8) +

11З Codonella sp. +

114 Codonella cratera Leidy, 1877 (Syn.: C. lacustris Entz, 1885;

Difflugia cratera Leidy, 1879; Tintinnopsis lacustris Brandt, + + +

1906)

115 Codonella lagenula Claparede & Lachmann, 1858 + +

116 Codonella orthoceras (Haeckel, 187З) Jorgensen, 1924 (Syn.: C. orthoceras (Haeckel, 187З) Kofoid & Campbell, 1929) +

117 Codonella relicta Minkiewich, 1905 + +

118 Codonellopsis sp. +

119 Codonellopsis contracta Kofoid & Campbell, 1929 + +

120 Codonellopsis orthoceros Haeckel, 187З +

121 Cohnilembus sp. +

122 Cohnilembus vermiformis Kahl, 19З1 +

12З Cohnilembus verminus (Muller, 1786) Kahl, 19ЗЗ +

124 Coleps sp. + + + +

125 Coleps amphacanthus Ehrenberg, 18ЗЗ (Syn.: C. uncinatus Roux, 1889) +

126 Coleps elongatus Ehrenberg, 18З0 + +

127 Coleps hirtus (Muller, 1786) Nitzsch, 1827 (Syn.: Cercaria hirta Nitsch, 1817; C. hirta Muller, 1786; Coleps incurvus Ehrenberg, 1841; C. viridis Ehrenberg, 18З8; Dictiocoleps hirtus Diesign, 1866; Vorticella punctata Abildgaard, 179З) + +

128 Coleps spetai Foissner, 1984 +

129 Colpidium sp. +

1З0 Colpidium kleini Foissner, 1969 +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

1З1 Colpoda cucullus (Muller, 1786) Gmelin, 1790 (Syn.: C. lucida Greeff, 188З; Kolpoda cucullus Muller, 177З; Tillina flavicans Stokes, 1885) +

1З2 Colpoda steini Maupas, 188З (Syn.: Tillina saprophila Stokes, +

1884)

1ЗЗ Conchostoma longissimum Faure-Fremiet, 196З +

1З4 Condylostentor auricularis (Kahl, 19З2) Jankowski, 1978 (Syn.: Stentor auricula Kent, 1881; S. auriculatus Kahl, 19З2) + +

1З5 Condylostoma magnum Spiegel, 1926 +

1З6 Condylostoma minima Dragesco, 1960 +

1З7 Condylostoma patens Muller, 1786 (Syn.: Trichoda patens Muller, 1786) +

1З8 Condylostoma patulum Claparede & Lachmann, 1858 + +

1З9 Condylostoma remanei Spiegel, 1928 (Syn.: C. caudatum Spiegel, 1926; C. longissima Kahl, 1928) + +

140 Condylostoma rugosum Kahl, 1928 +

141 Condylostoma tenuis Faure-Fremiet, 1958 +

142 Condylostomides tardus Penard, 1922 (Syn.: Condylostoma tardum Penard, 1922) +

14З Copemetopus subsalsus Villeneuve-Brachon, 1940 +

144 Corynophrya campanula Kahl, 19З4 + +

145 Corynophrya marina Kahl, 19З4 + +

146 Cossothigma dubium (Dragesco, 1954) Jankowski, 1978 (Syn.: Trachelostyla dubia Dragesco, 1954; Gastrostyla dubia Dragesco, 1954) +

147 Cothurnia arcuata Mereschkowsky, 1879 + +

148 Cothurnia annulata Stokes, 1885 +

149 Cothurnia borealis (Hensen, 1890) Ostenfeld, 1916 (Syn.: Amphorides borealis Hensen,1890; Tintinnus borealis Hensen, 1890) + +

150 Cothurnia ceramicola Kahl, 19ЗЗ +

151 Cothurnia cypridicola Kahl, 19ЗЗ + +

152 Cothurnia gammari Precht, 19З5 +

15З Cothurnia harpactici Kahl, 19ЗЗ +

154 Cothurnia imberbis Ehrenberg, 18З1 +

155 Cothurnia maritima Ehrenberg, 18З8 + +

156 Cothurnia ovalis (Wailes, 1928) Kahl, 19З5 + +

157 Cothurnia pedunculata Dons, 1918 (Syn.: C. trophoniae Dons, +

1918)

158 Cothurnia recurva Claparede & Lachmann, 1858 +

159 Coxliella helix Claparede & Lachmann, 1858 + + +

160 Coxliella helix f. cochleata Brandt, 1907 + + +

161 Craspedomyoschiston sphaeromae Precht, 19З5 +

162 Cristigera cirrifera Kahl, 1928 (Syn.: C. vestita Kahl, 1928) + +

16З Cristigera penardi Kahl, 19З5 (Syn.: C. pleuronemoides Penard, +

1922)

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

164 Cristigera phoenix Penard, 1922 +

165 Cristigera setosa Kahl, 1928 + + +

166 Cristigera sulcata Kahl, 1928 +

167 Cryptopharynx sp. +

168 Ctedoctema acanthocryptum Stokes, 1884 (Syn.: C. acanthocrypta Stokes, 1884) + +

169 Cyclidium sp. + +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

170 Cyclidium candens Kahl, 1928 + + +

171 Cyclidium elongatum Schewiakoff, 1896 (Syn.: C. glaucoma f. elongatum Schewiakoff, 1896) +

172 Cyclidium flagellatum Kahl, 1926 +

173 Cyclidium glaucoma Muller, 1773 + +

174 Cyclidium plouneouri Dragesco, 1963 +

175 Cyclidium veliferum Kahl, 1933 +

176 Cyclidium xenium Fenchel et.al, 1995 +

177 Cyclotrichium faurei Krainer & Foissner, 1990 (Syn.: Askenasia +

faurei Kahl, 1930; A. elegans Faure, 1924)

178 Cyclotrichium gigas Faure-Fremiet, 1924 +

179 Cyclotrichium ovatum Faure-Fremiet, 1924 +

180 Cyclotrichium viride Gajewskaja, 1933 (Syn.: Cyclotrichium limneticum Kahl, 1932) +

181 Cyrtolophosis mucicola Stokes, 1885 (Syn.: Balantiophorus minutus Schewiakoff, 1889) +

182 Dexiostoma campylum Ganner & Foissner, 1989 (Syn.: Colpidium campylum (Stokes, 1886-Bresslau, 1922) Kahl, 1931; Dexiostoma campyla (Stokes, 1886) Jankowski, 1967; Cryptochilum griseolum f. marium Gourret & Roeser, 1866; Glaucoma colpidium Schewiakoff, 1896; Tillina campyla Stokes, 1886) + +

183 Dictyocysta elegans Ehrenberg, 1854 +

184 Dicyclotrichiumsphaericum (Faure-Fremiet, 1924) Xu, Song & Hu, 2005 (Syn.: Cyclotrichium sphaericum Faure-Fremiet, 1924) +

185 Didinium sp. +

186 Didinium balbiani f. rostratum Kahl, 1926 (Syn.: D. nasutum f. +

rostratum Kahl, 1926)

187 Didinium gargantua Meunier, 1907 + + + +

188 Didinium nasutum (Muller, 1773) Stein, 1859 (Syn.: Chytridium steini Eberhard, 1862; Vorticella nasuta Muller, 1773) + + + + +

189 Dileptus sp. +

190 Dileptus estuarinus Dragesco, 1960 +

191 Diophrys sp. +

192 Diophrys appendiculata (Ehrenberg, 1838) Kahl, 1932 (Syn.: D.

hystrix Buddenbrock, 1920; D. multicirratus Alekperov, 1984; D. pentacirratus Alekperov, 1984; Stylonychia appendiculata + + +

Ehrenberg, 1838)

193 Diophrys scutum (Dujardin, 1841) Kahl, 1932 (Syn.: D. peloetes Borror, 1963; D. quadricaudatus Agamaliev, 1967; D. scutoides Agamaliev, 1967) + +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

194 Discocephalus ehrenbergi Dragesco, 1960 +

195 Discocephalus rotatorius Ehrenberg, 1828 + +

196 Discotricha papillifera Tuffrau, 1954 +

197 Disematostoma butschlii Lauterborn, 1894 (Syn.: Leucophrys +

ovum Faure-Fremiet, 1924)

198 Dysteria marioni Gourret & Roeser, 1887 +

199 Dysteria monostyla (Ehrenberg, 1838) Kahl, 1931 (Syn.: Ervilia legumen Dujardin, 1841; Trochilia legumen (Dujardin, 1841) Diesing, 1866; Aegyria monostyla Lepsi, 1926; A. legumen (Dujardin, 1841) Claparede & Lachmann, 1859) + +

200 Dysteria navicula Kahl, 1928 +

201 Dysteria procera Kahl, 1931 +

202 Dysteria sulcata Claparede & Lachmann, 1858 (Syn.: Trochilia sulcata Claparede & Lachmann, 1858) +

203 Enchelyodon elegans Kahl, 1926 (Syn.: Spathidium elegans Kahl, 1926) + +

204 Enchelyodon elongatus Claparede & Lachmann, 1859 +

205 Enchelyodon fascinucleatus Kahl, 1933 +

206 Enchelyodon laevis Quennerstedt, 1869 +

207 Enchelyodon sulcatus Kahl, 1930 + +

208 Enchelyodon trepida (Kahl, 1928) Borror, 1965 (Syn.: Trachelo-cerca trepida Kahl, 1928; Pseudotrachelocerca trepida (Kahl, 1928) Song, 1990) +

209 Enchelys marina Meunier, 1907 +

210 Enchelys pupa (Muller, 1786) Schewiakoff, 1893 +

211 Enchelys tarda Quennerstedt, 1869 +

212 Epaxiella sp. +

213 Ephelota gemmipara (Hertwig, 1876) Butschli, 1889 (Syn.:

Podophrya gemmipara Hertwig, 1876; Hemiophrya gemmipara +

Kent, 1880-1882; H. microsoma Maupas, 1881; Dendrophrya

gemmipara Sand, 1895)

