Научная статья на тему 'Биологические функции комплемента'

Биологические функции комплемента Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
2786
353
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОМПЛЕМЕНТ / БАКТЕРИОЛИЗ / ОПСОНИЗАЦИЯ / ИНФЕКЦИОННЫЙ ПРОЦЕСС / COMPLEMENT / BAKTERIOLYSIS / OPSONISATION / INFECTIOUS PROCESS

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Одинцов Ю. Н., Перельмутер В. М.

Комплемент является одним из важнейших факторов резистентности организма. Система комплемента может принимать участие в различных эффекторных механизмах, прежде всего в лизисе (комплементарный киллинг) и опсонизации микроорганизмов. В переключении литической функции комплемента на опсоническую могут принимать участие макрофаги. Функции комплемента при бактериозах зависят от особенностей патогенеза инфекционного заболевания.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Biological functions of complement

One of the true basic resistance factors is complement. Main functions of it consist in bacterial lysis, bacterial opsonisation for phagocytosis. Alteration of lytic function for opsonic function depends upon macrophages. Complement functions at bacteriosis depend on phathogenesis features in infectious disease.

Текст научной работы на тему «Биологические функции комплемента»

Биологические функции комплемента

Одинцов Ю.Н., Перельмутер В.М. Biological functions of complement

Odintsov Yu.N., Perelmuter V.M.

Сибирский государственный медицинский университет, г. Томск

© Одинцов Ю.Н., Перельмутер В.М.

Комплемент является одним из важнейших факторов резистентности организма. Система комплемента может принимать участие в различных эффекторных механизмах, прежде всего в лизисе (комплементарный киллинг) и опсонизации микроорганизмов. В переключении литической функции комплемента на опсоническую могут принимать участие макрофаги. Функции комплемента при бактериозах зависят от особенностей патогенеза инфекционного заболевания.

Ключевые слова: комплемент, бактериолиз, опсонизация, инфекционный процесс.

One of the true basic resistance factors is complement. Main functions of it consist in bacterial lysis, bacterial opsonisation for phagocytosis. Alteration of lytic function for opsonic function depends upon macrophages. Complement functions at bacteriosis depend on phathogenesis features in infectious disease.

Key words: complement, bakteriolysis, opsonisation, infectious process.

УДК 576:8.097.37

Организм человека имеет две основные линии защиты от возбудителей инфекционных заболеваний: неспецифическую (резистентность) и специфическую (иммунитет).

Факторы первой линии защиты (резистентности) характеризуются рядом общих признаков: 1) они сформированы задолго до встречи с возбудителем (внутриутробный период); 2) неспецифичны; 3) генетически детерминированы; 4) генотипически и фенотипически неоднородны (гетероген-ны) в популяции; 5) высокая резистентность к одному возбудителю может сочетаться с низкой к другому; 6) резистентность прежде всего зависит от функционального состояния макрофагов, которое контролируется генами, не связанными с HLA, и состояния системы комплемента (контролируемой НЬД).

Комплемент — многокомпонентная ферментная система плазмы, состав и функция которой в основном хорошо изучены, является одним из важнейших факторов резистентности организма. В 1960—1970-е гг. было особенно популярно определение титра комплемента как одного из показателей резистентности. И в настоящее время изучению функции комплемента посвящено множество исследований. Вместе с тем существуют

не только определенные трудности и противоречия при объяснении механизма активации комплемента, но до сих пор

остаются недостаточно изученными некоторые механизмы активации и функционирования комплемента. К таким дискуссионным вопросам относятся механизм действия ингибиторов активации комплемента in vivo, механизм переключения активации комплемента с литической на опсоническую функцию и понимание роли комплемента в саногенезе при различных инфекциях.

Известно 14 белков (компонентов) плазмы крови, составляющих систему комплемента [3—6]. Они синтезируются гепатоцитами, макрофагами и нейтрофилами [4, 21]. Большинство из них относятся к р-глобулинам. Согласно номенклатуре, принятой ВОЗ, система комплемента обозначается символом С, а ее индивидуальные компоненты символами Cl, C2, С3, С4, С5, С6, С7, С8, С9 или прописными буквами (D, B, P). Часть компонентов (Cl, C2, С3, С4, С5, B) делится на составляющие их субкомпоненты — более тяжелые, обладающие ферментативной активностью, и менее тяжелые, не обладающие ферментативной активностью, но сохраняющие самостоятельную биологическую функцию. Активированные комплексы белков системы комплемента помечают чертой над комплексом (например, C4b2a3b — С5-конвертаза).

