Научная статья на тему 'CATALYTIC ACTION OF WATER SOLUBLE FULLERENOL C60(OH)24 ON VITAL ACTIVITY OF STREPTOCOCCUS THERMOPHILES'

CATALYTIC ACTION OF WATER SOLUBLE FULLERENOL C60(OH)24 ON VITAL ACTIVITY OF STREPTOCOCCUS THERMOPHILES Текст научной статьи по специальности «Химические науки»

CC BY
58
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
STREPTOCOCCUS THERMOPHILES / FULLERENOL / CATALYTIC ACTION ON THE ACID FORMATION AND STREPTOCOCCUS CONSOLIDATION

Аннотация научной статьи по химическим наукам, автор научной работы — Gerasimova Liubov V., Blotskaya Ekaterina A., Blokhin Alexander A., Charykov Nikolay A., Kanbar Ayat

A starter culture based on live yogurt cultures (Streptococcus thermophiles) was used as the object of the study. The raw material for conducting research was whole milk pasteurized in the laboratory. The dynamics of acid formation was determined, using a pH -potential-meter. The morphology of the culture was studied by optical microscopy. Fullerenol C60(OH) 24 concentration were varying in the range 0.0002-0.02 g/dm3. Acccording to the results of potentiometry, it was found that acid accumulation occurs in all samples (with the absence or presence of fullerenol) and practically does not have a catalyzing or inhibiting effect on the formation of lactic acid. When analyzing the morphology of the resulting coccus structures, it was shown that fullerenol has an inhibitory effect on the diplococcus formation. The equilibrium constants of pseudo-reactions of the formation of diplococcus and streptococcus from (mono)coccus are estimated in the framework of the locally equilibrium approximation.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Gerasimova Liubov V., Blotskaya Ekaterina A., Blokhin Alexander A., Charykov Nikolay A., Kanbar Ayat

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CATALYTIC ACTION OF WATER SOLUBLE FULLERENOL C60(OH)24 ON VITAL ACTIVITY OF STREPTOCOCCUS THERMOPHILES»

Органический синтез и биотехнология

УДК 541.11/.118

Liubov V. Gerasimova1, Ekaterina A. Blotskaya1,3, Alexander A. Blokhin1, Nikolay A. Charykov1,2, Ayat Kanbar1, Victor A. Keskinov1, Polina V. Malysheva1, Zhasulan K. Shay-mardanov4, Botagoz K. Shaymardanova4, Natalya A. Ku-lenova4, Dmitrii G. Letenko5, Dauren Zikirov4

CATALYTIC ACTION OF WATER SOLUBLE FULLERENOL C60(OH)24 ON VITAL ACTIVITY OF STREPTOCOCCUS THERMOPHILES

1Saint-Petersburg State Institute of Technology, St Petersburg, Russia

2St Petersburg Electrotechnical University «LETI», St Petersburg, Russia

3Saint Petersburg Hygiene and Epidemiology Center, Saint Petersburg, Russia

4D. Serikbayev East Kazakhstan State Technical University, Centre Veritas, Ust-Kamenogorsk city, Republic of Kazakhstan

5St Petersburg State University of Architecture and Civil Engineering, St Petersburg, Russia keskinov@mail.ru

PACS 61.48.+c

A starter culture based on live yogurt cultures (Streptococcus thermophiles) was used as the object of the study. The raw material for conducting research was whole mlk pasteurized in the laboratory. The dynamics of acid formation was determined, using a pH -potential-meter. The morphology of the culture was studied by optical microscopy. Fullerenol C60((OH)24 concentration were varying n the range 0.0002-0.02 g/dm3. Acccording to the resutts of po-tentiometry, it was found that acid accumulation occurs in all samples (with the absence or presence of fullerenol) and practically does not have a catalyzing or inhibithg effect on the formation of hctic acid. When anafyzing the morphotogy of the resutting coccus structures, t was shown that fulerenol has an inhibitory effect on the dipto-coccus formation. The equHbrium constants of pseudo-reactions of the formation of diplococcus and streptococcus from (mono)coccus are estimated n the framework of the bcaHy equHbrium approximation.

