Научная статья на тему 'CHEMICAL TRANSFORMATIONS OF DUST OF BAG FILTERS OF THE REINFORCED CONCRETE PLANT IN AQUEOUS SOLUTIONS'

CHEMICAL TRANSFORMATIONS OF DUST OF BAG FILTERS OF THE REINFORCED CONCRETE PLANT IN AQUEOUS SOLUTIONS Текст научной статьи по специальности «Химические технологии»

CC BY
44
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
BAG FILTER DUST / AQUEOUS ENVIRONMENT / CHEMICAL TRANSFORMATIONS / PURIFICATION EFFICIENCY

Аннотация научной статьи по химическим технологиям, автор научной работы — Belovodsky Evgeny A., Sverguzova Svetlana V., Shaikhiev Ildar G., Voronina Yulia S., Ievleva Elena S.

Nickel and copper compounds are among the most dangerous environmental pollutants and their removal from wastewater is an important task. To extract them from aqueous media, traditional methods are used, such as ion exchange, reagent purification, membrane filtration, and adsorption. Recently, for the purification of aqueous media from heavy metal ions, it is increasingly proposed to use waste from various industries, for example, slag, sludge, ash, dust, etc. The paper considered the possibility of wastewater treatment from Cu2+ and Ni2+ ions using dust from bag filters in the production of reinforced concrete products as reagents. It was determined that bag filter dust has a fine structure and contains a significant amount of silicates of various compositions. The paper describes the chemical transformations that occur in the aquatic media when dust from the bag filters of the reinforced concrete plant is added to it. Some reagents, coagulants, sorption materials that can be used to purify wastewater from heavy metal ions are given. The values of the solubility products of the formed compounds - copper hydroxide, nickel hydroxide, hydroxomeric carbonate are indicated. The results of granulometric, X-ray phase and chemical analyzes of bag filter dust are presented. According to the studies, the efficiency of purification of the model solution from heavy metal ions in this case is at least 99.3%.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CHEMICAL TRANSFORMATIONS OF DUST OF BAG FILTERS OF THE REINFORCED CONCRETE PLANT IN AQUEOUS SOLUTIONS»

Т 65 (9)

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИИ. Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

2022

V 65 (9)

ChemChemTech

2022

DOI: 10.6060/ivkkt.20226509.6638

УДК: 544.723

ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПЫЛИ РУКАВНЫХ ФИЛЬТРОВ ЗАВОДА ЖБИ

В ВОДНЫХ РАСТВОРАХ

Е.А. Беловодский, С.В. Свергузова, И.Г. Шайхиев, Ю.С. Воронина, Е.С. Иевлева

Евгений Алексеевич Беловодский (ORCID 0000-0002-5525-6711), Светлана Васильевна Свергузова (ORCID 0000-0002-3845-8741)*, Юлия Сергеевна Воронина (ORCID 0000-0001-6125-0239), Елена Сергеевна Иевлева

Кафедра Промышленной экологии, Белгородский государственный технологический университет им. В.Г. Шухова, ул. Костюкова, 46, Белгород, Российская Федерация, 308012 E-mail: [email protected], [email protected] *, [email protected], [email protected]

Ильдар Гильманович Шайхиев (ORCID 0000-0001-9160-0412)

Кафедра Инженерной экологии, Казанский национальный исследовательский технологический университет, ул. К. Маркса, 68, Казань, Республика Татарстан, Российская Федерация, 420015 E-mail: [email protected]

Соединения никеля и меди являются одними из самых опасных загрязнителей окружающей среды, и их удаление из сточных вод является важной задачей. Для их извлечения из водных сред применяют традиционные методы, такие как ионный обмен, реа-гентная очистка, мембранная фильтрация, адсорбция. В последнее время для очистки водных сред от ионов тяжелых металлов все чаще предлагается использовать отходы различных производств, например, шлаки, шламы, золу, пыль и т.д. В работе рассматривалась возможность очистки сточных вод от ионов Си2+ и №2+ с использованием в качестве реагентов пыли из рукавных фильтров производства железобетонных изделий. Определено, что пыль рукавных фильтров имеет тонкодисперсную структуру и содержит значительное количество силикатов различного состава. В работе описаны химические превращения, протекающие в водной среде при добавлении к ней пыли рукавных фильтров завода ЖБИ. Приведены некоторые реагенты, коагулянты, сорбционные материалы, которые могут быть использованы для очистки сточных вод от ионов тяжелых металлов. Указаны значения произведений растворимости образующихся соединений -гидроксида меди, гидроксида никеля, карбоната гидроксомеди. Приведены результаты гранулометрического, рентгенофазоваго и химического анализов пыли рукавных фильтров. Согласно проведенным исследованиям, эффективность очистки модельного раствора от ионов тяжелых металлов при этом составляет не менее 99,3%.