214 Epicarchesium pectinatum (Zacharias, 1897) Foissner, Berger & Schaumburg, 1999 (Syn.: Carchesium pectinatum (Zacharias, 1897) Kahl, 1935; Zoothamnium limneticum Svec, 1897; Z. pectinatum Zacharias, 1897) + +

215 Epiclintes auricularis (Claparede & Lachmann, 1858) Stein,

1864 (Syn.: Epiclintes ambiguus Muller, 1786; E. felis (Muller, 1786) Carey & Tatchell, 1983; Oxytricha auricularis Claparede + + +

& Lachmann, 1858)

216 Epimecophrya ambiguus Kahl, 1933 +

217 Epistylis sp. + +

218 Epistylis anastatica (Linnaeus, 1767) Ehrenberg, 1830 (Syn.: Epistylis lacustris Imhoff, 1884; Vorticella anastatica Linnaeus, 1967) +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

219 Epistylis caliciformis Kahl, 1933 +

220 Epistylis carcini Precht, 1935 +

221 Epistylis gammari Precht, 1935 +

222 Epistylis gasterostei Faure-Fremiet, 1905 (Syn.: Scyphidia gasterostei Faure-Fremiet, 1905; Apiosoma gasterostei (Faure-Fremiet, 1905) Jankowski, 2007) +

223 Epistylis harpacticola Kahl, 1933 +

224 Epistylis nitocrae Precht, 1935 +

225 Epistylis plicatilis Ehrenberg, 1838 + +

226 Epistylis procumbens Zacharias, 1897 (Syn.: Epistylis rotans Svec, 1897) + + +

227 Espejoia mucicola Penard, 1922 +

228 Euplotes sp. + + + +

229 Euplotesbalteatus (Dujardin, 1841) Kahl, 1932 (Syn.: Ploesconia balteata Dujardin, 1841; E. quinquecarinatus Gelei, 1950; E. alatus Kahl, 1932) +

230 Euplotes balticus (Kahl, 1932) Dragesco, 1966 + +

231 Euplotes harpa Stein, 1859 (Syn.: Ploesconia cithara Dujardin, 1842) + +

232 Euplotes moebiusi Kahl, 1932 + +

233 Euplotes trisulcatus Kahl, 1932 + +

234 Euplotes vannus (Muller, 1786) Minkjewicz, 1901 (Syn.: Kerona vannus Muller, 1786; E. caudatus Meunier, 1907; E. crassus Tuffrau, 1960; E. longipes Claparede & Lachmann, 1859; E. marioni Gourret & Roeser, 1886; E. minuta Agamaliev, 1971; E. mutabilisTuffrau, 1960; E. roscoffensis Dragesco, 1966; E. sharuri Aliev, 1986; E. worcesteri Griffin, 1910; Moneuplotes vannus (Muller, 1786) Borror & Hill, 1995) + +

235 Euplotoides patella (Muller, 1773) Borror & Hill, 1995 (Syn.: Coccudina keromina Bory, 1824; Euplotes patella (Muller, 1773)

Ehrenberg, 1838; E. carinatus Stokes, 1885; E. leticiensis Bovee, + + +

1957; E. paradoxa Kent, 1880; E. patella f. lemani Dragesco,

1960; E. viridis Ehrenberg, 1838; Trichoda patella Muller, 1773)

236 Euplotopsisapsheronica (Agamaliev, 1966) Borror & Hill, 1995 (Syn.: E. apsheronicus Agamaliev, 1966) +

237 Euplotopsis affinis (Dujardin, 1841) Borror & Hill, 1995 (Syn.:

Euplotes affinis (Dujardin, 1841) Kahl, 1932; E. charon Muller, + + + +

1786; Ploesconia affinis Dujardin, 1841)

238 Euplotopsis bisulcata (Kahl, 1932) Borror & Hill, 1995 (Syn.: Euplotes bisulcatus Kahl, 1932) +

239 Eutintinnus apertus Kofoid & Campbell, 1929 (Syn.: Tintinnus inquillinum Muller, 1776) +

240 Fabrea salina Henneguy, 1890 +

241 Favella ehrenbergii (Claparede & Lachmann, 1858) Jorgensen, 1924 (Syn.: Favella ehrenbergi Claparede & Lachmann, 1858) + +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

242 Folliculina ampulla (Muller, 1786) Lamarck, 1816 (Syn.: Vorticella

ampulla Muller, 1786; Ascobius lentus Henneguy, 1884; F. + + +

moebiusi Hadzi, 1951)

243 Frontonia algivora Kahl, 1931 +

244 Frontonia arenaria Kahl, 1933 +

245 Frontonia atra (Ehrenberg, 1834) Butschli, 1889 (Syn.: Ophryoglena atra Ehrenberg, 1834) + +

246 Frontonia elliptica Beardsley, 1902 + +

247 Frontonia fusca (Quennerstedt, 1869) Kahl, 1931 + +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

248 Frontonia leucas (Ehrenberg, 1833) Ehrenberg, 1838 (Syn.: Bursaria leucas Ehrenberg, 1833; F. vermalis Ehrenberg, 1883; Ophryoglena magna Maupas, 1883; O. vorax Smith, 1897; Plagiopyla hatchi Stokes, 1891) + +

249 Frontonia macrostoma Dragesco, 1960 +

250 Frontonia marina Fabre-Domergue, 1891 (Syn.: F. leucasf. marina Florentin, 1899) + +

251 Frontonia microstoma Kahl, 1935 +

252 Frontonia vacuolata Dragesco, 1960 +

253 Geleia decolor Kahl, 1933 + +

254 Geleia fossata (Kahl, 1933) Foissner, 1998 + +

255 Geleia nigriceps Kahl, 1933 +

256 Glaucoma scintillans Ehrenberg, 1830 +

257 Gruberia sp. +

258 Gruberia uninucleata Kahl, 1932 +

259 Halteria grandinella (Muller, 1773) Dujardin, 1841 (Syn.: H.

chlorelligera f. grandinelloides Margalef-Lopez, 1945; Trichoda grandinella Muller, 1773; T. grandinella (Muller, 1773) Ehrenberg, + + + +

1830)

260 Haplocaulus furcellariae (Precht, 1935) Warren, 1988 +

261 Haplocaulus sertulariarum (Entz, 1884) Banina, 1982 (Syn.:

Opisthostyla sertularium Kent, 1881; Erythropsis agilis Hertwig, +

1884; Rhabdostyla sertularium Kent, 1881; Spastostyla

sertulariarum Entz, 1884)

262 Helicoprorodon gigas (Kahl, 1933) Faure-Fremiet, 1950 +

263 Helicoprorodon minutus Bock, 1952 +

264 Helicostoma buddenbrocki Kahl, 1931 + +

265 Helicostoma notatum Kahl, 1931 (Syn.: Porpostoma notatum Mobius, 1888) + +

266 Helicostoma oblongum Cohn, 1866 +

267 Helicostomella subulata (Ehrenberg, 1833) Jorgensen, 1924 (Syn.: H. kiliensis Laackmann, 1906; H. edentata Faure-Fremiet,

1924; H. longa Brandt, 1906; Amphorella subulata Daday, 1887; + + + + +

Tintinnussubulatus Ehrenberg, 1833; T. ussowi Mereschkowsky,

1879)

268 Heliochona scheuteni Stein, 1854 (Syn.: Spirochona scheuteni +

Stein, 1854)

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

269 Heliochona sessilis Plate, 1888 +

270 Heminotus caudatus (Kahl, 1933) Dragesco, 1960 + +

271 Hemiophrys sp. +

272 Hemisincirra wenzeli Foissner, 1987 +

273 Heterostrombidium calkinsi (Faure-Fremiet, 1932) Song, 1999 (Syn.: Strombidium calkinsi Faure-Fremiet, 1932; S. caudatum Fromentel-Calkins, 1902) + +

274 Hippocomos loricatus Czapik & Jordan, 1977 +

275 Histiobalantium majus Kahl, 1931 +

276 Histiobalantium marinum Kahl, 1933 +

277 Histiobalantium natans Claparede & Lachmann, 1858 (Syn.: +

Pleuronema inflatum Lauterborn, 1915)

278 Histriculus similis (Quennerstedt, 1867) Corlis, 1960 (Syn.: Stylonychia similis Quennerstedt, 1867; Histrio similis (Quennerstedt, 1867) Kahl, 1932 +

279 Histriculus vorax (Stokes, 1891) Corliss, 1960 (Syn.: Histrio +

vorax Stokes, 1891)

280 Holophrya sp. + +

281 Holophrya biconica Sauerbrey, 1928 (Syn.: Urotricha biconica +

Sauerbrey, 1928)

282 Holophrya coronata Morgan, 1925 (Syn.: Trachelocerca coronata +

Morgan, 1925)

283 Holophrya hexatricha Savi, 1913 +

284 Holophrya lemani (Dragesco, 1960) Dragesco, 1965 (Syn.: +

Prorodon teres f. lemani Dragesco, 1960)

285 Holophrya simplex Schewiakoff, 1893 + +

286 Holophrya sulcata Penard, 1922 +

287 Holophrya teres (Ehrenberg, 1834) Foissner, Berger & Kohmann,

1994 (Syn.: Prorodon teres (Ehrenberg, 1834) Foissner, Berger +

& Kohmann, 1994; P. griseus Claparede & Lachmann, 1858; P.

limnetis Stokes, 1886)

288 Holosticha diademata (Rees, 1884) Kahl, 1932 (Syn.: Amphisia

diademata Rees, 1883; Amphisiella thiophaga Kahl, 1928; +

Holosticha teredorum Tucolesco, 1962; H. thiophaga Kahl, 1928;

H. teredorum Tucolesco, 1962; H. coronata Vuxanovici, 1963)

289 Holosticha gibba (Muller, 1786) Wrzesniowski, 1877 (Syn.: H. kessleri Wrzesniowski, 1877; Amphisia kessleri (Wrzesniowski, 1877) Kent, 1882; A. gibba (Muller, 1786) Sterki, 1878; Oxytricha kessleri Wrzesniowski, 1877; O. gibba (Muller, 1786) Ehrenberg, 1838) + +

