Научная статья на тему 'BIRINCHI TARTIBLI CHIZIQLI DIFFERENSIAL TENGLAMALAR SISTEMASI UCHUN SOCHILISH NAZARIYASINING TО‘G‘RI MASALASI'

BIRINCHI TARTIBLI CHIZIQLI DIFFERENSIAL TENGLAMALAR SISTEMASI UCHUN SOCHILISH NAZARIYASINING TО‘G‘RI MASALASI Текст научной статьи по специальности «Строительство и архитектура»

CC BY
4532
353
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Chiziqli differensial tenglamalar sistemasi / Yost yechimlari / to‘g‘ri masala / sochilish nazariyasi / o‘tish koeffitsiyentlari.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Zufarbek Shodlik О‘G‘Li Bekdurdiyev

Ushbu maqolada birinchi tartibli oddiy differensial tenglamalar sistemasi uchun sochilish nazariyasining to‘g‘ri masalasi o‘rganilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «BIRINCHI TARTIBLI CHIZIQLI DIFFERENSIAL TENGLAMALAR SISTEMASI UCHUN SOCHILISH NAZARIYASINING TО‘G‘RI MASALASI»

Scientific Journal Impact Factor (SJIF 2022—5.016) Passport: http://sjifactor.com/passport.php?id—22257

BIRINCHI TARTIBLI CHIZIQLI DIFFERENSIAL TENGLAMALAR SISTEMASI UCHUN SOCHILISH NAZARIYASINING TO'G'RI MASALASI

Zufarbek Shodlik o'g'li Bekdurdiyev

Urganch davlat universiteti magistranti

ANNOTATSIYA

Ushbu maqolada birinchi tartibli oddiy differensial tenglamalar sistemasi uchun sochilish nazariyasining to'g'ri masalasi o'rganilgan.

Tayanch so'zlar: Chiziqli differensial tenglamalar sistemasi, Yost yechimlari, to'g'ri masala, sochilish nazariyasi, o'tish koeffitsiyentlari.

Quyidagi chiziqli differensial tenglamalar sistemasini qaraymiz

U)f = f t > 0 .

ox

(1)

Bu yerda va keyinchalik ushbu

=

r0 1

v

0

=

r0 -i^

i 0

Pauli standart matritsalaridan foydalanamiz. f funksiya

&3 =

'1 0^

0 -1y

noma'lum 2 x 2 kvadrat matritsa

vv

V

U =

0

iu (x, t)

-iu( x, t) 0

t > 0.

u (x, t) funksiya

0 to

J (1 - x) u(x, t) - peia~2iph dx + J (1 + x) u(x, t) - peiß~2 dx < 00 , p> 0 (2)

-X 0

shartni qanoatlantiruvchi funksiya bo'lsin.

Butun o'qda Dirak operatori uchun sochilish nazariyasi teskari masalasini A.B.Zaharov, A.B.Shabat [1], V.E.Grin, M.G.Gasimov, B.M.Levitan, I.S.Frolov, L.P.Niznik, Fam Loy Vu, L.A.Taxtadjyan [2], L.D.Levitan, A.B.Hasanonov [3] va boshqalar tomonidan o'rganilgan.

Sochilish nazariyasining teskari masalasi usuli Gelfand-Levitan-Marchenko integral tenglamalari sistemasi deb nomlanuvchi ikkita integral tenglamalar sistemasini yechishga keltiriladi. Akslanuvchi potensiallar xolida bu sistemaning yechimini topish murakkab bo'ladi. Biror bir taqribiy yechimni topish uchun sonli usullar qo'llaniladi. [4], [5], [6], [7], [8], [9], ishlarda diskret nochiziqli Shredinger tenglamasini turli xil funksiyalar sinfida teskari masalalar usulida integrallash o'rganilgan.

£ e R \(-p, p) da f- va f + orqali (1) tenglamaning quyidagi asimtotikani

Scientific Journal Impact Factor (SJIF 2022—5.016) Passport: http://sjifactor.com/passport.php?id—22257

f - ~ E- (x,Ç, t), x ^-w, f+ ~ E+ ( x,Ç, t ), x ^œ, qanoatlantiruvchi yechimini belgilaymiz. Bu yerda

(3)

E - ( x,Ç, t ) =

1

i(Ç - P)cia-2i(2t

v P

r

E+ ( x,Ç, t ) =

i(Ç- P)c-ia+2ip2t

P

j(Ç- P)c-iß+2ip1t

-ipa^x

P

i (Ç- P )ciß-2ip1t P

-ipa^x

№ = 4~Ç

2 P2

(4)