Ключевые слова: пыль рукавных фильтров, водная среда, химические превращения, эффективность очистки

CHEMICAL TRANSFORMATIONS OF DUST OF BAG FILTERS OF THE REINFORCED CONCRETE PLANT IN AQUEOUS SOLUTIONS

E.A. Belovodsky, S.V. Sverguzova, I.G. Shaikhiev, Yu.S. Voronina, E.S. Ievleva

Evgeny A. Belovodsky (ORCID 0000-0002-5525-6711), Svetlana V. Sverguzova (ORCID 0000-0002-38458741)*, Yulia S. Voronina (ORCID 0000-0001-6125-0239), Elena S. Ievleva

Department of Industrial Ecology, Belgorod State Technological University named after V.G. Shukhov, Kostyukova st., 46, Belgorod, 308012, Russia

E-mail: [email protected], [email protected]*, [email protected], [email protected]

Ildar G. Shaikhiev (ORCID 0000-0001-9160-0412)

Department of Engineering Ecology, Kazan National Research Technological University, K. Marx st., 68, Kazan, Republic of Tatarstan, 420015, Russia E-mail: [email protected]

Nickel and copper compounds are among the most dangerous environmental pollutants and their removal from wastewater is an important task. To extract them from aqueous media, traditional methods are used, such as ion exchange, reagent purification, membrane filtration, and adsorption. Recently, for the purification of aqueous media from heavy metal ions, it is increasingly proposed to use waste from various industries, for example, slag, sludge, ash, dust, etc. The paper considered the possibility of wastewater treatment from Cu2+ and Ni2+ ions using dust from bag filters in the production of reinforced concrete products as reagents. It was determined that bag filter dust has a fine structure and contains a significant amount of silicates of various compositions. The paper describes the chemical transformations that occur in the aquatic media when dust from the bag filters of the reinforced concrete plant is added to it. Some reagents, coagulants, sorption materials that can be used to purify wastewater from heavy metal ions are given. The values of the solubility products of the formed compounds - copper hydroxide, nickel hydroxide, hydrox-omeric carbonate are indicated. The results of granulometric, X-ray phase and chemical analyzes of bag filter dust are presented. According to the studies, the efficiency ofpurification of the model solution from heavy metal ions in this case is at least 99.3%.

Key words: bag filter dust, aqueous environment, chemical transformations, purification efficiency

Для цитирования:

Беловодский Е.А., Свергузова С.В., Шайхиев И.Г., Воронина Ю.С., Иевлева Е.С. Химические превращения пыли рукавных фильтров завода ЖБИ в водных растворах. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 9. С. 121-128. DOI: 10.6060/ivkkt.20226509.6638.

For citation:

Belovodsky E.A., Sverguzova S.V., Shaikhiev I.G., Voronina Yu.S., Ievleva E.S. Chemical transformations of dust of bag filters of the reinforced concrete plant in aqueous solutions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.1. 2022. V. 65. N 9. P. 121-128. DOI: 10.6060/ivkkt.20226509.6638.

INTRODUCTION

Heavy metal compounds contained in the wastewater of many industries are dangerous for environmental objects. Due to their high toxicity, carcinogenicity, mutagenicity, polluting effects on terrestrial ecosystems, in addition to the negative impact on animals, birds, fish fauna, in the end, it also poses a huge risk to human health. In recent years, awareness of the danger of pollution of water bodies and its far-reaching consequences has been growing all over the world.

Among the various heavy metals, nickel and copper are among the most toxic ones. Their danger can be judged by the values of maximum permissible concentrations (MPC) and the limiting sign of harm-fulness (LSH) (Table 1).

Salts of nickel (II) slow down the action of oxidative enzymes, change the chemical properties of RNA and nucleoproteins during complex formation, and have a carcinogenic effect. Nickel causes cancer of the nasopharynx, bronchi, dermatitis, impaired hema-topoiesis, embryotoxicosis, exhibits mutagenic and ter-atogenic effects.

Copper compounds cause liver and kidney dysfunction, nervous system disorders, muscle pain, and mutagenic effects. Poisoning with copper compounds is often combined.

Therefore, wastewater purification from heavy metal ions and preventing them from entering the environment is an urgent task. In recent years, waste from various industries and various etiologies has been increasingly used for wastewater treatment [1-9]. At the same time, many wastes successfully compete with the chemicals used in the practice of water purification [10-16].

Table 1

Characteristics of harmful substances

Metal Water objects of economic and drinking and cultural and household water use Water objects of fishery importance

MPC, мg/dm3 LSH MPC, mg/dm3 LPH

Copper 1.0 organolept. 0.001 tox.

Nickel 0.02 sanit.-tox. 0.01 tox.

At Fig. 1, 2 as an example, the methods and reagents used in the practice of water purification from heavy metal ions are indicated.