290 Holosticha holomilnei (Kahl, 1932) Berger, 2001 (Syn.: Holosticha milnei Kahl, 1932) + +

291 Holosticha pullaster (Muller, 1773) Foissner, Blatterer, Berger & Kohmann, 1991 (Syn.: H. danubialis Kaltenbach, 1960; H.

kessleri f. aquae-dulcis Buchar, 1957; H. retrovacuolata Tucolesco, +

1962; H. rhomboedrica Vuxanovici, 1963; H. simplicis Wang &

Nie, 1932; Oxytricha alba Fromental, 1876; Trichoda pullaster

Muller, 1773)

292 Homalozoon caudatum Kahl, 1935 +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

293 Homalozoon vermiculare (Stokes, 1887) Stokes, 1890 (Syn.:

Craspedonotus vermicularis (Stokes, 1887) Kahl, 1926; + +

Leptodesmus tenellus Zacharias, 1888; Litonotus vermicularis

Stokes, 1887)

294 Hypotrichidium conicum Ilowaisky, 1921 (Syn.: H. tisiae (Gelei, 1929) Gelei, 1944; Pelagotrichidium tisiae (Gelei, 1929) Jankowski, 1978) +

295 Intranstylum brachymyon Precht, 1935 +

296 Intranstylum coniferum Precht, 1935 +

297 Kentrophoros sp. +

298 Kentrophoros fasciolatus (Sauerbrey, 1928) Dragesco, 1962 +

(Syn.: Centrophorella fasciolata Sauerbrey, 1928)

299 Kentrophoros fistulosus (Faure-Fremient, 1950) Foissner, 1995 (Syn.: K. longissimus Dragesco, 1954; K. tubiformis Raikov & Kovaleva, 1966) +

300 Kentrophoros lanceolatum Faure-Fremiet, 1951 (Syn.: Centro- +

phorella lanceolata Faure-Fremiet, 1951)

301 Kentrophoros latus Raikov, 1962 +

302 Kentrophyllum setigerum (Quennerstedt, 1867) Petz, Song & Wilbert, 1995 (Syn.: Loxophyllum setigerum Quennerstedt, 1867; Litosolenus armatus Stokes, 1893) + +

303 Kovalevia sulcata (Kovaleva, 1966) Foissner, 1997 (Syn.: Trachelocerca sulcata Kahl, 1927; T. laevis Quennerstedt, 1867; Enchelyodon striatus Gourret & Roeser, 1886; Lagynus crassicollis Maupas, 1883; L. ornatus Stokes, 1893; L. sulcatus Gruber, 1884) +

304 Laboea strobila Lohmann, 1908 (Syn.: Strombidium strobilus Lochmann, 1908) + + +

305 Lacrymaria sp. + + +

306 Lacrymaria affinis Bock, 1952 + +

307 Lacrymaria binucleata Song & Wilbert, 1989 +

308 Lacrymaria caudata (Kahl, 1933) Dragesco, 1960 + + +

309 Lacrymaria cohni Kent, 1881 + +

310 Lacrymaria delamarei Dragesco, 1954 +

311 Lacrymaria marina (Muller, 1786) Kahl, 1933 + +

312 Lacrymaria olor (Muller, 1776) Kahl, 1930 (Syn.: L. proteus; Trachelocerca filiformis Maskell, 1886; Vibrio olor Muller, 1786) + +

313 Lacrymaria robusta Vuxanovici, 1959 (Syn.: Lacrymaria acuta +

Kahl, 1933)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

314 Lacrymaria saprorelica Kahl, 1927 +

315 Lagynophrya contractilis Kahl, 1928 + + +

316 Lagynophrya halophila Kahl, 1928 + +

317 Lagynus elegans (Engelmann, 1862) Quennerstedt, 1867 (Syn.: +

Lacrymaria elegans Engelmann, 1862)

318 Lagynus cucumis (Penard, 1922) Buitkamp, 1977 (Syn.: +

Lacrymaria cucumis Penard, 1922; L. putrina Kahl, 1926)

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

319 Leegardiella sol Lynn & Montagnes, 1988 +

320 Lembadion bullinum (Muller, 1786)) Perty, 1849 (Syn.: Bursaria +

bullina Muller, 1786)

321 Lembadion lucens (Maskell, 1887) Kahl, 1931 (Syn.: Thurophora lucens Maskell, 1887) + +

322 Leprotintinnus sp. +

323 Leprotintinnus bottnicus (Nordqvist, 1890) Jorgensen, 1912

(Syn.: Tintinnus bottnicus Nordqvist, 1890; Codonella bottnica + + + +

Levander, 1895)

324 Leprotintinnus pellucidus Jorgensen, 1924 + +

325 Limnostrombidium pelagicum (Kahl, 1932) Krainer, 1995 (Syn.: Strombidium viride f. pelagica Kahl, 1932; S. pelagoviride (Krainer, 1991) Krainer, 1993) + +

326 Limnostrombidium viride (Stein, 1867) Krainer, 1995 (Syn.: Strombidium viride Stein, 1859; S. nasutum Smith, 1897) + +

327 Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner, Berger & Schaumburg, 1999 (Syn.: Linostoma vorticella (Ehrenberg, 1833) Jankowski, 1978; Condylostoma vorticella Ehrenberg, 1833; C. stagnale Wrzesniowski, 1870; Bursaria vorticella Ehrenberg, 1833) + +

328 Litonotus sp. + + +

329 Litonotus alpestris Foissner, 1978 (Syn.: Litonotus mono-nucleatus Song & Wilbert, 1989; Litonotus uninucleatus (Kahl, 1931) Song & Wilbert, 1989) +

330 Litonotus anguilla (Kahl, 1931) Carey, 1991 + +

331 Litonotus crystallinus (Vuxanovici, 1960) Foissner, Berger, +

Blatterer & Kohmann, 1995

332 Litonotus cygnus (Muller, 1776) Foissner, Berger, Blatterer &

Kohmann, 1995 (Syn.: Gastrotricha folium Wrzesniowski, 1866; Lionotus anas Levander, 1894; L. anser Butschli, 1889; Litonotus + + +

wrzesniowskii Kent, 1882; Vibrio cygnus Muller, 1773)

333 Litonotus fasciola (Ehrenberg, 1838) Wrzesniowski, 1870 (Syn.: Amphileptus fasciola Ehrenberg, 1838; Dileptus fasciola Fromentel, 1874; Litonotus fasciola Carey, 1992; Loxophyllum fasciola Claparede & Lachmann, 1981; Vibrio fasciola Muller, 1786) + +

334 Litonotus lamella (Muller, 1773) Foissner, Berger, Blatterer

& Kohmann, 1995 (Syn.: Loxophyllum lamella Claparede & Lachmann, 1861; Trachelius lamella (Muller, 1773) Ehrenberg, + + +

1829; Acineria incurvata Dujardin, 1841)

335 Litonotus loxophylliforme (Dragesco, 1960) Carey, 1991 +

336 Litonotus varsaviensis Wrzesniowski, 1870 (Syn.: Gastrotricha varsaviensis Wrzesniowski, 1866) + +

337 Lohmaniella sp. + +

338 Lohmaniella oviformis Leegard, 1915 (Syn.: L. elegans (Wulff,

1919) Kahl, 1932; Strobilidium elegans (Wulff, 1919) Maeda, + + + +

1986)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

339 Lopezoterenia torpens (Kahl, 1931) Foissner, 1997 (Syn.: Trichopelma torpens Kahl, 1931) +

340 Loxocephalus lucidus Smith, 1897 (Syn.: L. annulatus Kahl, +

1926)

341 Loxodes sp. +

342 Loxodesrostrum (Muller, 1773) Ehrenberg, 1830 (Syn.: Kolpoda +

rostrum Muller, 1773)

343 Loxophyllum sp. +

344 Loxophyllum dragescoi Carey, 1992 (Syn.: L. variabilis Dragesco, 1960; L. soliforme Faure-Fremiet, 1908) +

345 Loxophyllum fasciolatum Kahl, 1933 + +

346 Loxophyllum helus (Stokes, 1884) Kahl, 1931 (Syn.: L. verru-cosum Florentin, 1889; Litonotus helus Stokes, 1884; L. verrucosum Florentin, 1889) + +

347 Loxophyllum kahli Dragesco, 1960 +

348 Loxophyllum levigatum (Sauerbrey, 1928) Dragesco, 1960 +

349 Loxophyllum meleagris (Muller, 1773) Dujardin, 1841 (Syn.:

Kolpoda meleagris Muller, 1773; K. assimilis Muller, 1786; + + +

Amphileptus meleagris (Muller, 1773) Ehrenberg, 1830)

350 Loxophyllum multinucleatum Kahl, 1928 + +

351 Loxophyllum multiplicatum Kahl, 1928 +

352 Loxophyllum multiverrucosum (Kahl, 1933) Carey, 1991 (Syn.: L. helus f. rotundatum Kahl, 1933) +

353 Loxophyllum serratum Kahl, 1933 + +

354 Loxophyllum trinucleatum Mansfeld, 1923 +

355 Loxophyllum undulatum Sauerbrey, 1928 +

356 Loxophyllum vermiforme Sauerbrey, 1928 (Syn.: Lentophyllum +

vermiforme (Sauerbrey, 1928) Jankowski, 2007)

357 Lynchella gradata (Kahl, 1933) Jankowski, 1968 +

358 Magnifolliculina binalata Uhlig, 1964 +

359 Marituja pelagica Gajewskaja, 1928 +

360 Meseres cordiformes Schewiakoff, 1892 +

361 Mesodinium sp. +

362 Mesodinium acarus Stein, 1862 (Syn.: M. fimbriatum Stokes, +

1887; M. phialinum Maskell, 1887)

363 Mesodinium cinctum Calkins, 1902 +

364 Mesodinium pulex (Claparede & Lachmann, 1859) Stein, 1867

(Syn.: Halteria pulex Claparede & Lachmann, 1858; H. rubra Lachmann, 1908; Mesodinium pulex f. striata Gourret & Roeser, + + + + +

1886)

365 Mesodinium pupula (Kahl, 1933) Dragesco, 1963 +

366 Metacineta mystacina (Ehrenberg, 1831) Butschli, 1889 (Syn.: Acineta mystacina Ehrenberg, 1831; Cothurnia mystacina Ehrenberg, 1831) +