Key words: Streptococcus thermophiles, fullerenol, catalytic action on the acid formation and streptococcus consolidation.

DOI: 10.36807/1998-9849-2022-60-86-39-44

Introduction

Light fullerenes (C60 and C70) may be more or less effectively used in different fields of science and technics, but its application is sufficiently limited by practically complete insolubility and incompatibility with water and

Герасимова Л.В.1, Блоцкая Е.А. 13, Блохин А.А.1, Чарыков Н.А.1,2, Канбар Аят1, Кескинов В. А.1, Малышева П.В.1 Шаймарданов Ж.К.4, Шаймарданова Б.К.4, Куленова Н.А.4, Летенко Д.Г.5, Зикиров Д.4

КАТАЛИТИЧЕСКОЕ ДЕЙСТВИЕ ФУЛЛЕРЕНОЛА C60(OH)24 НА ЖИЗНЕДЕЯТЕЛЬНОСТЬ STREPTOCOCCUS THERMOPHILES

1Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия 2Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

3«Центр гигиены и эпидемиологии в городе Санкт-Петербург», Санкт-Петербург, Россия 4Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, центр Veritas, Усть-Каменногорск, Казахстан

5Санкт-Петербургский государственный архитектурно-строительный университет, Санкт-Петербург, Россия keskinov@mail.ru

В качестве объекта исследования использовалась закваска на основе живых йогуртовых культур (Streptococcus thermophiles). Сырьем для проведения исследований послужило цельное молоко, пастеризованное в лаборатории. Динамику кислотообразования определяли с помощью рН-потенциометра. Морфологию культуры изучали с помощью оптической микроскопии. Концентрация фуллеренола C60(OH)24 варьировалась в диапазоне 0,0002-0,02 г/дм3. По результатам потенциометрии было установлено, что накопление кислоты происходит во всех образцах (при отсутствии или присутствии фуллеренола) и практически не оказывает катализирующего или ингибирующего действия на образование молочной кислоты. При анализе морфологии полученных кокковых структур было показано, что фуллеренол оказывает ингибирующее действие на образование диплококка. Константы равновесия псевдореакций образования диплококка и стрептококка из (моно)кокка оцениваются в рамках локально равновесного приближения.

Ключевые слова: термофилы стрептококка, фуллеренол, каталитическое действие на кислотообразова-ние и консолидацию стрептококка.

Date of entry November 29, 2021

aqueous solutions. Covalent functionalization is the most reliable way to obtain systems based on fullerenes which are suitable for biomedical applications. It deals with the structures of such molecules can be precisely determined (using A'-ray crystallography), and their pharmacokinetic

and dynamic behavior is better understood. This belongs also to the most of the light fullerene derivatives (halogen, amino, hydro and others). Meanwhile, water soluble full-erenes may be used in more wide ranges of applications: machinery, building, medicine, pharmacology (as the result of compatibility with water, physiological solutions, blood, lymph, liquor, gastric juice), agriculture, crop production, cosmetics. Poly-hydroxylated fullerenes (full-erenols) and adducts of light fullerenes C50 and C70 with carboxylic acids, amino-acids, peptides etc are the perspective bioactive fairly water-soluble fullerene derivatives.

This article continues the series of articles investigating the synthesis, identification and properties of full-erenols. In the present investigation we were interested in catalytic-inhibitor properties of water soluble fullerenol C50(OH)24 on vital activity of streptococcus thermophiles or other words about fullerenol's biological activity or it's toxity. This questions were considered for different full-erenols and some other water soluble fullerene derivatives (such as: complex eithers of fullerenols and carbon and dicarbon acids, adducts of light fullerenes with aminoac-ids, peptides etc) earlier many times. Let us to quote some of the most notable sources devoted to:

Toxicity and cytotoxicity [1-15];

Biological activity in relation to protozoa, algae, cereals, animals [15-20];

Antioxidant activity [21-30].