Electrochemical

Adsoption

Ar-s/

\ Phosphate and /

purification)^

Reagent

Biochemical

Fig. 1. Purification of phosphate and metal-containing wastewater Рис. 1. Очистка фосфат- и металлсодержащих сточных вод

production wastes is their use as reagents for the removal of various pollutants from wastewater. In particular, we have previously shown the possibility of using waste from the construction industry to extract heavy metal ions, dyes, and other pollutants. It has been shown; in particular, that bag filter dust effectively extracts heavy metal ions from model wastewater [1116]. To assess the further possibility of using bag filter dust in water purification, we considered its supposed transformations in the aquatic media.

s Natural

cl ays

Adsorption materials

1 r

Basalt fiber

Activated coal

Sawdust

Tows of wool

Slags

Fig. 2. Chemical substances used in water treatment Рис. 2. Химические вещества, используемые в водоочистке

Purification from Ni2+ and Cu2+ ions proceeds due to the formation of poorly soluble compounds, the solubility product of which (SP) is indicated in Table 2 [1].

Table 2

Solubility products of precipitation

Substance Cu(OH)2 Ni(OH)2 (СиОН)2СОз

SP 2.2T0-20 8.7T0-19 1.70 10-34

The limiting factor in the use of traditional reagents is the high cost of the latter, the need for constant renewal, the use of reagent facilities for the preparation of solutions and suspensions of the appropriate concentration of the active reagent, etc., which leads to an increase in the cost of the purification process.

In recent years, wastewater from different industries of various etiology, as well as natural mineral compounds, has been increasingly used for wastewater purification [2-10]. At the same time, many wastes successfully compete with chemical reagents used in the practice of water purification [11-17].

Sorption methods are often used for deep purification. At Fig. 3 substances frequently used in sorption purification are given [18-40].

Industrial wastes are of particular interest. They are generated in large volumes and their disposal at industrial waste landfills leads to the rejection of large areas of land. One of the ways to use industrial

Knop

Fig. 3. Alternative reagents used in sorption wastewater purification

Рис. 3. Альтернативные реагенты, используемые в сорбцион-ной очистке сточных вод

MATERIALS AND METHODS

Dust from bag filters of the ZhBI-4 plant (Belgorod) was used in the work. The size of the dust particles, determined using a standard set of sieves, did not exceed 1.4 mm. For research, a fraction with sizes from 0.315 to 1.4 mm was selected.

The relief structure of the particle surface was studied using electron microscopy with a Hitachi-8-800 instrument combined with a personal computer and a high-resolution scanning electron microscope of the TESCAN MIRA 3LMU brand.

The phase composition of the dust was determined using an ARL 9900 Intellipower Workstation instrument using a tube with a Co-anode.

Model solutions containing Ni2+ and Cu2+ ions were prepared by dissolving reagents CuSO4-5H2O (chemically pure) and NiSO4-7H2O (chemically pure) in distilled water.

Purification of model solutions was carried out by adding a certain mass of dust to 100 cm3 of the solution placed in a conical flask with a capacity of250 cm3, after which stirring was carried out, followed by filtration through a paper filter. The content of Ni2+ and Cu2+ ions in the filtrate was determined by the photocolori-metric method. The purification efficiency was calculated using the standard formula:

E = (Cm - Cfin)/Cin100,

E - purification efficiency, %; Cin and Cfin - initial and final concentrations of pollutants in solution, mg/dm3.

RESULTS AND ITS DISCUSSION

In accordance with X-ray phase analysis, anhydrite, hartrurite, larnite, albite, gypsum, brownmil-lerite, grossite, belite, aliite, tricalcium aluminoferrite, tetracalcium silicate, calcite, and quartz were found in the dust of bag filter composition.

The mineral composition of dust of bag filter is represented by the following compounds: C3S -alite: 3CaOSiO2 (d, Ao = 3.043; 2.978; 2.898; 2.64; 2.191; 1.771); C2S - belite: 2CaOSiO2 (d, Ao = 2.898; 2.784; 2.614; 2.452; 2.404; 2.191); C3A - tricalcium aluminate: 3CaOAhO3 (d, Ao = 2.702; 1.937); C4AF - tetracalcium aluminoferrite: 4CaOAhO3^e2O3 (d, Ao = 7.661; 3.678; 2.784; 2.67; 2.056); SiO2 - quartz (d, Ao = 4.181; 3.351; 2.452; 2.327; 2.28; 1.983; 1.826); CaC03 - calcite (d, Ao = 3.043; 2.503; 1.937).

Graphic formulas of some substances are presented in Table 3.

Table 3

Characterization of some compounds

Such compounds as 3CaOSiO2 - tricalcium silicate, CaOSiO2 - calcium metasilicate, 2CaOSiO2 - calcium orthosilicate are also found in the selected dust samples.