Bunday yechimalar (1) tenglamali Yost matritsali yechimlari deyiladi. Ushbu

d det f± ( x,Ç, t ) = 0, dx

tenglikning o'rinli bo'lishini ko'rsatish mumkin. Bundan hamda (3) shartlardan

2P(Ç- P)

det f ± (x,Ç, t) =

P

(5)

(6)

Bundan shunday S(Ç,t) matritsa mavjud bo'lib, f+ (x,Ç,t) va f (x,Ç,t) yechimlarni uchun

f - (x,Ç, t) = f + (x,Ç, t)S (Ç, t ), (7)

tenglik o'rinli bo'ladi. Bunda

J a(Ç, t ) b (Ç, t ) " ( , ) [b(Ç,t) a(Ç,t)) a(Ç, t) va b(Ç, t) koeffisentlarini o'tish koeffitsiyentlari deyiladi. (6) va (7) tengliklardan quyidagi

|a(Ç, t)|2 - \b(Ç,t)|2 = 1,

va

a(Ç, t )

b(Ç, t ) =

P

2 P (Ç- P )

det(f " ( x,Ç, t ), f2+ ( x,Ç, t ))

(8) (9)

P

-det(fi+ ( x,Ç, t ), fr ( x,Ç, t ))

2P(Ç- P) www.scientificprogress.uz

Scientific Journal Impact Factor (SJIF 2022—5.016) Passport: http://sjifactor.com/passport.php?id—22257

tengliklarning o'rinli bo'lishi kelib chiqadi.

a(£, t) funksiya £ boyicha analitik va faqat chekli sondagi nollarga ega. Bu nollarni £,£,...,£ bilan belgilaymiz. (9) tenglikdan agar £ = £ da a(£n,t) = 0 bo'lsa, f- (x,£, t) va f+ (x,£, t) ustunlar chiziqli bog'lanishda bo'ladi, ya'ni

f;(x,£n,t) = ^(t)f+ (x,£,t), n = 1,2,...,N (10)

Shuning uchun £ = £ soni (1) tenglamalar sistemasining xos qiymati bo'lishi kelib chiqadi. (1) tenglamalar sistemasi o'zaro qo'shma, demak uni xos qiymatlari, ya'ni a (£, t) funksiyaning nollari haqiqiydir. Bu nollar (-p, p) oraliqda joylashgan.

a(£,t) funksiya nollari oddiy (karrasiz)ligini ko'rsatamiz. (9) dan £ boyicha hosila olamiz

2

Pn(£n Pn)

+ det(/r(x,£„,0,/2+(x,£„,0). (11)

f~(x,£,t) va /2+(x,£,i) ustunlar (1) tenglamalar sistemasini, f~(x,£,t) va

d

/2+(x,£,/) ustunlar esa z<t3 —v = v + £v tenglamani qanoatlantiradi.

" dx

Bu tenglamalardan quyidagi tengliklar kelib chiqadi.

d

—det( (x, £, t), (x, £, t)) = i det((x, £, t), f* (x, £, t)), ox

d

—det((x,£,t), f*(x,£,t)) = -zdet(aJT(^0,№,£,0) • ox

£ = £„ da f" (x,£,t) va f2+ (x,£,t) ustunlar proporsional va |x| ^to ekspotensial kamayishini hisobga olib,

oo

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

detC/j" (x, £n, t), /2+ (x, £n, 0) = ~icn {t) J A(s, £n, t )ds, (12)

x

X

det(/r(*,£,0,/2+C*,£,0) = -Kit) J ACv,£„,0ds, (13)

—to

hosil bo'ladi. Bu yerda

A( x,£, t) =e^f (x,£, 11.

£n + Pn

va ||-|| - C2 da oddiy vektor normasini ifodalaydi. (12),(13) formulalarini (11) tenglikga qoyib , ä{£n,t) uchun ushbu

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

-iß+2ip1t œ

à(Z, t ) = - c{t)ppé' ' HI f+ Mn, t )

ç + p J 11

~n -fi

2

ds

ifodani hosil qilamiz. Demak, à{Çn,t) nolgateng emas. Quyidagi

{à(z,t), b(z,t),4(t),cM(t),n = 1,2,...,(14)

to'plamga (1) tenglamalar sistemasining sochilish nazariyasining berilganlari deyiladi. (1) tenglamalar sistemasi uchun sochilish nazariyasining to'g'ri masalasi potensial berilganda (14) berilganlarni topishdan iborat.