In the present article, we report about the investigation of fullerenol of light fullerene C50(OH)24 in bio-testing, using as test micro-organism "Streptococcus thermophiles" - a very popular gram-positive bacterium and an enzymatic facultative anaerobe from the viridans group for laboratory studies. Later we have studied catalytic-inhibitor fullerenol action on popular alga - Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress [31]. We shall report about the kinetics in the system: chlorella of light fullerene C60(0H)24 in bio-testing, using as test microorganism Streptococcus thermophiles (bio-component)-fullerenol (catalyst-inhibitor)-water.

Materials and experimental

methods

As an object of research, a starter culture based on live yogurt cultures (Streptococcus thermophiles) by CHR HANSEN (Denmark) was used. Also we used full-erenol C50(OH)24, which was synthesized from Br-derivative - C50Br24, according to previous method [32, 33]. C50(0H)24 was synthesized by the treatment of these product by boiling water-dioxane mixture with the dissolved NaOH. Then sodium fullerenes forms C50(OH)24 -5(ONa)5 were neutralized and washed in the Soxlet-extractor. In our experiments we used fullerenol concentrations 0.0 (control), 0.0002, 0.02 g/dm3.

In this study, light-field microscopy was used, which allows us to study objects in transmitted light in a light field [34]. This type of microscopy is designed to study the morphology, cell size, their relative location, the structural organization of cells and other features. Visible magnification of the microscope up to 1500 times.

For the investigation of the kinetics of acid-accumulation we used SevenCompact pH meter S220 with pH permission 0.01^0.1 a.u.

The raw material for conducting research in accordance with the tasks set was whole milk pasteurized

under laboratory conditions (temperature and pasteurization time T = 92±2°C, t = 5-7 minutes, respectively). To activate the starter culture, sterilized milk (Minsk brand) with a volume of 200 ml was used, which was heated to 38 ± 2°C. Then it was mixed with 0.02 g of sourdough. The filled closed glass container was shaken until it was completely dissolved. Then the mixture was thermostated for 8 hours at a temperature of 38 ± 2°C. Preheated pasteurized milk to 38 ± 2°C, poured into 50 ml containers, was mixed with sourdough (2 ml). The containers were divided into control samples and test samples with full-erenol. Carefully closed and thoroughly mixed solutions are placed in a thermostat for fermentation at a temperature of 38 ± 2°C. After an hour, the first pH indicators are removed. The procedure is repeated every half hour until the yogurt is completely fermented.

Dynamics of acid accumulation.

The pH values of the samples are presented in 1. As an example, the concentrations of fullerenol are 0.0002 g/l and 0.02 g/l. A decrease in pH indicates the formation of lactic acid (CH3CH(OH)COOH). Lactic acid is strong enough (pKa ~ 3.86 at 25°C), so concentration of hydrogen ions in very diluted acid solution was calculated by the formula:

io-P" (1),

<iH+,[tf+] are activity and molar concentration of H+ ions, which are approximately equal each other, because one can assume, that activity coefficients of such diluted in the relation to acid solutions correspond to extremely diluted solutions l.

Experimental data, concerning the dynamics of lattice accumulation at different fullerenol concentration is represented in Table 1 and Fig.1.

Table 1. Dynamics of lactic acid accumulation as a function of

time.