When DBF enters the aqueous environment, the following processes may occur:

Ca2SiO4 ^ 2Ca2+ + SiO44-3CaOSiO2 + 5H2O ^ ^ 3CaO-2SiO2-№O + 3Ca(OH)2 + Q 3CaOSiO2 + 3H2O ^

^ 2CaOSiO2 2H2O + Ca(OH)2 + Q 2(2CaOSiO2) + 3H2O ^ ^ 3,3CaO2SiO22,3H2O + 0,7Ca(OH)2

During the dissociation of compounds such as Ca3SiO5; Ca2SiO4 Ca3SiO5 CaAl4O7; Ca2(Al, Fe3>O5 and others, solution acquires an alkaline reaction due to the transition of Ca2+, Na+ ions into the solution. When dissolving silicates of various composition (Si044-); (Si30s)4" due to the ability of silicate ions to polycondensate, the formation of network structures with a large surface having a negative charge is possible:

The formation of structures with a large negative surface in the solution promotes the process of approaching the positively charged metal ions Ni2+, NiOH+, [Ni(H20)2]2+ and negative surface charges, which leads to faster removal of heavy metal ions from the solution.

Thus, when dust from bag filters is added to the aqueous medium, the purification from heavy metal ions can proceed according to the reagent mechanism due to the formation of poorly soluble hydroxides such as Ni(OH)2, Cu(OH)2 and due to the probable sorption interaction, since due to the high surface imperfection dust particles have sorption activity (Fig. 4).

To confirm the possibility of using dust from bag filters of reinforced concrete products plants in water purification, we purified model solutions containing Ni2+ and Cu2+ ions at concentrations of 10 mg/dm3.

The studies were carried out under static conditions at a temperature of t = 20 °C on model solutions containing metal ions, stirring time t = 20 min. After stirring, the suspension was quantitatively transferred to a settling cylinder p and subjected to sedimentation for 30 min. Then, a layer of the clarified liquid was taken with a pipette and analyzed for the residual content of Ni2+ and Cu2+ ions.

It has been established that the purification efficiency for both studied substances sharply increases when even small amounts of dust are added to the solution. This is due to the fact that with the introduction of dust, the pH of the solution greatly increases and favorable conditions are created for the formation of poorly soluble hydroxides.

Thus, when only 0.2 g of dust is added per 1 liter of solution, the purification efficiency reaches 73% for Ni2+ and 68% for Cu2+. Then the increase in efficiency slows down and with the addition of 0.5 g, the efficiency increases by only 15%. It is most likely due to the fact that in the first time since the formation

Таблица 3. Характеристика некоторых соединений

№ Name Formula Graphic formula

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 Hartrurite Ca3SiO5 Ca ^ O^ yO^ Ca 0 -Si x o - Ca

2 Anhydrite CaSO4 cr^ ^ 0

3 Larnite Ca2SiO4 Ca \ >i ^ Ca O"^ ^ О

4 Grossite CaALOv О = Al ^ Ca ' Al ^O ^O ^ Al —° О Al

5 Brown-miller-ite Ca2 (Al,Fe3+)2O5 Ca ^ О - AI = О Ca ---о _ Fe = О

of Ni(OH)2 and Cu(OH)2 precipitates, the concentrations of hydroxide ions and metal ions in the solution drop sharply, the product of their concentrations decreases, and in order to achieve the solubility product of hydroxides in the same solution, it is necessary to add new portions of dust. With the addition of new portions of dust, the purification efficiency increases, but its growth is less and less intense, which can be explained by a decrease in the concentrations of metal ions in solutions.

Due to the fact that substances contained in the solid phase (dust) and liquid (model solution) take part

in the purification process, many physical and chemical processes proceed with the participation of the phase interface. For such processes, the magnitude of the phase separation surface or contact surface is of great importance. In our case, such a contact surface is the surface of dust particles. With the participation of this surface, the processes of dissolution and crystallization, adsorption and desorption proceed. Since the surface of the solid phase in the case of non-porous and low-porous sorbents depends to a greater extent on the particle size, it was of interest to study the dependence of the purification efficiency on the fineness of the applied dust.

Fig. 4. Fragments of DBF sections Рис. 4. Фрагменты участков ПРФ

Dependences of the efficiency of the purification process of model solutions on the used sorbent fraction were obtained, i.e. E(%) = f(d). In this case, model solutions were used, where [Ni2+]init = [Cu2+]init - 10 mg/dm3; dust consumption was 1 g/dm3; duration of the purification process - 20 min.

According to the data obtained, the largest amount of metal ions is removed from the solution by a dust fraction of less than 0.1 mm, which is explained by the smallest size of the average diameter and, as a result, a larger specific surface area.

Thus, the possibility of using industrial waste such as bag filter dust as a reagent for removing heavy metal ions from aqueous media was considered. The

ЛИТЕРАТУРА

1. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия. 1989. 448 с.

2. Багров В.В., Камруков А.С., Кострица В.Н., Зубков

А.А. Природные сорбенты и их использование для очистки сточных вод. Вода. 2017. № 6 (118). С. 38-43.

dust composition was determined by X-ray phase analysis. It was revealed that in its composition there are inorganic compounds of calcium, silicon and aluminum, which, when dissociated in water, contribute to the formation of the corresponding hydroxides of heavy metals that precipitate. Another alternative mechanism for the removal of heavy metal ions is adsorption on the surface of the sorption material.