Помимо белков собственно комплемента (C1—C9) в осуществлении его биологической активности принимают

участие и другие белки, выполняющие регуляторные функции:

а) рецепторы мембран клеток макроорганизма к субкомпонентам комплемента: CR1(CD35), CR2(CD21), CR3(CD11b/CD18), CR4(CD11c/CD18), C1qR, C3a/C4aR, C5aR;

б) мембранные белки клеток макроорганизма: мембранный кофакторный белок (МКБ, или MCP — membrane-assoti-ated cofactor of proteolysis, CD46), фактор, ускоряющий диссоциацию (ФУД, или DAF — decay accelerating factor, CD55), протектин (CD59);

в) белки плазмы крови, осуществляющие позитивную или негативную регуляцию: 1) позитивная регуляция — фактор В, фактор D, пропердин (Р); 2) негативная регуляция — фактор I, фактор Н, белоксвязывающий C4b (C4 binding protein, C4bp), С1-ингибитор (C1-inh, серпин), S-белок (витро-нектин).

Таким образом, в функциях системы комплемента принимают участие более 30 компонентов. Каждый белковый компонент (субкомпонент) комплемента обладает определенными свойствами (табл. 1).

В норме компоненты комплемента находятся в плазме в неактивном состоянии. Они становятся активными в процессе многоступенчатых реакций активации. Активированные компоненты комплемента действуют в определенном порядке в виде каскада ферментативных реакций, а продукт предшествующей активации служит катализатором для включения в последующую реакцию нового субкомпонента или компонента комплемента.

Система комплемента может принимать участие в различных эффекторных механизмах:

1) лизис микроорганизмов (комплементарный киллинг);

2) опсонизация микроорганизмов;

3) расщепление иммунных комплексов и их клиренс;

4) активация и хемотаксическое привлечение лейкоцитов в очаг воспаления;

5) усиление индукции специфических антител путем: а) усиления локализации антигена на поверхности В-лимфо-цитов и антигенпредставляющих клеток (АПК); б) снижения порога активации В-лимфоцитов.

Наиболее важными из функций комплемента являются лизис мембран патогенов и опсонизация микроорганизмов.

Таблица 1

Компоненты и субкомпоненты комплемента, принимающие участие в классическом и альтернативном путях активации комплемента

Компонент (субкомпонент) Молекулярная масса, кД Субкомпонент Концентрация в сыворотке крови, мкг/мл Функция

С1 1124 1 C1q 2 C1r 2 C1s — Ферментный комплекс

Clq 460 — 80 Связывание с длинной цепью ^ или 1дМ комплекса антиген — антитело

Clr 166 — 30—50 Протеаза, активирующая СЬ

Cls 166 — 30—50 Сериновая протеаза, активирующая С4 и С2

С2 110 2a, 2b 15—25 Формируют СЗ-конвертазу (С4Ь2а), а затем и С5-конвертазу (С4Ь2а3Ь) классического пути

СЗ 190 3a, 3b 1200

С4 200 4a, 4b 350—500

С5 191 5a, 5b 75 Формирование мембраноатакующего комплекса, образующего пору в мембране клетки-мишени

С6 120 — 60

С7 110 — 60

С8 160 — 60

С9 79 — 60

Фактор В 95 Ba, Bb 200 Формируют СЗ-конвертазу (СЗЬВЬР), а затем и С5-конвертазу (СЗЬВЬЗЬ) альтернативного пути

Фактор D 25 — 1

Пропердин(Р) 220 25 Стабилизатор СЗ-конвертазы альтернативного пути (СЗЬВЬ), блокирует диссоциацию СЗЬВЬ под действием фактора Н

Комплементарный лизис микроорганизмов

Лизис микроорганизмов происходит в результате образования мембраноатакующего комплекса (МАК), состоя-

щего из компонентов комплемента. В зависимости от того, каким образом произошло образование МАК, различают несколько путей активации комплемента.

Классический (иммунокомплексный) путь активации комплемента

Этот путь активации комплемента называется классическим вследствие того, что он был описан первым и долгое время оставался единственным из известных сегодня. В классическом пути активации комплемента пусковую роль выполняет комплекс антиген — антитело (иммунный комплекс (ИК)). Первым звеном активации комплемента является связывание С ^-субкомпонента С1-компонента с иммуноглобулином иммунного комплекса. В частности, в случае активации комплемента иммуноглобулинами класса G (1д31, ^2, IgG3, ^4) это осуществляется аминокислотными остатками в позициях 285, 288, 290, 292 тяжелой цепи ДО [23]. Активация этого участка происходит только после образования комплекса антиген — антитело (АГ—АТ). Способностью активировать комплемент по классическому пути обладают с убывающей интенсивностью 1дМ, ^3, ДО1 и ДО2.