367 Metacystis sp. +

368 Metacystis elongata Kahl, 1928 +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

369 Metacystis striata Stokes, 1893 +

370 Metacystis truncata Cohn, 1866 +

371 Metanophrys durchoni Puytorac et al., 1974 +

372 Metaurostylopsis marina (Kahl, 1932) Song, Petz and Warren, 2001 (Syn.: Urostyla marina Kahl, 1932; U. thompsoni Jankowski, 1979) + +

373 Metopus sp. + +

374 Metopus contortus (Quennerstedt, 1867) Kahl, 1932 (Syn.: Metopides contortus Quennerstedt, 1867; Metopus bivillus Tucolesco, 1962; M. sapropelicus Tucolesco, 1962) + +

375 Metopus es (Muller, 1786) Kahl, 1932 (Syn.: M. sigmoides Claparede & Lachmann, 1858) + +

376 Metopus major Kahl, 1932 +

377 Metopus nivaaensis Esteban, Fenchel & Finlay, 1995 +

378 Metopus palaeformis (Kahl, 1935) Esteban et al., 1995 (Syn.: M. hyalinus (Kahl, 1927) Kahl, 1935; M. laminarius f. hyalinus Kahl, 1927) +

379 Metopus pellitus (Kahl, 1932) Carey, 1994 +

380 Metopus setosus Kahl, 1927 (Syn.: M. setifer Kahl, 1935) +

381 Metopus striatus McMurrich, 1884 (Syn. : M. acuminatus Stokes, 1886; M. acutus Kahl, 1927; M. bacillatus Levander, 1894; M.

denarius Kahl, 1927; M. dentatus Kahl, 1927; M. fastigatus Kahl, +

1927; M. gibbus Kahl, 1927; M. minimus Kahl, 1927; M. pulcher

Kahl, 1927; M. pullus Kahl, 1927; M. recurvatus Vuxanovici, 1962;

M. violaceus Kahl, 1927

382 Metopus vestitus Kahl, 1932 (Syn.: M. caudatus Cunha, 1915) +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

383 Mirodysteria aplanata Kahl, 1933 +

384 Microthorax sp. + +

385 Moneuplotes crassus Dujardin, 1841 (Syn.: Euplotes crassus Dujardin, 1841; E. crassus f. minor Kahl, 1932; E. vannus f. balticus Kahl, 1932; E. taylori Garnjobst, 1928) + +

386 Moneuplotes cristatus (Kahl, 1932) Borror & Hill, 1995 (Syn.: Euplotes cristatus Kahl, 1932) + +

387 Monodinium armatum (Penard, 1922) Foissner, Berger & Schaum- +

buerg, 1999

388 Monodinium balbianii Fabre-Domergue, 1888 (Syn.: Didinium balbianii Fabre-Domergue, 1888) + + +

389 Mylestoma bipartitum (Gourret & Roeser, 1886) Kahl, 1928 (Syn.: +

Aspidisca bipartitum Gourret & Roeser, 1886)

390 Myoschiston carcini Precht, 1935 +

391 Myoschiston centropagidarum Precht, 1935 +

392 Myoschiston duplicatum Precht, 1935 +

393 Myriokaryon lieberkuhnii Jankowski, 1973 (Syn.: Pseudoprorodon lieberkuhni Butschli, 1889; Cranotheridium elongatus Penard, 1922) +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

394 Myrionecta rubra (Lohmann, 1908) Jankowski, 1976 (Syn.:

Halteria rubra Lohmann, 1908; Mesodinium rubrum Lohmann, + + + + +

1908)

395 Nassula argentula Kahl, 1930 +

396 Nassula aurea Ehrenberg, 1833 + + +

397 Nassula ornata Ehrenberg, 1833 (Syn.: Chilodon ornatus +

Ehrenberg, 1835)

398 Nassula tumida Maskell, 1887 (Syn.: N. ambigua f. tumida +

Maskell, 1887)

399 Nassulides labiatus (Kahl, 1933) Foissner, Agatha & Berger, 2002 (Syn.: Nassula labiata Kahl, 1933) +

400 Omegastrombidium elegans Florentin, 1901) Agatha, 2004 (Syn.: Strombidium elegans Florentin, 1899) + + +

401 Opercularia nutans (Ehrenberg, 1831) Stein, 1854 (Syn.: O. allensi Stokes, 1887; Epistylis nutans Ehrenberg, 1831) +

402 Ophryoglena sp. +

403 Ophryoglena flava Ehrenberg, 1834 (Syn.: Bursaria flava Ehrenberg, 1834; Enchelis gemmata Muller, 1786; Panophrys flava Dujardin, 1841; Raphanella gemmata (Muller) Bory, 1824; Trachelius gemmata (Muller, 1786) Ehrenberg, 1833) +

404 Opisthotricha sp. +

405 Orthodon gutta Cohn, 1866 +

406 Oxytricha sp. + + +

407 Oxytricha chlorelligera Kahl, 1932 +

408 Oxytricha discifera Kahl, 1932 +

409 Oxytricha fromenteli Foissner, 1987 (Syn.: Oxytricha ovalis Fro-mentel, 1876) +

410 Oxytricha halophila Kahl, 1932 (Syn.: Opisthotricha halophila Kahl, 1932) + +

411 Oxytricha oxymarina Berger, 1999 (Syn.: Cyrtohymena marina (Kahl, 1932) Foissner, 1989; Oxytricha marina Kahl, 1932; Steinia marina Kahl, 1932) + +

412 Oxytricha setigera Stokes, 1891 (Syn.: Steinia balladynula Kahl, 1932) +

413 Parablepharisma bacteriophora Kahl, 1935 +

414 Parablepharisma collare Kahl, 1935 +

415 Parablepharisma pellitum (Kahl, 1932) Jankowski, 2007 +

416 Paracineta divisa Fraipont, 1878 +

417 Paradileptus elephantinus (Svec, 1897) Kahl, 1931 (Syn.: P. conicus Wenrich, 1929; P. estensis Canella, 1951; P. minutus Dragesco, 1972; P. ovalis Huber-Pestalozzi, 1945; Amphileptus flagellates Rousselet, 1890; A. moniliger Ehrenberg, 1835) + +

418 Paradiophrys irmgard (Mansfeld, 1923) Jankowski, 1978 (Syn.: Diophrys irmgard Mansfeld, 1923) +

419 Paradiophrys kahli (Dragesco, 1963) Foissner, 1996 (Syn.: Diophrys kahli Dragesco, 1963) +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

420 Parafavella sp. + +

421 Parafavella cylindrica (Jorgensen, 1899) Kofoid & Campbell, 1929 (Syn.: Cyttarocylis denticulata f. cylindrica Jorgensen, 1899) +

422 Parafavella lachmanni Daday, 1887 +

423 Parafavella media Brandt, 1896 +

424 Parafrontoniapallida Czapik, 1979 (Syn.: Frontoniapallida Czapik, 1979) +

425 Paramecium sp. + +

426 Paramecium aurelia-complex + + +

427 Paramecium bursaria (Ehrenberg, 1831) Focker, 1836 (Syn.: +

Loxodes bursaria Ehrenberg, 1831)

428 Paramecium calkinsi Woodruff, 1921 + +

429 Paramecium caudatum Ehrenberg, 1833 (Syn.: P. aurelia Muller, 1786) + + +

430 Paramecium duboscqui Chatton & Brachon, 1933 +

431 Paramecium putrinum Claparede & Lachmann, 1858 (Syn.: P. trichium Stokes, 1885) + +

432 Paramecium woodruffi Wenrich, 1928 + +

433 Paranophrys marina Thompson & Berger, 1965 +

434 Paraprorodon raabei (Czapik, 1965) Foissner, 1983 +

435 Paraspathidium fuscum (Kahl, 1928) Dragesco, 1960 (Syn.: Trachelocerca fusca Kahl, 1928) + +

436 Paraspathidium longinucleatum Czapik & Jordan, 1976 +

437 Paraspathidium obliquum Dragesco, 1963 +

438 Paraurostyla dispar (Kahl, 1932) Borror, 1972 (Syn.: Urostyla dispar Kahl, 1932) +

439 Parduczia orbis (Faure-Fremiet, 1950) Dragesco, 1999 (Syn.: Geleia orbis Faure-Fremiet, 1951) +

440 Pelagodileptus trachelioides Foissner, Berger, Schaumburg, 1999 (Syn.: Dileptus trachelioides Zacharias, 1894) + +

441 Pelagolacrymaria rostrata (Kahl, 1935) Foissner, Berger & Schaumburg, 1999 (Syn.: Lacrymaria rostrata Kahl, 1935) +

442 Pelagostrobilidium spirale Petz et al, 1995 (Syn.: Lohmanniella

spiralis Leegaard, 1915; Strobilidium spiralis (Leegaard, 1915) + + + + +

Petz et al., 1995)

443 Pelagostrombidium mirabile (Penard, 1916) Krainer, 1991 (Syn.: Strombidium mirabile Penard, 1916; Psilotricha fallax Zacharias, 1895; Strombidium fallax (Zacharias, 1895) Kahl, 1932) + +

444 Pelagovorticella mayeri (Faure-Fremiet, 1920) Jankowski, 1980 (Syn.: Vorticella mayeri Faure-Fremiet, 1920) + +

445 Pelagovorticella natans (Faure-Fremiet, 1924) Jankowski, 1985 (Syn.: Vorticella natans Faure-Fremiet, 1924; V. convallaria f. natans Faure-Fremiet, 1924) +

446 Peritromus faurei Kahl, 1932 (Syn.: Kerona ciliata Gourret & +

Roeser, 1888)

447 Peritromus montanus Kahl, 1932 (Syn.: P. emmae Kahl, 1928) +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

448 Phascolodon contractilis Kahl, 1926 +

449 Phascolodon vorticella Stein, 1859 +

450 Phialina coronata (Claparede & Lachmann, 1858) Kahl, 1930

(Syn.: Lacrymaria coronata Claparede & Lachmann, 1858; L. + + +

caspia Grimm, 1876)