The authors declare the absence a conflict of interest warranting disclosure in this article.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

REFERENCES

1. Lurie Yu.Yu. Handbook of analytical chemistry. M.: Khimiya. 1989. 448 p. (in Russian).

2. Bagrov V.V., Kamrukov A.S., Kostritsa V.N., Zubkov A.A. Natural sorbents and their use for wastewater treatment. Voda. 2017. N 6 (118). P. 38-43 (in Russian).

3. Свергузова С.В. Шлаковые отходы в водоочистке. Вестн. БГТУ им. В.Г. Шухова. 2010. № 4. С. 133-139.

4. Sverguzova S.V. Purification of waste water from phosphates by arsfurance slags. Microzanieczyszczenia w srodowisku czlowieka: mat. Naukowy International conf. Czçstochowa, Poland. 2003. P. 13-22.

5. Malik D.S., Jain C.K., Yadav A.K. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl. Water Sci. 2017. V. 7. P. 2113-2136. DOI: 10.1007/s13201-016-0401-8.

6. Hegazi H.A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013. V. 9(3). P. 276-282. DOI: 10.1016/ j.hbrcj.2013.08.004.

7. Жашуева К.А., Сиволобова Н.О., Грачева Н.В., Си-карская А.В. Очистка воды от ионов тяжелых металлов адсорбентами на основе растительных отходов. Вестн. технол. ун-та. 2017. Т. 20. № 7. С. 142-143.

8. Hussain S.A., Hasan N.K., Al-Abodi E.E. Biosorption to removing heavy metals from wastewater. J. Phys.: Conf. Ser. 2021. 1853. P. 012012. D0I:10.1088/1742-6596/1853/1/012012.

9. Москвичева А.В., Белоножкина А.О., Москаленко

A.Н. Модификация минерального сырья как способ получения сорбента для очистки промышленных сточных вод. Науч. потенц. регионов на службу модернизации. 2013. Т. 1. № 3 (6). С. 42-46.

10. Ханхасаева С.Ц., Бадмаева С.В. Адсорбция красителя ме-таниловый желтый на Fe-модифицированной бентонитовой глине. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 5. С. 23-29. DOI: 10.6060/ivkkt.20226505.6438.

11. Ружицкая О.А., Мендеса С. Современные химические и физико-химические методы удаления фосфатов из сточных вод. Системн. технологии. 2019. 3(№ 32). С. 22-27.

12. Морозов Д.Ю., Шулаев М.В., Емельянов В.М., Ну-руллина Е.Н. Исследование адсорбционной очистки сточных вод, содержащих ионы тяжелых металлов. Вестн. Казан. технол. ун-та. 2004. № 1. С. 95-98.

13. Смятская Ю.А., Политаева Н.А., Шайхиев И.Г., Свергузова С.В. Композиционные сорбционные материалы для очистки сточных вод от ионов тяжелых металлов. Вестн. технол. ун-та. 2018. Т. 21. № 2. С. 215-219.

14. Каратаев О.Р., Шамсутдинова З.Р., Хафизов И.И Очистка сточных вод электрохимическими методами. Вестн. технол. ун-та. 2015. Т. 18. № 22. С. 21-23.

15. Волкова М.А., Ведерникова Т.В. Очистка сточных вод с использованием реагентов различного происхождения. Вестн. Перм. ун-та. 2012. № 1(5). С. 19-26.

16. Качалова Г.С. Коагуляционно-сорбционная очистка сточных вод. Вода и экология: проблемы и решения. 2019. № 2 (78). С. 32-39. DOI: 10.23968/2305-3488.2019.24.2.32-39.

17. Сакалова Г.В., Свергузова С.В., Мальованый М.С. Эффективность очистки сточных вод гальванического производства адсорбционным методом. Вестн. БГТУ им.

B.Г. Шухова. 2014. № 4. С. 153-156.

18. Кормош Е.В., Алябьева Т.М., Швецова М.Ж., Понама-рева В.Е., Догаева Л.А. Изучение вещественного состава природных и модифицированных монтмориллонитовых глин для разработки сорбентов очистки сточных вод. Усп. совр. естествозн. 2019. № 3 (часть 2). С. 145-150.

19. Порожнюк Л.А., Свергузова С.В., Шайхиев И.Г., Ипа-нов Д.Ю., Новикова Е.В. Адсорбционные свойства пыли электросталеплавильного производства. Вестн. Казан. технол. ун-та. 2013. № 7. С. 92-95.

3. Sverguzova S.V. Slag waste in wastewater treatment. Vestn. BGTUim. V.G. Shukhov. 2010. N 4. P. 133-139 (in Russian).

4. Sverguzova S.V. Purification of waste water from phosphates by arsfurance slags. Microzanieczyszczenia w srodowisku czlowieka: mat. Naukowy International conf. Cz^stochowa, Poland. 2003. P. 13-22.