Time ;h~] at the con- ;h_] at the ;h_] at the

of accumula- centration ' . : ::-: =0/0 concentration concentration

tion, (h) g/dm3 (control) (mole/dm3) ^C60(0H)24 =0,02 g/dm3 (mole/dm3) 002 g/dm3 (mole/dm3)

0.0 2.29-10-7 2,34-10-7 2,40-10-7

1.0 4.68-10-7 4,57-10-7 4,68-10-7

1.5 8.13-10-7 7,4M0-7 6,03-10-7

2.0 3.09-10-6 3,09-10-6 3,02-10^

2.5 5.25-10-6 5,89-10-6 4,98-10^

3.0 7.24-10-6 9,70-10-6 9,12-10-6

3.5 1.45-10-5 1,55-10-5 1,45-10-5

4.0 2.19-10-5 2,34-10-5 2,00-10-5

— 0.000000-5^:

0.0 0.5 1.0 1.5 2!O 2^5 3.0 3.5 4.0 4.5 Time of acid accumulation t (h)

Fig.1. Dynamics of lactic acid accumulation as a function of

time (red line is calculation, according to the reaction of the order ?i = 2/3).

From Fig. 1 one can see, that: 1. Curve (t) is concave, thus formal order of the reaction according to the acid (or [//+]) should be it < l). In our case, if we neglect the initial [//+] concentrations in the moment of observation start (which are one-two orders lower than [tf+] after some hours of observation), we can install n = 2/3. So differential kinetic equation of acid accumulation may be written as:

x.

streptococcus

= №

streptococcus

dt

= к[н

+ -12/3

(2),

where: k is velocity constant in l/s(^^)1/3. So, integral

kinetic equation will be:

[H+] = l/27kt3 (3).

2. Approximation of the dependencies of (t) gives the values of Ar independently of fullerenol concentrations:

1 /27k = (3.33 ± 0.09) ■ 10"7 lM^)1'3 (4).

' dm2

So, we can postulate, that fullerenol does not realize any catalytic or inhibitor action on the process of acid accumulation or integral vital activity of Streptococcus Thermophiles in all investigated concentration range. It was found that acid accumulation occurs commensurately in all samples, so the addition of fullerenol C60(OH)24 does not affect the fermentation process. Further changes in the fullerenol concentration up to 0.2 g/dm3 also did not lead to a change in the dynamics of acid formation.

Quantitative CFU index determination

We also determine CFU - index (colony-forming units) is an indicator of the number of viable microorganisms per unit volume (1 cm3). The most important indicator of the usefulness of fermented milk products is the number of live milk bacteria. The quantitative analysis was carried out in the laboratory of the Sanitary and Epidemiological Service (SES). The obtained results showed that in all samples with the different fullerenol concentrations, including the control, the index of colony-forming units: (CFU) = (1.10 + 0.03) ■ 103 units/cm3.

Morphology of the obtained

samples

To assess the morphology of the samples,a microscope with a 100/1.25 lens was used. Microscopy of the samples was performed at intervals of 7 days. As an example, samples with fullerenol concentrations of 0.0002 g/l and 0.02 g/l are presented. In the microscope analysis we calculated the number of different coccus formations: coccus themselves (monococcus), diplococcus and streptococcus (see Fig.2). Other morphological forms: such as, for example: tetrads or sarcinas were not detected.

diplococcus

streptococcus

1$

Fig.2. Morphology of different coccus formations.

Let us introduce molar percent of streptococcus in the sum of all coccus formations:

where: Nl - average number of i-th formations in the standard in the field of illumination of microscope. The dependence of the fraction of the extended coccus structures - xstrept0cacc7is on fullerenol concentration are represented in Fig.3. From Fig.3 one can see, that fullerenol clearly suppresses development of streptococcus, catalyzing their decay in time.

5 50£ 45 " >< 40-о 35-

S g 20 ° У

55 15

S 10-

'S 5;-

0 -

Fullerenol concentrations In g/dm3 1 0 0 (control) Z 0C02 • С 02

II

I

11

14 16

0 2 4 6 8 Ю 12 Time of observation (days)

Fig.3. The proportion of extended streptococcal chains in the total number of formations depending on the exposure time for the

control experiment (red), at a concentration of fullerenol Qeomw = 2-l(j4 g/dm3 (green), at a concentration of fullerenol cC6o(OH)24.= 2-1 a2 g/dm3 (blue).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The dependence of the fraction of the diplococcus structures - xdiplococcus on fullerenol concentration,

which is represented in Fig.4, demonstrates, that fullerenol does not any time considerably act on diplococcus development in time.