451 Phialina salinarum Kahl, 1928 (Syn.: Lacrymaria salinarum Kahl, 1928) + +

452 Phialina vermicularis (Muller, 1786) Bory, 1824 (Syn.: Lacrymaria

vermicularis Muller, 1786; L. metabolica Burger, 1908; L. phialina +

Svec, 1897; L. spiralis Kahl, 1926; P. viridis Ehrenberg-Claparede,

1858)

453 Pinacocoleps arenarius (Bock, 1952) Chen et al., 2010 (Syn.: +

Coleps arenarius Bock, 1952)

454 Pinacocoleps similis (Kahl, 1933) Chen et al., 2010 (Syn.: Coleps similis Kahl, 1933) + +

455 Pinacocoleps spiralis (Noland, 1937) Chen et al., 2010 (Syn.: Coleps spiralis Noland, 1937) +

456 Plagiocampa sp. +

457 Plagiocampa incisa Kahl, 1933 +

458 Plagiocampa margaritata Kahl, 1930 +

459 Plagiocampa rouxi Kahl, 1932 (Syn.: P. metabolica Kahl, 1930) +

460 Plagiopogon loricatus Kahl, 1931 + +

461 Plagiopyla nasuta Stein, 1860 (Syn.: Parameicum cucullio Quenn, 1867) + + +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

462 Platyfolliculina sahrhageana Hadzi, 1938 +

463 Platynematum denticulatum (Kahl, 1933) Foissner, Berger & Kohmann, 1994 (Syn.: Platynema denticulatum Kahl, 1933) +

464 Platynematum hyalinum (Kahl, 1931) Foissner, Berger & Kohmann, 1994 (Syn.: Platynema hyalinum Kahl, 1931) +

465 Platynematum sociale (Penard, 1922) Foissner, Berger & Kohmann, 1994 (Syn.: Platynema sociale Penard, 1922) +

466 Pleuronema coronatum Kent, 1881 + + + +

467 Pleuronema crassa Dujardin, 1841 (Syn.: P. chrysalis Perty, 1836) + +

468 Pleuronema marinum Dujardin, 1841 + +

469 Pleuronema smalli Dragesco, 1968 +

470 Podophrya halophila Kahl, 1934 + +

471 Podophrya fixa (Muller, 1786) Ehrenberg, 1833 (Syn.: Actinophrys pedicellata Dujardin, 1841; Trichoda fixa Muller, 1786) +

472 Predurostyla arenaria (Spiegel, 1926) Jankowski, 1978 (Syn.: Condylostoma arenarium Spiegel, 1926) + +

473 Proboscidium armatum Meunier, 1907 +

474 Prorodon sp. + +

475 Prorodon arenicola (Kahl, 1933) Dragesco, 2002 (Syn.: Pseudo-prorodon arenicola Kahl, 1933) +

476 Prorodon binucleatus Buddenbrock, 1920 +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

477 Prorodon brachyodon Kahl, 1927 + +

478 Prorodon marinus Claparede & Lachmann, 1858 +

479 Prorodon moebiusi Kahl, 1930 +

480 Prorodon ovum (Ehrenberg, 1833) Kahl, 1930 (Syn.: Encheyls ovum Dies, 1866; Holophrya atra Svec, 1897; H. discolor Ehrenberg, 1833; H. ovum Ehrenberg, 1831; Prorodon nucleatus Svec, 1897; P. rigidus Burger, 1908) + +

481 Prorodon platyodon Blochmann, 1895 +

482 Protocruzia granulosa (Kahl, 1932) Faria, Cunha & Pinto, 1922 +

483 Protocruzia labiata Kahl, 1932 +

484 Protocyclidium cittrulus (Cohn, 1866) Foissner, Agatha & Berger, 2002 (Syn.: Cyclidium citrullus Cohn, 1866) + +

485 Protogastrostyla pulchra (Perejaslawzewa, 1885) Gong et al., 2007 (Syn.: Gastrostyla pulchra (Perejaslawzewa, 1885) Kahl, 1932; Maregastrostyla pulchra (Pereyaslawzewa, 1886) Berger, 2008; Holosticha coronata Gourret & Roeser, 1887; Keronopsis coronata Gourret & Roeser, 1887) +

486 Protrachelocerca fasciolata (Sauerbrey, 1928) Foissner, 1996 (Syn.: Tracheloraphis fasciolatus Sauerbrey, 1928; Trachelocerca fasciolata Sauerbrey, 1928; Tracheloraphis flexuosus Raikov & Kovaleva, 1968) +

487 Psammomitra brevicauda (Kahl, 1933) Borror, 1972 (Syn.: Micromitra brevicauda Kahl, 1933) + +

488 Psammomitra retractilis (Claparede & Lachmann, 1858) Borror, 1972 (Syn.: Uroleptus retractilis (Claparede & Lachmann, 1858) Song & Warren, 1996; Oxytricha retractilis Claparede & Lachmann, 1858; Claparedia retractilis (Claparede & Lachmann, 1858) Diesing, 1866) +

489 Pseudoamphisiella alveolata (Kahl, 1932) Song & Warren, 2000 (Syn.: Holosticha alveolata Kahl, 1932) + +

490 Pseudoamphisiella lacazei (Kahl, 1932) Song & Warren, 2000 (Syn.: Holosticha lacazei Kahl, 1932) +

491 Pseudoblepharisma tenue (Kahl, 1926) Kahl, 1927 (Syn.: Dileptus cylindricus Fromentel, 1876; Blepharisma tenue Kahl, 1926) +

492 Pseudocohnilembus pussilus (Quennerstedt, 1869) Foissner & Wilbert, 1981 (Syn.: Cohnilembuspussillus (Quennerstedt, 1869) Kahl, 1931) +

493 Pseudohaplocaulus nicoleae (Precht, 1935) Warren, 1988 (Syn.: Haplocaulus nicoleae Precht, 1935) +

494 Pseudokeronopsis carnea (Cohn, 1866) Wirnsberger, Larsen & Uhlig, 1987 (Syn.: Oxytricha flava f. carnea Cohn, 1866) +

495 Pseudokeronopsis decolor Wallengren, 1900 (Syn.: Keronopsis decolor Wallengren, 1900; Holosticha wrzesniowskii f. punctata Rees, 1884; H. decolor Wallengren, 1900) +

496 Pseudokeronopsis flava (Cohn, 1866) Wirnsberger et al., 1987 (Syn.: Oxytricha flava Cohn, 1866) +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

497 Pseudokeronopsis flavicans (Kahl, 1932) Borror & Wicklow, 1983 +

(Syn.: Holosticha flavicans Kahl, 1932)

498 Pseudokeronopsis multinucleata (Maupas, 1883) Borror & Wicklow, 1983 (Syn.: Holosticha multinucleata Maupas, 1883) +

499 Pseudokeronopsis ovalis f. arenivora (Kahl, 1932) Borror & Wicklow, 1983 (Syn.: Keronopsis arenivorus Dragesco, 1954; K. ovalis Kahl, 1932; Holosticha arenivorus (Dragesco, 1954) Jankowski, 1979) + +

500 Pseudokeronopsis pernix Wrzesniowski, 1877 (Syn.: Keronopsis pernix (Wrzesniowski, 1877) Kahl, 1932; Holosticha pernix (Wrzesniowski, 1877) Jankowski, 1979; Oxyticha pernix Wrzesniowski, 1877) +

501 Pseudokeronopsis rubra (Ehrenberg, 1835) Borror & Wicklow, 1983

(Syn.: Holosticha flavorubra Entz, 1884; H. rubra (Ehrenberg, +

1835) Kahl, 1932; Keronopsis rubra (Ehrenberg, 1835) Borror,

1972; Oxytricha rubra Ehrenberg, 1835)

502 Pseudomonilicaryon anser (Muller, 1773) Vd'acny & Foissner, 2012 (Syn.: Dileptus anser (Muller, 1786) Dujardin, 1841; D.gigas f. grojecensis Wrzesniowsky, 1870; Amphileptus anser Ehrenberg, 1838; A. longicollis Ehrenberg, 1831; A. cygnus Claparede & Lachmann, 1859; Vibrio anser Muller, 1786) + +

503 Pseudomonilicaryon marinum f. marinum (Kahl, 1933) Vd'acny & Foissner, 2011 (Syn.: Dileptus marinus Kahl, 1933) + +

504 Pseudoplatynematum loricatum Bock, 1952 +

505 Pseudoplatynematum parvum Bock, 1952 +

506 Pseudoprorodon incisus Bock, 1952 +

507 Pseudoprorodon mononucleatus Bock, 1952 +

508 Pseudovorticella difficilis Kahl, 1933 (Syn.: Vorticella difficilis +

Kahl, 1933)

509 Pseudovorticella marina (Greeff, 1870) Ji, Sun, Song & Warren, 2009 (Syn.: Vorticella marina Greeff, 1870; V. constricta Kahl, 1933) + +

510 Pseudovorticella patellina (Muller, 1776) Song & Warren, 2000 (Syn.: Vorticella patellina Muller, 1776) + +

511 Ptychocylis urnula (Claparede & Lachmann, 1858) Brandt, 1896 (Syn.: Tintinnus urnula Claparede & Lachmann, 1858) +

512 Ptychocylis minor Jorgensen, 1899 + +

513 Remanella sp. +

514 Remanella brunnea (Kahl, 1933) Foissner, 1996 + + +

515 Remanella caudata (Dragesco, 1954) Foissner, 1996 +

516 Remanella granulosa (Kahl, 1933) Xu et al., 2012 (Syn.: R. granulosa Kahl, 1933; R. trichocysta Dragesco, 1953) + +

517 Remanella margaritifera (Kahl, 1933) Dragesco, 1960 + +

518 Remanella minuta (Dragesco, 1954) Foissner, 1996 +

519 Remanella multinucleata (Kahl, 1933) Foissner, 1996 (Syn.: R. +

multinucleata Kahl, 1933; R.gigas Dragesco, 1954)

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

520 Remanella rugosa Kahl, 1933 +

521 Remanella rugosa f. unicorpusculata Kahl, 1933 +

522 Remanella swedmarki (Dragesco, 1954) Foissner, 1996 (Syn.: +

Tracheloraphis swedmarki Dragesco, 1960)