5. Malik D.S., Jain C.K., Yadav A.K Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl. Water Sci. 2017. V. 7. P. 2113-2136. DOI: 10.1007/s13201-016-0401-8.

6. Hegazi H.A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013. V. 9(3). P. 276-282. DOI: 10.1016/ j.hbrcj.2013.08.004.

7. Zhashueva K.A., Sivolobova N.O., Gracheva N.V., Si-karskaya A.V. Water purification from heavy metal ions by adsorbents based on vegetable waste. Vestn. Tekhnol. Un-ta. 2017. V. 20. N 7. P. 142-143 (in Russian).

8. Hussain S.A., Hasan N.K., Al-Abodi E.E. Biosorption to removing heavy metals from wastewater. J. Phys.: Conf. Ser. 2021. 1853. P. 012012. DOI: 10.1088/1742-6596/1853/1/012012.

9. Moskvicheva A.V., Belonozhkina A.O., Moskalenko A.N. Modification of mineral raw materials as a method for obtaining a sorbent for industrial wastewater treatment. Nauch. Po-tents. Regionov Sluzhbu Modernizatsii. 2013. V. 1. N 3 (6). P. 42-46 (in Russian).

10. Khankhasaeva S.Ts., Badmaeva S.V. Adsorption of meth-anyl yellow dye on Fe-modified bentonite clay. Chem-ChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. P. 23-29 (in Russian). DOI: 10.6060/ivkkt.20226505.6438.

11. Ruzhitskaya O.A., Mendesa S. Modern chemical and physical and chemical methods for removing phosphates from wastewater. Sistemn. Tekhnol. 2019. 3. N 32. P. 22-27 (in Russian).

12. Morozov D.Yu., Shulaev M.V., Emelyanov V.M., Nu-rullina E.N. Study of adsorption treatment of wastewater containing heavy metal ions. Vestn. Kazan. Tekhnol. Un-ta. 2004. N 1. P. 95-98 (in Russian).

13. Smyatskaya Yu.A., Politaeva N.A., Shaikhiev I.G., Sverguzova S.V. Composite sorption materials for wastewater treatment from heavy metal ions. Vestn. Tekhnol. Un-ta. 2018. V. 21. N 2. P. 215-219 (in Russian).

14. Karataev O.R., Shamsutdinova Z.R., Khafizov I.I. Wastewater treatment by electrochemical methods. Vestn. Tekhnol. Un-ta. 2015. V. 18. N 22. P. 21-23 (in Russian).

15. Volkova M.A., Vedernikova T.V. Wastewater treatment using reagents of various origins. Vestn. Perm. Un-ta. 2012. N 1(5). P. 19-26 (in Russian).

16. Kachalova G. S. Coagulation-sorption wastewater treatment. Voda Ekolog: Problemy Resheniya. 2019. N 2 (78). P. 32-39 (in Russian). DOI: 10.23968/2305-3488.2019.24.2.32-39.

17. Sakalova G.V., Sverguzova S.V., Malovany M.S. Efficiency of wastewater treatment of galvanic production by the adsorption method. Vestn. BGTU im. V.G. Shukhov. 2014. N 4. P. 153-156 (in Russian).

18. Kormosh E.V., Alyabyeva T.M., Shvetsova M.Zh., Ponamareva V.E., Dogaeva L.A. Study of the material composition of natural and modified montmorillonite clays for the development of sorbents for wastewater treatment. Usp. Sovr. Estesvozn. 2019. N 3 (pt. 2). P. 145-150 (in Russian).

19. Porozhnyuk L.A., Sverguzova S.V., Shaikhiev I.G.,

Ipanov D.Yu., Novikova E.V. Adsorption properties of electric steel production dust. Vestn. Kazan. Tekhnol. Un-ta. 2013. N 7. P. 92-95 (in Russian).

20.

21.

22.

23.

24.

25.

26

27.

28.

29.

30.

31.

32.

33.

34.

Корчагин В.И., Скляднев Е.В. Очистка высококонцентрированных сточных вод с использованием отработанного активированного угля. Журн. приклад. химии. 2005. Т. 78. № 9. С. 1479-1481. DOI: 10.1007/s11167-005-0537-z. Свергузова С.В., Сапронова Ж.А., Шайхиев И.Г., Ва-лиев Р.Р. Использование отходов переработки габбро-диабаза для очистки сточных вод. Вестн. Камчат. гос. техн. ун-та. 2018. Вып. 45. С. 6-11. DOI: 10.17217/20790333-2018-45-6-11.

Дремичева Е.С. Использование торфа и древесных опилок для очистки сточных вод от ионов тяжелых металлов. Вестн. Науч. центра ВостНИИ по пром. и экол. без-опасн. 2021. № 3. С. 80-91.

Степанова С.В., Шайхиев И.Г., Свергузова С.В.

Очистка модельных стоков, содержащих ионы тяжелых металлов, шелухой пшеницы. Вестн. БГТУ им. В.Г. Шухова. 2014. № 6. С. 168-171.