Fullerenol concentrations In g/dm3 1 0.0 (control) * 0.0002 401 «0 02

; ш 20-

S Г5

: 8 15! 3

о 10- Q.

'S

0

14 16

0 2 4 6 8 10 12 Time of observation (days)

Fig.4. The proportion of diplococcus in the total number of formations depending on the exposure time for the control experiment (red), at a concentration of fullerenol CC60 ,:0 H) 2 4 = 2-Iff4

g/dm1 (green), at a concentration of fullerenol CC6 Ll ,: 0 H ) 2 4 = 2-102

g/dm3 (blue).

Let us estimate the thermodynamic parameters of streptococcus decay. We will consider the processes of decomposition of diplococcus and streptococcus into individual coccuses and processes of diplococcus and streptococcus formation to be locally equilibrium and may be described by corresponding seeming equilibrium constants in the formal ideal liquid phases (Ji5 and K2,correspondingly, 5 is average number of coccuses in streptococcus)5 coccus 1 streptococcus

С

streptococcus/^COCCUS

2

CO ccus

2 coccus 1 diplococcus K2 = Cdiplococais/C[ where: cl - volume, molar concentration of i-th coccus form. Molar concentration can be easily calculated as:

(6), (7),

+

C:=\:/S-!-\:: (8),

where: S - area of microscope illumination (dm2), / - width of liquid layer in microscope, Nav - Avogadro number. So: ci = Nr z , where z = l/s-1 ■ Nav is common multiplier for all forms. Let's put it for simplicity z = l, so:

K, - ("^—yz* - ); pKs = -ig(^) (9),

**coccus **coccus

K5 = = pjf? = _lg(/Q (10)i

______

In Fig.5, 6 are represented pK5,pK2 values for different fullerenol concentrations and different times of observation.

4 6 8 10 12 Time of observation (days)

Fig. 5. pK5 values for different fullerenol concentrations and different times of observation.

Fig. 6. pKj values for different fullerenol concentrations and different times of observation.

pKs,pK2 values should not be constant for different times of observation, because local equilibrium should not correspond to real equilibrium. But for the formal equilibrium of coccus with diplococcus it is really so, moreover pK2 does not depends on fullerenol concentration:

pK2 « 1.9 ±0.15 а.и.

(11).

On the contrary, pK5 values depend on both the observation time and fullerenol concentration:

рК5 И (3.9 + 0.2) + t(0.14± 0.02) + CfllUerenol ■

(71+9) а.и. (Щ

where: t - time of observation (days), cfullereru>l - fullerenol concentration in g/dm3. Other words function pK5 increases both with increasing time of observation and with increasing fullerenol concentration, i.e. with an increase in the effect of both of these factors coccus are beginning to suppress the development of streptococci more and more. This effect is naturally minimal, when fullerenol is absence.

Заключение

Таким образом, авторами продемонстрировано сильное ингибирующее действие фуллеренола-24 на развитие протяженных стрептококковых цепей культу-

ры Streptococcus Thermophiles, в то время как на развитие суммы кокковых образований и образование диплококков фуллеренол-24 влияния практически не оказывет.

Acknowledgements

Investigations were supported by the Ministry of Science and Higher Education of the Russian Federation (institution 785.00.X6019, mnemonic code of the application topic 0785-2021-0002 and Program-targeted financing on the topic BR10965186 "Development and implementation of geo-information support for "smart" agriculture for improving the management of the agro-industrial complex".