Компонент комплемента С^ состоит из трех субъединиц (рис. 1), каждая из которых имеет два центра для связывания с 1д в комплексе АГ—АТ. Таким образом, полная молекула С^ располагает шестью такими центрами. При образовании комплекса АГ—1дМ молекула С^ связывается не менее чем с двумя вторыми доменами (СН2) одной и той же молекулы 1дМ, а при участии в образовании комплекса АГ— АТ иммуноглобулинов класса G — со вторыми доменами (СН2) не менее чем двух разных молекул ^ в комплексах АГ—^ [2]. Присоединившийся к АГ—АТ С^ приобретает свойства сериновой протеазы и инициирует активацию и встраивание в С^ двух молекул С1г. С1г, в свою очередь, инициирует активацию и встраивание в С^ еще двух других молекул — С^. Активированный С^ обладает активностью сериновой эстеразы.

Затем С^ комплекса С1 расщепляет С4 на больший фрагмент С4Ь и меньший С4а. С4Ь соединяется ковалент-ными связями с амино- и гидроксильными группами молекул клеточной мембраны (рис. 2). Фиксированный на поверхности мембраны (или комплекса АГ—АТ) С4Ь связывает С2, который становится доступным для ферментативного расщепления той же сериновой протеазой С^. В результате образуется мелкий фрагмент 2Ь и более крупный фрагмент С2а, который, соединяясь с прикрепленным к поверхности мембраны С4Ь, образует ферментный комплекс С4Ь2а, на-

зываемый СЗ-конвертазой классического пути активации комплемента.

Рис. 1. Компоненты ферментного комплекса С1 (1д2г2э) и его взаимодействие с комплексом антиген — антитело (АГ—^ или АГ—1дМ): J — цепь, объединяющая мономеры пентамера

-►СЗЬВ -»-СЗЬВЬР

Ва Б

I------------------

Петля усиления Рис. 2. Активация комплемента по классическому пути

Образовавшаяся С3-конвертаза взаимодействует с С3 и расщепляет его на меньший фрагмент СЗа и больший СЗЬ. Концентрация СЗ в плазме самая высокая из всех компонентов комплемента, а один ферментный комплекс С4Ь2а (СЗ-конвертаза) способен расщепить до 1 тыс. молекул СЗ. Это создает высокую концентрацию СЗЬ на поверхности мембраны (амплификация образования СЗЬ). Затем СЗЬ ковалентно связывается с С4Ь, находящимся в составе СЗ-конвертазы. Сформированный трехмолекулярный комплекс С4Ь2аЗЬ является С5-конвертазой. СЗЬ в составе С5-конвертазы ковалентно соединяется с поверхностью микроорганизмов (рис. 2).

Субстратом для С5-конвертазы является компонент С5 комплемента, расщепление которого заканчивается образованием меньшего по размерам С5а и большего С5Ь. Об-

разование С5Ь инициирует формирование мембраноатакую-щего комплекса. Оно протекает без участия ферментов путем последовательного присоединения к С5Ь компонентов С6, С7, С8 и С9 комплемента. С5Ь6 является гидрофильным, а С5Ь67 — гидрофобным комплексом, который встраивается в липидный бислой мембраны. Присоединение к С5Ь67 С8 еще более погружает образовавшийся комплекс С5Ь678 в мембрану. И, наконец, к С5Ь678 комплексу фиксируется 14 молекул С9. Сформировавшийся С5Ь6789 и является мембраноатакующим комплексом. Полимеризация молекул С9 в комплексе С5Ь6789 приводит к образованию неспадающейся поры в мембране. Через пору в клетку поступают вода и N8+, что приводит к лизису клетки (рис. З).