Юдаков А.А., Ксеник Т.В., Филиппова И.А., Понамо-рев Ф.И., Янушкевич Н.Г., Зайцева Г.И., Лейман С.В.

Очистка сточных вод с применением хитозана от стойких эмульсий нефтепродуктов. Экология и пром-сть России. 2007. № 2. С. 22-24.

Старостина И.В., Свергузова С.В., Столяров Д.В., По-рожнюк Е.В., Аничина Я.Н., Шайхиев И.Г. Отработанный кизельгуровый шлам маслоэкстаркционного производства - сырье для получения сорбционного материала. Вестн. технол. ун-та. 2017. № 16 (20). С. 133-137. Аржанкина Е.С., Бариева Э.Р., Серазеева Е.В. Использование зерновых отходов агропромышленного комплекса для очистки сточных вод, загрязненных нефтепродуктами. Вестн. магистратуры. 2014. № 12-1 (39). С. 51-52.

Свергузова С.В., Бомба И.В., Воронина Ю.С. Очистка маслосодержащих эмульсий листовым опадом вишни и рябины. Chem. Bull. 2018. Т. 1. № 4. С. 4-10. Тарановская Е.А., Собгайда Н.А., Алферов И.Н., Морев П.В. Очистка сточных вод с применением хитозана. Вестн. Оренбург. гос. ун-та. 2015. № 10 (185). С. 322-325. Свергузова С.В., Сапронова Ж.А., Хунади Л., Иевлева Е.С., Воронина Ю.С. Сорбционная очистка модельного раствора от ионов Fe3+ биомассой скорлупы арахиса. Вестн. технол. ун-та. 2021. Т. 24. № 4. С. 58-63. Чиркова В.С., Собгайда Н.А., Рзазаде Ф.А. Сорбенты на основе отходов агропромышленного комплекса для очистки сточных вод. Вестн. технол. ун-та. 2015. Т. 18. № 20. С. 263-266.

Сапронова Ж.А., Свергузова С.В., Воронина Ю.С., Мельников С.Н. Очистка крахмалосодержащих сточных вод. Chem. Bull. 2019. Т. 2. № 1. С. 14-20. Кондратюк Е.В., Комарова Л.Ф. Фильтровально-сорб-ционная технология очистки сточных вод от ионов тяжелых металлов на базе модифицированных базальтовых волокон. Вестн. Алтай. науч. центра Сибир. Акад. наук высш. шк. 2009. № 9. С. 31-34.

Падалкин Н.В., Евшин П.Н. Модифицированные сорбенты на основе опоки для очистки вод. Тр. Кольского науч. центра РАН. 2019. Т. 10. № 1-3. С. 262-269. Свергузова С.В., Беловодский Е.А. Пылевые отходы заводов ЖБИ как альтернативный материал для очистки сточных вод. Chem. Bull. 2018. Т. 1. № 4. С. 50-57.

20. Korchagin V.I., Sklyadnev E.V. Purification of highly concentrated wastewater using spent activated carbon. Zhurn. Prikl. Khim.. 2005. V. 78. N 9. P. 1479-1481 (in Russian). DOI: 10.1007/s11167-005-0537-z.

21. Sverguzova S.V., Sapronova Zh.A., Shaikhiev I.G., Va-liev R.R. Use of gabbro-diabase processing waste for wastewater treatment. Vestn. Kamchat. Gos. Tekhn. Un-ta. 2018. Iss. 45. P. 6-11 (in Russian). DOI: 10.17217/20790333-2018-45-6-11.

22. Dremicheva E.S. The use of peat and sawdust for wastewater treatment from heavy metal ions. Vestn. Nauch. Tsentra VostNII Prom. Ekolog. Bezopasn. 2021. N 3. P. 80-91 (in Russian).

23. Stepanova S.V., Shaikhiev I.G., Sverguzova S.V. Purification of model effluents containing heavy metal ions by wheat husks. Vestn. BGTUim. V.G. Shukhov. 2014. N 6. P. 168-171 (in Russian).

24. Yudakov A.A., Ksenik T.V., Filippova LA., Ponamorev F.I., Yanushkevich N.G., Zaitseva G.I., Leiman S.V. Purification of wastewater using chitosan from persistent emulsions of petroleum products. Ekologiya Prom-st' Rossii. 2007. N 2. P. 22-24 (in Russian).

25. Starostina I.V., Sverguzova S.V., Stolyarov D.V., Porozh-nyuk E.V., Anichina Ya.N., Shaikhiev I.G. Spent kiesel-guhr sludge from oil extraction production is a raw material for obtaining sorption material. Vestn. Tekhnol. Un-ta. 2017. N 16 (20). P. 133-137 (in Russian).

26. Arzhankina E.S., Barieva E.R., Serazeeva E.V. The use of grain waste of the agro-industrial complex for the treatment of wastewater contaminated with oil products. Vestn. Magis-tratury. 2014. N 12-1 (39). P. 51-52 (in Russian).