523 Reticoleps remanei (Kahl, 1933) Foissner, Kusuoka & Shimano, 2008 (Syn: Coleps remanei Kahl, 1933) + +

524 Rhabdostyla arenaria Cuenot, 1891 + +

525 Rhabdostyla cyclopis Kahl, 1935 +

526 Rhabdostyla commensalis Mobius, 1888 +

527 Rhabdostyla inclinans (Muller, 1773) Roux, 1901 (Syn.: R. chaeticola Stokes, 1887; R. lumbriculi Penard, 1922; Vorticella inclinans Muller, 1773) +

528 Rhabdostyla nereicola Precht, 1935 +

529 Rhabdostyla pyriformis Perty, 1852 (Syn.: R. ovum Kent, 1882) +

530 Rhabdostylaputrina (Muller, 1776) Warren, 1986 (Syn.: Vorticella +

putrina Muller, 1776)

531 Rimostrombidium caudatum (Kahl, 1932) Agatha & Riedel-Lorje, 1998 (Syn.: Strobilidium caudatum (Fromental, 1874) Foissner, 1987; S. kahli Petz & Foissner, 1992; S. adhaerens Schewiakoff, 1892; S. caudatum Kahl, 1932; S. cometa (Muller,

1786) Dingfelder, 1962; S. gyrans Schewiakoff, 1893 - Deroux, 1974; Strombidion caudatum Fromentel, 1876; Strombidium + + +

claparedi Kent, 1881; S. gyrans Stokes f. transsylvanicum Lepsi,

1926; S. intermedium Maskell, 1887; S. velox Beardsley, 1902;

Strombilidium gyrans Schewiakoff, 1893 - Fernandez-Leborans,

1983; Turbilina instabilis Enriques, 1908)

532 Rimostrombidium conicum (Kahl, 1932) Petz & Foissner, 1992 (Syn.: Strobilidium conicum Kahl, 1932) + +

533 Rimostrombidium humile (Penard, 1922) Petz & Foissner, 1992 + +

534 Rimostrombidium sphaericum (Lynn & Montagnes, 1988) (Syn.: Strobilidium sphaericum Lynn & Montagnes, 1988) +

535 Rimostrombidium velox (Faure-Fremiet, 1924) Jankowski, 1978 (Syn.: Strobilidium velox Faure-Fremiet, 1924) + +

536 Salpingella acuminata (Claparede & Lachmann, 1858) Jorgensen, 1924 + +

537 Saprodinium dentatum (Lauterborn, 1901) Lauterborn, 1908 (Syn.: Discomorpha dentate Lauterborn, 1901) +

538 Saprodinium halophilum Kahl, 1935 +

539 Scaphidiodon navicula (Muller, 1786) Stein, 1859 (Syn.: Trichoda navicula Muller, 1786) +

540 Schistophrya aplanata Kahl, 1933 +

541 Schmidingerella serrata (Mobius, 1887) Agatha & Struder-Kypke, 2012 (Syn.: Favella serrata Mobius, 1887) +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

542 Scyphidia hydrobiae Kahl, 1933 +

543 Scyphidia physarum Lachmann, 1856 +

544 Siroloxophyllum utricularium (Penard, 1922) Foissner & Leipe, 1995 (Syn.: Loxophyllum utriculariae (Penard, 1922) Kahl, 1926; Amphileptus utriculariae Penard, 1922) +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

545 Sonderia cyclostoma Kahl, 1930 + +

546 Sonderia pharyngea Kirby, 1934 +

547 Sphaerophrya magna Maupas, 1881 +

548 Sphaerophrya stentori Maupas, 1881 +

549 Spathidiopsis buddenbrocki Lipscomb & Riordan, 2012 (Syn.: Placus buddenbrocki Sauerbrey, 1928) +

550 Spathidiopsisluciae Lipscomb & Riordan, 2012 (Syn.: Placusluciae Kahl, 1926; Thoracophrya luciae Kahl, 1926) +

551 Spathidiopsis socialis Lipscomb & Riordan, 2012 (Syn.: Placus socialis Fabre-Domergue, 1889) +

552 Spathidiopsis striatus Lipscomb & Riordan, 2012 (Syn.: Placus striatus Cohn, 1866) + +

553 Spirostomum ambiguum (Muller, 1786) Ehrenberg, 1834 (Syn.: Trichoda ambigua Muller, 1786) + +

554 Spirostomum loxodes Stokes, 1885 +

555 Spirostomum minus Roux, 1901 (Syn.: S. ambiguum f. minor Roux, 1901; S. intermedium Kahl, 1932) + +

556 Spirostomum teres Claparede & Lachmann, 1859 + + +

557 Spirostrombidium cinctum (Kahl, 1932) Petz et al., 1995 (Syn.: Strombidium cinctum Kahl, 1932) +

558 Spirostrombidium sauerbreyae (Kahl, 1932) Petz et al., 1995 (Syn.: Strombidium sauerbreyae (Sauerbrey, 1928) Kahl, 1932) + +

559 Spirostrombidium oblongum (Entz, 1884) Petz et al., 1995 (Syn.: Strombidium oblongum (Entz, 1884) Kahl, 1932; S. corsicum Gourret & Roeser, 1888; S. sulcatum f. oblongum Entz, 1884; Clypeolum corsicum Gourret & Roeser, 1888) + +

560 Spirotrachelostyla simplex (Kahl, 1932) Gong, Song, Li, Shao & Chen, 2006 (Syn.: Trachelostyla simplex (Kahl, 1932) Borror, 1972) +

561 Staurophrya elegans Zacharias, 1893 +

562 Stenosemella nucula (Fol, 1884) Jorgensen, 1927 (Syn.: Codonella ventricosa Entz, 1884; Tintinnopsis nivalis Meunier, 1910; T. nucula Laackmann, 1906; T. ventricosa Daday, 1887) +

563 Stenosemella steinii Jorgensen, 1912 + +

564 Stenosemella ventricosa (Claparede & Lachmann, 1858) Jor-

gensen, 1924 (Syn.: Codonella ventricosa Jorgensen, 1899; Tintinnopsis ventricosa Cleve, 1900; T. ventricosoides Meunier, + + +

1910; Tintinnus ventricosus Claparede & Lachmann, 1858)

565 Stentor coeruleus (Pallas, 1766) Ehrenberg, 1830 (Syn.: Bra-chionus stentoreus f. coerulei Pallas, 1766; Stentor attenuatus Maskell, 1888; S. striatus Barraud-Maskell, 1886) + +

566 Stentor muelleri Ehrenberg, 1832 (Syn.: Stentorina stentorea (Linnaeus, 1767) Bory, 1824; Vorticella stentorea (Linnaeus, 1767) Muller, 1773; Stentor solitarius Oken, 1815; Hydra stentorea Linnaeus, 1767) + +

567 Stentor multiformis (Muller, 1786) Ehrenberg, 1838 (Syn.: Vorticella multiformis Muller, 1786; Stentor nanus Fromentel, 1876; S. gallinulus Penard, 1922) + +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

568 Stentorniger (Muller, 1773) Ehrenberg, 1831 (Syn.: S. pediculatus

Fromentel, 1876; S. castaneus Wright, 1859; Vorticella nigra + + +

Muller, 1773)

569 Stentor polymorphus (Muller, 1773) Ehrenberg, 1830 (Syn.: Vorticella polymorpha Muller, 1773; Stentorina polymorpha (Muller) Bory, 1824; Leucophra cornuta Muller, 1786) +

570 Stentor roeselii Ehrenberg, 1835 (Syn.: S. gracilis Maskell, 1886;

S. viridis Ghosh, 1921; S. magnus Kumazawa, 1973; S. fimbriatus + + +

Fromentel, 1876)

571 Sterkiella histriomuscorum Foissner, Blatterer, Berger & Kohmann, 1991 (Syn.: Histriculusmuscorum (Kahl, 1932) Corliss, 1960; Histrio muscorum Kahl, 1932; Opistotricha terrestris Horvath, 1956; Oxytricha histrioides Gellert, 1957; Stylonychia curvata Giese & Alden, 1938) + +

572 Stichotricha aculeata Wrzesniowski, 1866 (Syn.: Schizosiphon aculeata (Wrzesniowski, 1866) Kent, 1882) + +

573 Stichotricha gracilis Mobius, 1888 +

574 Stichotricha marina Stein, 1867 (Syn.: S. horrida Mobius, 1888; +

S. inquilinus Entz, 1884)

575 Stichotricha merschkowski Kahl, 1932 +

576 Stichotricha secunda Perty-Stein, 1859 (Syn.: S. cornuta Claparede & Lachmann, 1858; Stichochaeta cornuta Claparede & Lachmann, 1858) +

577 Stokesia vernalis Wenrich, 1929 (Syn.: Cyclotrichium vernalis Wenrich, 1929) + +

578 Stomatophrya aplanata Kahl, 1933 +

579 Stomatophrya singular's Kahl, 1933 +

580 Strobilidium sp. + + + +

581 Strombidinopsis acuminatum Faure-Fremiet, 1924 (Syn.: Strobilidium acuminatum (Faure-Fremiet, 1924) Kahl, 1932; Stro-

mbidium typicum (Lankester, 1874) Butschli, 1889; S. tintinnodes + + +

Entz, 1884; S. acuminatum (Leegaard, 1915) Kahl, 1932; Laboea

acuminata Leegaard, 1915)

582 Strombidinopsis marina (Faure-Fremiet, 1910) Alekperov, 2005 (Syn.: Strobilidium marinum (Faure-Fremiet, 1910) Faure-Fremiet, 1924; Strombidium marinum Faure-Fremiet, 1910) +

583 Strombidinopsis minima (Gruber, 1884) Kahl, 1932 (Syn.: Ara-chnidium becheri Buddenbrock, 1920; Strombidium minimum Gruber, 1884) + +

584 Strombidium sp. + + + + +

585 Strombidium compressum (Leegaard, 1915) Kahl, 1932 (Syn.: +

Laboea compressa Leegaard, 1915 )

586 Strombidium conicum (Lohmann, 1908) Wulff, 1919 (Syn.:

Laboea acuminata Leegaard, 1915; L. conica Lohmann, 1908; + + + +

Strombidium acuminatum (Leegaard, 1915) Kahl, 1932)