Благодарности

Исследования были поддержаны Министерством науки и высшего образования Российской Федерации (учреждение 785.00.X6019, мнемонический код темы заявки 0785-2021-0002 и Программно-целевое финансирование по теме BBR10965186 "Разработка и внедрение геоинформационной поддержки "умного" сельского хозяйства для улучшения управления агропромышленным комплексом".

References

1. Shevchenko D.S., Rakhimova O.V., Podolsky N.E, Charykov N.A., Semenov K.N., Keskinov V.A., Sha-mardanov Zh.K, Shamardanova B.K., Kulenova N.A., Onalbaeva Zh.S. Toxicity of water soluble octo-adduct of fullerene C60 and arginine C60(C6H12NaN4O2)8H8 // Izvestia SPbGTI(TU). 2019. No 49(75), pp. 95-100.

2. Andrievsky G, Klochkov V., Derevyanchenko L. Is the C60 fullerene molecule toxic?! // Fullerenes, Nano-tubes, and Carbon Nanostructures. 2005. Vol. 13(4), pp. 363-376.

3. Aschberger K, Johnston H.J., Stone V., et al. Review of fullerene toxicity and exposure - appraisal of a human health risk assessment, based on open literature. // Regulatory Toxicology and Pharmacology. 2010. Vol. 58(3), pp. 455-473.

4. Andreev S.M., Babakhin A.A., Petrukhina A.O., Romanova VS., Pames Z.N., Petrov R. V. Immuno-henic and allergenic properties of conjugates of fullerenes with amino-acids // Rep. Rus. Acad. of Sciences. 2000. Vol. 370(2), pp. 387-399.

5. Baati T., Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene // Biomaterials. 2012. Vol. 33(19), pp. 4936-4946.

6. Baker G.L., Gupta A, Clark M.L., et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nano-particles and microparticles // Toxicological sciences. 2008. Vol. 101(1), pp. 122-131.

7. Costa C.L.A., Chaves I.S., Ventura Lma J., et al. In vitro evaluation of coexposure of arsenicum and an organic nanomaterial (Fullerene C60) in zebrafish hepato-cytes // Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012. Vol.155(2),pp.206-212.

8. Jia G.Cytotoxicity of carbon nanomaterials: singl -wall nanotube, multi-wall nanotube, and fullerene // Environmental science & technology. 2005. Vol. 39(5), pp. 13780-1383.

9. Jung H., Wang C. U, Jang W. Nano-C60 and hydroxylated C60: Their impacts on the environment // Toxicology and vironmental Health Sciences. 2009. Vol. 1(2), pp. 132-139.

10. Gao J, Wang H.L., Shreve A, Iyer R. Fuller-ene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications // Toxicology and applied pharmacology. 2010. Vol. 244(2), pp. 130-143.

11. Horie M, Nishio K, Kato H, et al. In vitro evaluation of cellular responses induced by stable fuller-ene C60 medium dispersion // Journal of biochemistry/ 2010/ Vol. 148(3), pp. 289-298.

12. Hendrickson O.D, ZherdevA.V., Gmoshinskii I.V., DzantievB.B. Fullerenes: in vivo stud-ies of biodistribution, toxicity, and biological action // Nanotechnologies in Russia. 2014. Vol. 9(11-12), pp. 601-617.

13. Hendrickson O.D., Morozova O.V., Zherdev A.V., et al. Study of distribution and biological effects of fullerene C60 after single and multiple intragastrical administrations to rats // Fullerenes, Nanotubes and Car-bon Nanostructures. 2015. Vol. 23(7), pp. 658-668.

14. Kobsnjaj J, Szwarc H, Moussa F Toxicity studies of fullerenes and derivatives // Bio-Applications of nanoparticles 2007. pp. 168-180.

15. Kyzyma E.A. Structure and toxicity of aqueous fullerene C60 solutions // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Tech-niques. 2015. Vol. 9(1), pp. 1-5.