27. Sverguzova S.V., Bomba I.V., Voronina Yu.S. Purification of oil-containing emulsions with cherry and mountain ash leaf litter. Chem. Bull. 2018. V. 1. N 4. P. 4-10 (in Russian).

28. Taranovskaya E.A., Sobgaida N.A., Alferov I.N., Morev P.V. wastewater treatment using chitosan. Vestn. Orenburg. Gos. Un-ta. 2015. N 10 (185). P. 322-325 (in Russian).

29. Sverguzova S.V., Sapronova Zh.A., Khunadi L., Ievleva E.S., Voronina Yu.S. Sorption purification of the model solution from Fe3+ ions by peanut shell biomass. Vestn. Tekhnol. un-ta. 2021. V. 24. N 4. P. 58-63 (in Russian).

30. Chirkova V.S., Sobgaida N.A., Rzazade F.A. Sorbents based on agricultural waste for wastewater treatment. Vestn. Tekhnol. Un-ta. 2015. V. 18. N 20. P. 263-266 (in Russian).

31. Sapronova Zh.A., Sverguzova S.V., Voronina Yu.S., Melnikov S.N. Purification of starchy wastewater. Chem. Bull. 2019. V. 2. N 1. P. 14-20 (in Russian).

32. Kondratyuk E.V., Komarova L.F. Filtering and sorption technology for wastewater treatment from heavy metal ions based on modified basalt fibers. Vestn. Altay. Nauch. Tsentra Sibir. Akad. Nauk Vyssh. Shk. 2009. N 9. P. 31-34 (in Russian).

33. Padalkin N.V., Evshin P.N. Modified sorbents based on flask for water purification. Tr. Kol'skogo Nauch. Tsentra RAN. 2019. V. 10. N 1-3. P. 262-269 (in Russian).

34. Sverguzova S.V., Belovodsky E.A. Dust waste from reinforced concrete plants as an alternative material for wastewater treatment. Chem. Bull. 2018. V. 1. N 4. P. 50-57 (in Russian).

35. Fomenko A.I., Sokolov L.I. Use of ashes from thermal power plants for wastewater treatment. Ekolog. Prom-st' Rossii. 2022. V. 26. N 1. P. 14-18 (in Russian). DOI: 10.18412/1816-0395-2022-1-14-18.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

35. Фоменко А.И., Соколов Л.И. Применение зол тепловых электростанций для очистки сточных вод. Экология и пром-сть России. 2022. Т. 26. № 1. С. 14-18. DOI: 10.18412/1816-0395-2022-1-14-18.

36. Варданян М.А., Синегибская А.Д., Варфоломеев А.А. Поиск сорбентов на основе природных материалов и отходов производства для очистки сточных вод производства сульфатной целлюлозы. Тр. Братск. Гос. ун-та. Сер.: естеств. и инженер. науки - развит. рег. 2006. Т. 1. С. 17-23.

37. Кондрашова А.В. Природный сорбент в очистке сточных вод. Совр. науч. иссл. и разраб. 2017. № 2 (10). С. 318-319.

38. Зубков А.А., Багров В.В., Камруков А.С., Кострица В.Н., Крылов В.И. Природные сорбенты и их использование для очистки сточных вод. Водоочистка. Водопод-готовка. Водоснабжение. 2020. № 2 (146). С. 36-44.

39. De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 2016. V. 9. P. 10-40. DOI: 10.1016/j.susmat.2016.06.002.

40. Makarchuk O., Dontsova T., Perekos A., Skoblik A., Svys-tunov Y. Magnetic mineral nanocomposite sorbents for wastewater treatment. J. Nanomater. 2017. V. 2017. P. 8579598. DOI: 10.1155/2017/8579598.

36. Vardanyan M.A., Sinegibskaya A.D., Varfolomeev A.A.

Search for sorbents based on natural materials and production wastes for wastewater treatment of sulfate pulp production. Tr. Bratsk. Gos. Un-ta. Ser.: Estestv. Inzhener. Nauki -Razvit. Reg. 2006. V. 1. P. 17-23 (in Russian).

37. Kondrashova A.V. Natural sorbent in wastewater treatment. Sovr. Nauch. Issl. Razrab. 2017. N 2 (10). P. 318-319 (in Russian).

38. Zubkov A.A., Bagrov V.V., Kamrukov A.S., Kostritsa V.N., Krylov V.I. Natural sorbents and their use for wastewater treatment. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2020. N 2 (146). P. 36-44 (in Russian).

39. De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 2016. V. 9. P. 10-40. DOI: 10.1016/j.susmat.2016.06.002.

40. Makarchuk O., Dontsova T., Perekos A., Skoblik A., Svys-tunov Y. Magnetic mineral nanocomposite sorbents for wastewater treatment. J. Nanomater. 2017. V. 2017. P. 8579598. DOI: 10.1155/2017/8579598.

Поступила в редакцию 12.04.2022 Принята к опубликованию 01.06.2022

Received 12.04.2022 Accepted 01.06.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.