Misol. (1) tenglamalar sistemasining u ( x, t ) potensiali

p e,pe~'PlX + ce,aemx u = pe p -:-:-

e-pix + ceipix

bo'lsin. Bunda, p,a, ß va c berilgan musbat sonlar. Sochilish nazariyasining berilganlarini topamiz.

Yost yechimlari x ^œ

KZ- P)„-ß+2P e~'Plx + caelß~iae'Plx

- „ -ß2-p .------eipx

1 p e-Pl x + ceiPl x

e-pix + cae-Pix lpx

¥2 = —:-— • eP

T2 e-Pix + ce-Pix

(2)

x ^-œ da

ae pix + cepix wx

<P\ =—:-:— e ipx

^ e-pix + ceipix

= l(Z-ß)ca-2-p2t aelß-iae~iPix + ce-Pix p e~ipix + ceipix

bo'ladi. Quyidagi tengliklarning o'rinli bo'lishini oson ko'rsatish mumkin:

Z±Ä = p

p Pi,

Z + P-Pi = Zi-Pi.P-Z + Pi Z + P-Zi + Pi Z + Pi Z + P-Zi-Pi Haqiqiy Z va p sonlari uchun a(t,Z), b(t,Z) koeffitsiyentlarni hisoblaymiz.

(3)

Scientific Journal Impact Factor (SJIF 2022—5.016) Passport: http://sjifactor.com/passport.php?id—22257

a (t ,f) =

ae-ipix + ceipix - ipx i(f - p) „-iß+2P eipix+caeß-iaepix ^

P2 e-mx + Ce^pi x P e-ipix +cemx

2p(f- p ) i(f- p) £ ia - 2iP*taeiß-iae -w + Ceipix e-ipix + caeipi x lvx cpx

P e-ipix + ceipi x e-px + ceipix

P

2p(f- p) (e~ipx + cepx)2

P

i(f p) e~ iß+2iplt ( e~ Px + cae '^-iae Px ) P

i(f p) eia-2 p2t (ae iß-iae~ipix + ce plX )

P

1

2p(f- p) (e-pix + ceipx )2 (f- p)2

[(ae~ipix + ceipi x )(e~ipix + caeipi x ) -

eia-lß{aelß-iae~ipix + ceip x ) x (e~ip x + caelß-iaeip x )] =

P'

iß-ia ipi x -

P

1

[ae 2 ipiX + c + caL + cz ae

2p(f- p) (e-px + ceipx )2

ia-iß / iß -ia -2 ipxx

2 _i_ r*2nr>2ipx

(f p) ia-iß r „ iß -ia -2 ipx . . „2 2iß-2ia . 2 „ iß-ia 2ipx\-i

--e ß (ae ß e pi + c + ca e ß + c aeß e pi )] -

P2

P

2

1

(f- p )2

(f- p )2

2p(f- p) e-pix + ce

px

[a(1 - (f p ) )e"2ipiX + c2a(1 - (f p) ) x

P

P

xe2ipix + (c + œ2 _ (f p)2 ^„ia-iß*- (f p)2 ¿ß-ia2

)eia-ißc-^ P' eip-iaca2]; P P

Quyidagilarni hisoblaymiz:

(1

(f- p )2 P2

eiß ia )ca2 + (1

(f- p )2 P2

eia-iß)c

= ca(1 - p) 2 )a + (1 - (f p)2 )a ) =

(fi + p 1)2

(ff- p1)2

= ca((f1 + p)2 a + p)2 a")

(fi + A) (f- A)

(f- p -f1- pi)(f- p + f1 + pi) ^ia-iß f- p-f1+ A

(fl + pi )2

■e

f-p-fi-px

+

, (f- p-f1+ pi)(f- p + f1 -pi ^-ia+iß . f-p-fl -pi

" f-p-f1 + pi

(fl- pi)2

(f- p-fi + pi)(f- p + fi + pi) fi + pi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(fl + p l)2

f1 -pi

1

Scientific Journal Impact Factor (SJIF 2022—5.016) Passport: http://sjifactor.com/passport.php?id—22257

(£-p + £-pi)(£-ppi) Pi _

(Si - Pi )2

S + pi

= ,(S - p)2 + (Si + A)(S - p ) - P2 - (S - p)(Si - A) +

P2

(S - p)2 + (S - p )(S - pi) - p2 - (S - p)(Si + pi)