587 Strombidium crassulum (Leegaard, 1915) Kahl, 1932 (Syn.: Laboea crassula Leegaard, 1915) + + +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

588 Strombidium emergens (Leegaard, 1915) Kahl, 1932 (Syn.: Laboea emergens Leegaard, 1915; S. petzi Song, 2005) +

589 Strombidium epidemum Lynn, Montagnes & Small, 1988 +

590 Strombidium kahli Bock, 1952 + +

591 Strombidium latum Kahl, 1932 + +

592 Strombidium purpureum Kahl, 1932 +

593 Strombidium stylifer Levander, 1894 + +

594 Strombidium sulcatum Claparede & Lachmann, 1858 (Syn.: S. minutum Wulff, 1919) + + + +

595 Strombidium tintinnodes Entz, 1884 (Syn.: S. oculatum (Gruber, 1884) Kahl, 1932; S. hadai (Hada, 1970) Maeda & Carey, 1985; S. typicum (Lankester, 1874) Butschli, 1889) +

596 Strombidium vestitum (Leegaard, 1915) Kahl, 1932 (Syn.: Laboea delicatissima Leegaard, 1915; L. vestita Leegaard, 1915; Strombidium delicatissimum (Leegaard, 1915) Kahl, 1932) + +

597 Strombidium wulffi (Wulff, 1919) Kahl, 1932 +

598 Stylonychia sp. + +

599 Stylonychia mytilus (Muller, 1773) Ehrenberg, 1830 (Syn.: Ceratidium cuneatum Ehrenberg, 1838; Trichoda mytilus Muller, 1773; Oxytricha mytilus (Ehrenberg, 1830) Kahl, 1932; Kerona mytilus (Muller, 1773) Muller, 1786) + +

600 Swedmarkia arenicola Dragesco, 1954 +

601 Tachysomaparvistylum Stokes, 1887 (Syn.: Oxytrichaparvistyla (Stokes, 1987) Kahl, 1932) +

602 Tachysoma pellionellum (Muller, 1773) Borror, 1972 (Syn.: Oxytricha pellionella (Muller, 1773) Ehrenberg, 1931; O. pellionella (Muller, 1773) Bory, 1824; Histriopelionella (Muller, 1773) Lackey, 1936; T. echinata Claparede & Lachmann, 1858) + +

603 Tachysoma saltans (Cohn, 1866) Borror, 1972 (Syn.: Oxytricha saltans (Cohn, 1866) Kahl, 1932; Actinotricha saltans Cohn, 1866) +

604 Tetrastyla oblonga (Schewiakoff, 1892) Berger, 2001 (Syn.: Amphisiella oblonga (Schewiakoff, 1892) Dragesco, 1960; A. oblonga (Schewiakoff, 1893) Kahl, 1932) +

605 Teuthophrys trisulcata Chatton & de Beauchamp, 1923 +

606 Thecacineta sp. +

607 Thecacineta halacari Shulz, 1933 +

608 Thigmokeronopsis crassa (Claparede & Lachmann, 1858) Berger, 2006 (Syn.: Trichotaxis crassa Claparede & Lachmann, 1858; Oxytricha crassa Claparede & Lachmann, 1858) +

609 Thuricola sp. +

610 Thuricola elegans Biernacka, 1963 +

611 Thuricola obconica Kahl, 1933 +

612 Thuricola valvata (Wright, 1858) Kent, 1881 (Syn.: Vaginicola valvata Wright, 1858) +

613 Tiarina sp. +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

614 Tiarina borealis (Dogiel, 1940) Shulman &. Shulman-Albova, +

1953

615 Tiarina fusus (Claparede & Lachmann, 1858) Bergh, 1881 (Syn.: Dictyocoleps fusus (Claparede & Lachmann, 1859) Diesing, 1866 + +

616 Tintinnidium balechi Barria de Cao, 1981 +

617 Tintinnidium fluviatile (Stein, 1863) Kent, 1881 (Syn.: Tintinnus fluviatile Stein, 1863) + + + +

618 Tintinnidium mucicola (Claparede & Lachmann, 1858) Daday, 1887 (Syn.: Tintinnus mucicola Claparede & Lachmann, 1858) + +

619 Tintinnidium semiciliatum Sterki, 1879 (Syn.: Strombidinopsis gyrans Kent, 1881; Tintinnidium fluviatile f. emarginatum Maskell, 1887; T. ranunculi Penard, 1922; Tintinnus semiciliatus Sterki, 1879) +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

620 Tintinnidium pusillum Entz, 1909 +

621 Tintinnopsis sp. + +

622 Tintinnopsis acuminata Daday, 1887 +

623 Tintinnopsis baltica Brandt, 1896 (Syn.: T. vasculum Meunier, 1919; T. strigosa Meunier, 1919) + + + + +

624 Tintinnopsis beroidea Stein, 1867 (Syn.: Codonella beroidea Entz, 1884; Tintinnopsis beroidea f. acuminata Daday, 1887) + + + +

625 Tintinnopsis brandti Nordqvist, 1890 (Syn.: Codonella brandti Nordqvist, 1890) + + +

626 Tintinnopsis campanula Ehrenberg, 1840 + + + + +

627 Tintinnopsis cochleata Brandt, 1906 +

628 Tintinnopsis compressa Daday, 1887 + +

629 Tintinnopsis cylindrata Kofoid & Campbell, 1892 (Syn.: T. fusiformis (Daday, 1892) Entz, 1909) + + +

630 Tintinnopsis fennica Kofoid & Campbell, 1929 +

631 Tintinnopsis fimbriata Meunier, 1919 (Syn.: T. ventricosa Le-vander, 1900) + + + +

632 Tintinnopsis karajacensis Brandt, 1896 + + +

633 Tintinnopsis kofoidi Hada, 1932 +

634 Tintinnopsis lobiancoi Daday, 1887 (Syn.: T. brasiliensis Kofoid & Campbell, 1929) + + + +

635 Tintinnopsis lohmanni Laackmann, 1906 (Syn.: T. tubulosa f. +

lohmanni Jorgensen, 1927)

636 Tintinnopsis major Meunier, 1910 +

637 Tintinnopsis meunieri Kofoid & Campbell, 1929 + +

638 Tintinnopsis minuta Wailes, 1925 + + + +

639 Tintinnopsis nana Lohmann, 1908 + +

640 Tintinnopsis nitida Brandt, 1986 +

641 Tintinnopsis parvula Jorgensen, 1912 + + +

642 Tintinnopsis pistillum Kofoid & Campbell, 1929 + +

643 Tintinnopsis rapa Meunier, 1910 +

644 Tintinnopsis rotundata Jorgensen, 1912 +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

645 Tintinnopsis sacculus Brandt, 1896 +

646 Tintinnopsis subacuta Jorgensen, 1899 +

647 Tintinnopsis tubulosa Levander, 1900 + + + + +

648 Tintinnopsis turbo Meunier 1919 +

649 Tintinnopsis urnula Meunier, 1910 + +

650 Tokophrya sp. + +

651 Tontonia appendiculariformis Faure-Fremiet, 1914 +

652 Trachelius gutta Sahrhage, 1915 + +

653 Trachelius ovum (Ehrenberg, 1831) Ehrenberg, 1838 (Syn.:

Amphileptus ovum Dujardin, 1841; A. rotundus Maskell, 1887; Harmodirus ovum Perty, 1852; Ophryocerca ovum Ehrenberg, + + +

1831; Trachelius leidyi Foulke, 1884)

654 Trachelocerca sp. +

655 Trachelocerca coluber Kahl, 1933 + +

656 Trachelocerca incaudata (Kahl, 1933) Foissner, 1996 (Syn.: Tracheloraphis incaudatus Kahl, 1930) + +

657 Trachelocerca longissima Kahl, 1928 (Syn.: Gruvelina longissima Delphy, 1939) +

658 Trachelocerca subviridis Sauerbrey, 1928 +

659 Trachelocerca tenuicolis Quennerstedt, 1867 +

660 Trachelophyllum apiculatum (Perty, 1852) Claparede & Lachmann, 1859 (Syn.: T. tachyblastum Stokes, 1884; Trachelius apiculatus Perty, 1852) + +

661 Trachelophyllum brachypharynx Levander, 1894 +

662 Trachelophyllum sigmoides Kahl, 1926 +

663 Tracheloraphis bimicronucleata (Raikov, 1969) Carey, 1991 +

664 Tracheloraphis drachi Dragesco, 1960 (Syn.: Trachelocerca drachi Dragesco, 1954) +

665 Tracheloraphis grassei (Dragesco, 1960) Foissner & Dragesco, +

1996 (Syn.: Trachelonema grassei Dragesco, 1960)

666 Tracheloraphis grisea (Kahl, 1933) Dragesco, 1960 (Syn.: Trachelocerca grisea Kahl, 1933) +

667 Tracheloraphis indistincta Kahl, 1930 +

668 Tracheloraphis kahli Raikov, 1962 +

669 Tracheloraphis margaritatus (Kahl, 1930) Dragesco, 1963 (Syn.: + +

Trachelocerca phoenicopterus f. margaritata Kahl, 1930)

670 Tracheloraphis oligostriatum (Raikov, 1962) Foissner & Dragesco, +

1996 (Syn.: Trachelonema oligostriata Raikov, 1962)

671 Tracheloraphis phoenicopterus (Cohn, 1866) Dragesco, 1960 +

(Syn.: Trachelocerca phoenicopterus Cohn, 1866)

672 Trachelostyla caudata (Kahl, 1935) Maeda & Carey, 1984 +

673 Trachelostyla pediculiformis (Cohn, 1866) Borror, 1972 (Syn.: T. pediculiformis Kahl, 1932; Gonostomum pediculiformis Mau-pas, 1883; Stichochaeta corsica Gourret & Roeser, 1887; S. pediculiformis Cohn, 1866) + +

674 Trachelotractus entzi (Kahl, 1927) Foissner, 1997 (Syn.: Trachelocerca entzi Kahl, 1927) + +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