Растворенные соединения

Интенсивность образования МАК при классическом пути активации комплемента возрастает за счет петли усиления альтернативного пути активации комплемента. Петля усиления начинается с момента образования ковалентной связи СЗЬ с поверхностью мембраны. В образовании петли участвуют три дополнительных белка плазмы: В, D и Р (пропер-дин). Под влиянием фактора D (сериновой эстеразы) связанный с СЗЬ белок В расщепляется на меньший фрагмент Ва и больший ВЬ, который связывается с СЗЬ (см. рис. 2). Присоединение к комплексу СЗЬВЬ пропердина, выполняющего роль стабилизатора комплекса СЗЬ ВЬ , завершает образование СЗ-конвертазы альтернативного пути — СЗЬВЬР . СЗ-конвертаза альтернативного пути расщепляет молекулы СЗ, образуя дополнительные СЗЬ, что обеспечивает формирование все большего количества С5-конвертазы и в конечном итоге — большего количества МАК. МАК действу-

ет самостоятельно, а возможно, индуцирует апоптоз через каспазный путь [24].

Альтернативный (самопроизвольный) путь активации комплемента

Механизм активации комплемента по альтернативному пути обусловлен спонтанным гидролизом тиоэфирной связи в нативной молекуле СЗ. Этот процесс происходит в плазме постоянно и называется «холостой» активацией СЗ. В результате гидролиза СЗ образуется его активированная форма, обозначаемая СЗ1 В дальнейшем С3i связывает фактор В. Фактор D расщепляет фактор В в составе комплекса С3iВ на малый фрагмент Ва и большой ВЬ. Образовавшийся комплекс С3iВb является жидкофазной С3-конвертазой альтернативного пути активации комплемента. Далее жидкофазная конвертаза С3iВb расщепляет СЗ на СЗа и СЗЬ. Если СЗЬ остается свободным, он разрушается, подвергаясь гидролизу водой. Если C3b ковалентно связывается с поверхностью бактериальной мембраны (мембраны любых микроорганизмов), то он не подвергается протеолизу. Более того, он инициирует образование петли усиления альтернативного пути. К фиксированному СЗЬ присоединяется фактор В (СЗЬ имеет большую аффинность к фактору В, чем к фактору Н), образуется комплекс СЗЬВ, от которого фактор D

отщепляет мелкий фрагмент Ва. После присоединения пропердина, являющегося стабилизатором комплекса СЗЬВЬ, образуется комплекс СЗЬВЬР, представляющий собой связанную с поверхностью мембраны С3-конвер-тазу альтернативного пути. Связанная СЗ-конвертаза инициирует прикрепление в том же месте дополнительных молекул СЗЬ (амплификация СЗЬ), что приводит к быстрому локальному накоплению СЗЬ [22, 25, 26]. Далее связанная СЗ-конвертаза расщепляет СЗ на СЗа и СЗЬ. Присоединение СЗЬ к СЗ-конвертазе образует комплекс СЗЬВЬЗЬ ( СЗЬ2ВЬ ), который является С5-конвертазой альтернативного пути. Затем происходит расщепление компонента С5 и образование МАК, как и при классическом пути активации комплемента.

Спонтанный гидролиз

I_________________________I

Петля усиления

Рис. 4. Альтернативный (самопроизвольный) путь активации комплемента

« Холостая » активация

С

Микроорганизм

СЗа \

СЗ -

-1-

сзь+ в

► сзьв -

У*

СЗЬВЬР

►СЗ -

I

СЗа

3

С5Ь6789

СЗЪБЬЗЪ

I

►С5

I

С5а

Лектиновый путь активации комплемента

Липополисахариды (ЛПС) грамотрицательных бактерий, в составе которых могут содержаться остатки манно-зы, фукозы, глюкозамина, связываются лектинами (сывороточные протеины, прочно связывающие углеводы) и индуцируют лектиновый путь активации комплемента. Например, триггером лектинового пути активации комплемента может быть маннансвязывающий лектин (МСЛ), как и С^, относящийся к семейству кальцийзависимых лекти-нов

[29, З1, З2]. Он соединяется с маннозой, находящейся в составе клеточной стенки бактерий, и приобретает способность взаимодействовать с двумя маннансвязываю-щими лектинассоциированными сериновыми протеиназами — МАСП1 и МАСП2, идентичными соответственно С1г и С1з.

Взаимодействие [МСЛ—МАСП1—МАСП2] аналогично образованию комплекса [С^—С1г—С^]. В дальнейшем активация комплемента происходит так же, как и по классическому пути (рис. 5).