P2 ) "

ca{(£ - p)2 + (S - p )2 p -p2 + (S - p)2 + (S - p )(-2 pi) -p2}

P2

2ca(i - (S -p) )

Bunga asosan,

a(t ,S) =

Pz

i

2p(S - p) (e~ipx + ceipx )2

P

a ■ (i - (S 2p) )(e"2lpx + 2ca + e2lpx ) =

P

S - p - Si - pi

S + p-Si + pi'

Demak, a(t,S) funksiyaning noli S = Si va px = iyjP2 -

b =

ae"ipix + cej^ lpix

P2 e~ipix + ce

2 p (S - p ) i(S~ p) „a -2P aeiß~

e P e~

P2 e-2ipx i(S- p) e

2p(S - p) e -ipix + ceipx

P

-ipx

e- + ca eipix e~'pix + celpix

-ipx

xe~'pix + ce'pix c_px i(S- p)jp-2é-x + câe'px &_ipx

■px + ceipix

ae-ipix + ceipx

P

e-x + ceipx

ae-x + caepx

U-p)

P

eip-2 2 (e- +caeipx )

-2 ipx

b

2p(S - p) e~ipx + ce P2 i (S- p )

ip x

ae~ipx + ceipx

ae~ipx + caeipx

aelß~iae~ip x + ceip x eiß~iae~ip x + caeip x )

i(s- p)

-iß-ia

P

>iß-ia[aelß~ia e~2ipx + caa + ceiß~ia + c2 ae

2p(S - p) P

-caaeiß-ia- c - c2ae2ipx ] = 0 Endi normallovchi o'zgarmasni topamiz. S = Si da

iß-ia | ^2—^2ipx Qßiß-aç-2px

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

c

% =-:-:-,

^ e~>Pix + ceiPiX % = ^ P) C

p e~ipx + ceipix

va

... _ 1 pi) P~iß+2ip2t W\----e

p e~ipix + ceip x

1

¥2 - —

e ipx + ceipx

bo'lgani uchun p — c¥ tenglikdan

Ç_— c -pi) . e-rß+2P . 1 )

1 ^ _ —ipx . ipx ' '

e _ ipix + ceipix p e~ipix + ceipx

. P

A

c — c-^- e~lß+2pt

yoki

c — + pi) eiß_ 2P

p

kelib chiqadi. f = f,P = P a(f,t) funksiyaning noli bo'lgani uchun f = f soni xos qiymat bo'ladi. Demak, (1) tenglamalar sistemasining sochilish nazariyasining berilganlari

a(f) = f + P~ f ~ P , b(f) = 0, f +p-f+p

q = ci(f±P) , f = f p

berilganlardan iborat bo'ladi ekan. REFERENCES

[1] V. Zakharov and A. Shabat, "Exact theory of two-dimensional self- focusing and one-dimensional self-modulation of waves in nonlinear media," JETP, vol. 61, no. 1, p. 118-134, 1971.

[2] Л. Тахтаджян и Л. Фаддеев, Гамильтонов подход в теории солитонов, Москва: Наука, 1986, p. 528.

[3] А. Хасанов, «Об обратной задачи теории рассеяния для системы двух несамосопряженных дифференциальных уравнений первого порядка,» ДАН, т. 277, № 3, pp. 559-562, 1984.

1

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

[4] M. Ablowitz and J. Ladik, " Nonlinear differential-difference equations and Fourier analysis," J. Math. Phys., no. 17, pp. 1011-1018, 1974.

[5] M. Ablowitz and J. Ladik, "Nonlinear differential-difference equations," J. Math. Phys., no. 16, pp. 598-603, 1975.

[6] M. Ablowitz and J. Ladik, "A nonlinear difference scheme and inverse scattering," Stud. Appl. Math., no. 55, p. 213-229, 1976.

[7] F. Demontis and C. van der Mee, "Exact solutions to the integrable discrete nonlinear Schrodinger equation under a quasiscalarity condition," Commun. Appl. Ind. Math., vol. 2, no. 2, p. 21, 2011.

[8] F. Demontis and C. van der Mee, "Closed form solutions to the integrable discrete nonlinear Schrodinger equation," J. Nonlin. Math. Phys, vol. 2, no. 19, p. 22, 2012.

[9] F. Demontis h C. van der Mee, «An alternative approach to integrable discrete nonlinear Schrodinger equations,» Acta Appl. Math, № 131, p. 29-47, 2014.

i Надоели баннеры? Вы всегда можете отключить рекламу.