675 Trichodina claviformis Dobberstein & Palm, 2000 +

676 Trichodina domerguei Wallengren, 1897 + +

677 Trichodina jadranica Raabe, 1958 + +

678 Trichodina pediculus Ehrenberg, 1831 (Syn.: T. baltica Quen-nerstedt, 1869; Urceolaria stellina (Muller, 1786) Dujardin, 1841; Vorticella stellina Muller, 1786) +

679 Trichodina raabei Lohmann, 1962 + +

680 Trichodina scoloplontis (Precht, 1935) Laird, 1953 (Syn.: Urceo-laria scoloplontis Precht, 1935) +

681 Trichodina serpularum Fabre-Domergue, 1888 (Syn.: Cyclochaeta serpularum Fabre-Domergue, 1888) +

682 Trichophrya piscium Butschli, 1889 (Syn.: Capriniana aurantiaca (Mazzarelli, 1906) Strand, 1928; C. piscium (Butschli, 1889) Dovgal, 2002) +

683 Trithigmostoma bavariensis Foissner, 1988 (Syn.: Chilodonella +

bavariensis Kahl, 1931)

684 Trithigmostoma cucullulus (Muller, 1786) Jankowski, 1967 (Syn.:

Chilodonella cucullulus (Muller, 1786) Kahl, 1931; Chilodon cucullulus Ehrenberg-Kelin, 1927; Kolpoda cucullio Muller, 1786; + + +

K. cucullulus Muller, 1786)

685 Trithigmostoma srameki (Sramek-Husek, 1952) Foissner, 1987 (Syn.: Chilodonella hyalina Sramek-Husek, 1952; Trithigmostoma hyalina (Sramek-Husek, 1952) Foissner, 1987) +

686 Trochilia minuta (Roux, 1901) Kahl, 1931 (Syn.: Dysteropsis minuta Roux, 1899) +

687 Trochilia sigmoides Dujardin, 1841 +

688 Trochilioides oculata Kahl, 1933 +

689 Urocentrum turbo (Muller, 1786) Kahl, 1931 (Syn.: Calceolus cypripedium Diesing, 1866; Cercaria turbo Muller, 1786; Peridinopsis cyripedium Clark, 1866; Urocentrum trichocystus Smith, 1897) + +

690 Uroleptopsis citrina Kahl, 1932 +

691 Uroleptopsis viridis (Perejaslawzewa, 1886) Kahl, 1932 +

692 Uroleptus sp. +

693 Uroleptus musculus (Kahl, 1932) Foissner, Blatterer, Berger & Kohmann, 1991 (Syn.: Holosticha musculus Kahl, 1932; Paruroleptus musculus (Kahl, 1932) Wang & Nie, 1935) +

694 Uroleptus piscis (Muller, 1773) Ehrenberg, 1831 (Syn.: Trichoda piscis Muller, 1773; Amphisia piscis (Muller, 1773) Kowalewski, 1882; Holosticha (Paruroleptus) piscis (Muller, 1773) Kahl, 1932) + +

695 Uronema sp. +

696 Uronema marinum Dugardin, 1841 (Syn.: Loxocephalusputrinus Kahl, 1926) + + +

697 Uronychia sp. +

698 Uronychia heinrothi Buddenbrock, 1920 +

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

699 Uronychia setigera Calkins, 1902 (Syn.: U. transfuga Curds & Wu, 1983; U. transfuga Petz, Song & Wilbert, 1995; U. uncinata Kahl, 1932; U. uncinata Taylor, 1928) +

700 Uronychia transfuga (Muller, 1786) Stein, 1859 (Syn.: Trichoda transfuga Muller, 1786; Oxytricha transfuga (Muller, 1786) Bory & Deslongchamps, 1824) + +

701 Urostrongylum sp. +

702 Urostrongylum caudatum Kahl, 1932 + +

703 Urostrongylum lentum Biernacka, 1963 +

704 Urostyla grandis Ehrenberg, 1830 (Syn.: U. trichogaster Stokes, 1885) + +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

705 Urotricha sp. + +

706 Urotricha baltica Czapik & Jordan, 1977 +

707 Urotricha farcta Claparede & Lachmann, 1859 (Syn.: Balanitozoon gyrans Stokes, 1887; U. minkewickzi Schouteden, 1906; U. parvula Penard, 1922) + +

708 Urotricha pelagica Kahl, 1935 + + +

709 Urotricha platystoma Stokes, 1886 (Syn.: U. corlissiana Song Weibo & Wilbert, 1989; U. armata Kahl, 1927) + + +

710 Vaginicola crystallina (Ehrenberg, 1830) Ehrenberg, 1838 (Syn.: Trichoda crystallina Muller, 1786; T. ingenita Muller, 1786; V. ingenita (Muller, 1786) Kent, 1881) + +

711 Vaginicola sulcata Kahl, 1928 +

712 Vaginicola wangi (Wang & Nie, 1933) Kahl, 1935 (Syn.: Cothurnia acuta Wang & Nie, 1933) + +

713 Vorticella sp. + + + + +

714 Vorticella anabaena Stiller, 1940 (Syn.: V. chlorellata Stiller, 1940) + +

715 Vorticella annulata Gourret & Roeser, 1888 + +

716 Vorticella campanula Ehrenberg, 1831 (Syn.: V. aperta Fromentel, 1874) + + +

717 Vorticella convallaria (Linnaeus, 1758) Linnaeus, 1767 (Syn.: +

Hydra convallaria Linnaeus, 1758)

718 Vorticella fromenteli Kahl, 1935 + +

719 Vorticella fusca Precht, 1935 + +

720 Vorticella jaerae Precht, 1935 +

721 Vorticella longifilum Kent, 1881 +

722 Vorticella microstoma Ehrenberg, 1830 (Syn.: V. infusionum Dujardin, 1841) + +

723 Vorticella nebulifera Muller, 1786 + +

724 Vorticella octava-komplex Stokes, 1885 (Syn.: V. hamata Muller, +

1786; V. hamatella Foissner, 1987)

725 Vorticella ovum Dons, 1917 +

726 Vorticella picta (Ehrenberg, 1831) Ehrenberg, 1838 (Syn.: Carchesium pictum Ehrenberg, 1831; V. appunctata Fromentel, 1876) +

CHECKLIST OF CILIATES OF THE BALTIC SEA

(Continuation)

No Taxa BP1 WBS2 NBS3 SBS4 EBS5

727 Vorticella subsphaerica (D'Udekem, 1864) Dons, 1915 (Syn.: V. +

sphaerica D'Udekem, 1864)

728 Vorticella striata Dujardin, 1841 + +

729 Vorticella striatula Dons, 1915 +

730 Vorticella urceolaris Linnaeus, 1767 +

731 Vorticella verrucosa Dons, 1915 +

732 Zoothamnium sp. + + + +

733 Zoothamnium arbuscula Ehrenberg, 1839 (Syn.: Z. geniculatum +

Ayrton, 1902; Vorticella racemosa Muller, 1773)

734 Zoothamnium commune Kahl, 1933 + +

735 Zoothamnium hentscheli Kahl, 1935 (Syn.: Z. kentii Grenfell, 1884; Epistylis hentscheli Kahl, 1935) + +

736 Zoothamnium hiketes Precht, 1935 +

737 Zoothamnium intermedium Precht, 1935 +

738 Zoothamnium nanum Kahl, 1933 +

739 Zoothamnium nii Ji et al., 2005 (Syn.: Z. duplicatum Kahl, 1933; Z. kahli Caspers, 1949) + +

740 Zoothamnium nutans Claparede & Lachmann, 1858 +

741 Zoothamnium rigidum Precht, 1935 +

742 Zoothamnium simplex Kent, 1881 +

743 Zoothamnium vermicola Precht, 1935 +

Notes: 1 BP, Baltic Proper: after Quennerstedt (1869)**; Gaevskaya (1948), Mamaeva (1987), Axelsson and Norrgren (1991), Arndt (1991), Detmer et al. (1993), Wasik et al. (1996), Setala and Kivi (2003), Johansson et al. (2004), Vannini et al. (2005), Granskog et al. (2006), Beusekom van et al. (2007), Anderson et al. (2012);

2 WBS, Western Baltic Sea (Kieler Bight): after Muller (1786)**, Stein (1859a, 1859b, 1863, 1864, 1867)**, Mobius (1888)**, Sauerbrey (1928), Kahl (1930-1935, 1933), Munch (1956)**; Bock (1952, 1953, 1960), Ax and Ax (1960)**, Jaeckel (1962)**, Fenchel (1967, 1968a, 1968b, 1969), Hirche (1974), Hartwig (1974)**, Smetacek (1981), Klinkeberg and Shuman (1994),

Schiewer (1994), Palm and Dobberstein (2000), Gerlach (2000), Aberle et al. (2007), Moorthi et al. (2008);

3 NBS, Northern Baltic Sea (Archipelago Sea, Bothnian Sea): after Lindquist (1959), Hedin (1974, 1975), Foissner (1987); Kivi and Setala (1995), Uitto et al. (1997), Olli et al. (1998), Garstecki et al. (2000), Schmidt et al. (2002), Setala (2004), Samuelsson et al. (2006), Rintala et al. (2010);

4 SBS, Southern Baltic Sea (Gdansk Basin and North-Rugian Bodden): after Biernacka (1948, 1952, 1962, 1963), Czapik (1962)**, Czapik and Jordan (1976, 1977), Mazeikaite (1978), Boikova (1984, 1989), Andrushaitis (1990), Czapik and Fida (1992)**, Wiktor and Krajewska-Sottys (1994), Witek (1998), Jakobsen and Montagnes (1999), Dietrich and Arndt (2000), Rychert (2008, 2011), Rychert et al. (2013), Griniene et al. (2011), Griniene (2012);

5 EBS, Eastern Baltic Sea (Gulf of Finland, including the freshwater Neva Bay): after Purasjoki (1947), Kivi (1986), Khlebovich (1987), Kivi and Setala (1995), Smurov and Fokin (1999), Setala (2004), Visse (2007), Mironova et al. (2012, 2013).

* Synonims;

** cited after Berger (2006, 2008).

i Надоели баннеры? Вы всегда можете отключить рекламу.