16. Sidorov L.N., Yurovskaya M.A. Fullerenes. Moscow: Ekzamen, 2005. 688 p. (in Rus).

17. Cataldo F., Da Ros T. Carbon Materials. Chemistry and Physics: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer, 2008.

18. Piotrovskii L.B., Kiseeev O.I. Fullerenes in Biology. Rostok, Saint-Petersburg, 2006, 335 p. (in Rus).

19. Panova G.G., Ktitorova I.N., et al. Impact of polyhy-droxy fullerene (fullerol or fullerenol) on growth and biophysi-cal characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation // International Journal on Plant Growth and Development. 2016. Vol. 79(3), pp. 309-318.

20. Panova G.G., Semenov K.N., Charykov N.A. Water soluble fullerene derivatives and silica nano-compositions as perspec-tive nanomaterials in plantgrow-ing // Agro-physics. 2015. Vol. 4, pp. 37-48. (in Rus).

21. Panova G.G., Kanash E. V, et a, Fullerene derivatives stimulate production process, growth and stability to oxidation stress for wheat and barley plants // Agricultural Biology. 2018. Vol. 53(1), pp. 38-49. (in Rus).

22. Semenov K.N., Meshcheriakov A.A., et al. Physico-chemical and biological properties of C60 - L-hydroxyproline water solutions //. RSC Advances. 2017. Vol. 7, pp. 15189-15200.

23. Panova G.G., Serebryakov E.B., Semenov K.N., Charykov N.A., Shemchuk O.S., Andrusenko E.V., Kanash E. V, Khomyakov Y. V., Shpanev A.M., Duheva L.L., Podolsky N.E, Sharoyko V. V. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture // Journal of Nanomaterials. 2019, pp. 1-13.

24. Tyurin D.P., Koimogorov F.S., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Safyannkov N.M., Pukharenko Yu.V, Letenko D.G., Segeda T.A., Shaimardanov Z. Antioxidant properties of fullerenol-d // Nanosystems: Physics, Chemistry, mathematics, 2018, Vol. 9(6), pp. 798-810.

25. Podolsky N.E, Marcos M.A., Cabaieiro D., Semenov K.N., Lugo L, Petrov A.V., Charykov N.A., Sharoyko V. V., Viasov T.D., Murin I. V. Physico-chemical properties of C60(OH)22-24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity/ // J. of Mol. Liq, 2019, Vol. 278, pp. 342-355.

26. Tyurn D.P., Kolmogorov S.F., Cherepkova I.A., Charykov N.A., Semenov K.N., Kesknov V.A., Safyannkov N.M., Pukharenko Yu.V., Letenko D.G., Shaimardanov Zh.K, Shamardanova B.K. Anti-oxidant properties of octo-adduct of fullerene C60 and L-arginine (C60(C6H13N402)8H8. Izvestia SPbGTI(TU), 2019, No 49(75), pp. 69-77.

27. Grigoriev V. V, Petrova L.N. Antioxidant properties of water soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection // Rus. Chem. Bull. Int. Ed. 2011. Vol. 60, pp. 1172-1176.

28. Mirkov S.M., Djordjevic, A.N. Nitric ox-idescavenging activity of polyhydroxylated fullerenol, C60(0H)24 // Nitric Oxide. 2004. Vol. 11, pp. 201-207.

29. Anderson R, Barron A.R. Reaction of hy-droxyfullirini with metal salts: a route to remediation and immobilization // J. Am. Chem. Soc. 2005. Vol. 127(30), pp. 10458-10459.

30. Djordjevic A., Srdjenovic B, et al. Review of Synthesis and Antioxidant Potential of Fullirinol Nanopar-ticles // Journal of Nanomaterials. 2015. 567073(15).

31. Gerasmmova L.V., Charykov N.A., Semenov K.N., et al. Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress // Nanosystems: Physics, Chemistry, mathematics. 2021. Vol. 12 (3), pp. 346-362.

32. Semenov K.N., Charykov N.A., Kesknov V.A., et al. Solubility C60Brn (n = 6, 8, 24) in organic solvents // Rus. J. Phys. Chem. A. 2009. Vol. 83(11),pp.1935-1940.

33. Semenov K.N., Charykov N.A., Axefrod B.M. Solubility of Bromdirivativis C60Brn (n = 6, 8, 24) in 1-Chloronaphthalini and 1-Bromonaphthalini In Temperature Range (10 to 60) C // J. Chem. Eng. Data. 2010. Vol. 55, pp. 2373-2378.

34. Medical microscope MIKMED-5: Technical characteristics; Additional equipment / JSC "LOMO": Russian enterprise for the production of optical, optoelectronic, opto-digital and opto-mechanical devices, systems and complexes: official website. - URL: (http : //www.lomo.ru/production/grazhdansiogo-naznacheniya/miirosiopy/miirosiopy-meditsinsiie/miimed-5/) (28:04.2021).

Сведения об авторах:

Герасимова Любовь Валерьевна, магистрант, СПбГТИ(ТУ); Liubov V. Gerasimova, undergraduate, SPbSIT Блоцкая Екатерина Александровна, магистрант, СПбГТИ(ТУ), «Центр гигиены и эпидемиологии в городе Санкт-Петербург»; Ekaterina A. Blotskaya, Undergraduate, SPbSIT; Saint Petersburg Hygiene and Epidemiology Center

Блохин Александр Андреевич, д-р хим. наук, профессор, СПбГТИ(ТУ); Alexander A. Blokhin, Dr Sci. (Chem.), Professor,

SPbSIT

Канбар Аят аспирант СПбГТИ(ТУ); Ayat Kanbar, Graduate student SPbSIT

Чарыков Николай Александрович, д-р хим. наук, профессор СПбГТИ(ТУ); СПбГЭТУ «ЛЭТИ»; Nikolay A. Charykov Dr Sci. (Chem.), Professor, SPbSIT; ETU "LETI"; ORCID 0000-0002-4744-7083 ncharykov@yandex.ru

Кескинов Виктор Анатольевич, канд. хим. наук, доцент СПбГТИ(ТУ); Victor A. Keskinov, Ph.D (Chem.), Associate Professor, SPbSIT; ORCID 0000-0003-3227-122Xkeskinov@mail.ru

Малышева Полина Валерьевна студент, СПбГТИ(ТУ);; Polina V. Malysheva, student, etmanova.polinochka@mail.ru Шаймарданов Жасулан Кудайбергенович, д-р биол. наук, профессор; Zhasulan K. Shaimardanov, Dr Sci., (Biol.), Professor, D . Serikbayev East Kazakhstan State Technical Universtty, Centre Veritas ORCID 0000-0003-0035-707X,

Шаймарданова Ботагоз Касымовна д-р биол. наук, профессор, Bоtagoz K. Shaimаrdanova, Dr Sci., (Biol.), professor D. Serikbayev East Kazakhstan State Technical Universtty, Centre Veritas ORCID 0000-0002-6872-0341

Куленова Наталья Анатольевна, канд. хим. наук; Natalie A. Kulenova, 4D. Serikbayev East Kazakhstan State Technical University, Centre Veritas NKulenova@ektu.kz

Летенко: Дмитрий Георгиевич, канд. физ.-мат. наук, доцент, СПбГАСУ; Dmitrii G. Letenko Ph.D (Phys.-Math.), Associate Professor, St Petersburg State University of Architecture and Civil Engineering; dletenko@mail.ru

Зикиров Даурен, науч. сотр., Dauren Zikirov, Researcher, D. Serikbayev East Kazakhstan State Technical University, Centre

Veritas

i Надоели баннеры? Вы всегда можете отключить рекламу.