4а 2Ь СЗа СЗЬ С5а

Петля усиления

Рис. 5. Лектиновый путь активации комплемента (М — манноза в составе поверхностных структур клетки, например, ЛПС)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Белки семейства пентраксинов, обладающие свойствами лектинов, таких как амилоидный протеин, С-реактивный протеин, также способны активировать комплемент по лектиновому пути, взаимодействуя с соответствующими субстратами клеточных стенок бактерий. Так, С-реактивный протеин активирует форсфорилхолин клеточной стенки грамположительных бактерий. И затем активированный форсфорилхолин запускает классический путь сборки компонентов комплемента.

СЗЬ, который образуется из СЗ, под влиянием любой СЗ-конвертазы связывается с мембраной мишени и становится местом дополнительного образования СЗЬ. Эта ступень каскада получила название «петля усиления». Каким бы ни был путь активации комплемента, если его не блокирует один из регуляторных факторов, он заканчивается образованием мембраноатакующего комплекса, образующего не-спадающуюся пору в мембране бактерии, что приводит к ее гибели.

Альтернативный и лектиновый пути активации комплемента по времени запуска при инфекционном заболевании являются ранними. Они могут активироваться уже в первые часы после попадания патогена во внутреннюю среду макроорганизма. Классический путь активации комплемента является поздним: он начинает «работать» лишь при появлении антител (1дМ,

Регуляторные белки активации комплемента

Процесс активации комплемента регулируется мембранными (табл. 2) [10, 13, 15, 18] и плазменными (табл. 3) белками [19].

Пути активации комплемента и образование МАК могут быть блокированы различными факторами:

1) классический, лектиновый:

— действием С1-ингибитора, связывающего и инактиви-рующего С1г и С^;

— подавлением образования СЗ-конвертазы классического и лектинового пути (С4Ь2а) под действием факторов I, Н, С4-Ьр, ФУД, МКБ и С^1;

— подавлением взаимодействия компонентов комплемента с поверхностью клеток макроорганизма действием ФУД ^55), CR1(CD35), МКБ^46);

2) альтернативный:

— диссоциацией комплексов C3iBb и СЗЬВЬ действием фактора Н;

— расщеплением СЗЬ фактором I при участии одного из трех кофакторов: фактора Н (плазмы), CR1 или МКБ (связанных на поверхности клеток макроорганизма);

— подавлением образования СЗ-конвертазы альтернативного пути на поверхности клеток макроорганизма действием ФУД, CR1 или МКБ.

Таблица 2

Мембранные регуляторные белки

Клеточные (расположены на мембранах клеток макроорганизма)

Фактор Экспрессия на клетках Функция Результат

CR1 ^35) В-лимфоциты; моноциты (макрофаги); гранулоциты; фолликулярные дендритные клетки; НК-клетки Подавляет связывание С2 с С4Ь; вызывает и ускоряет диссоциацию С4Ь2а на С4Ь и 2а; кофактор катаболизма С4Ь под действием фактора I; кофактор катаболизма СЗЬ под действием фактора I; ускоряет диссоциацию СЗЬВЬ с освобождением СЗЬ Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма

МКБ ^46) Т-лимфоциты; В-лимфоциты; моноциты (макрофаги); гранулоциты; дендритные клетки; НК-клетки Подавляет образование конвертаз: С4Ь2а и СЗЬВЬ; кофактор катаболизма С4Ь под действием фактора I; кофактор катаболизма СЗЬ под действием фактора I То же

ФУД ^55) Т-лимфоциты; В-лимфоциты; моноциты (макрофаги); гранулоциты; дендритные клетки; НК-клетки; тромбоциты Подавляет образование конвертазы С4Ь2а классического пути; подавляет образование конвертазы СЗЬВЬ альтернативного пути; подавляет связывание С2 с С4Ь; ускоряет диссоциацию С4Ь2а на С4Ь и 2а; ускоряет диссоциацию СЗЬВЬ с освобождением СЗЬ

Протектин ^59) Все клетки макро- Связывается с 5Ь678 и подавляет его погружение в мембрану Предотвращает лизис

организма | и развертывание С9 | собственных клеток

Таблица З

Плазменные регуляторные белки

Фактор Функция Молекулярная масса и концентрация в сыворотке Реализация эффекта на соматических клетках и (или) на патогенах

Фактор Н (легко связывается с сиаловыми кислотами поверхности клеток макроорганизма) Подавляет образование конвертазы C4b2a классического пути; подавляет образование конвертазы C3bBb альтернативного пути; вызывает диссоциацию жидкофазной конвертазы C3iBb на C3i и Bb; кофактор катаболизма C3i и Bb; вызывает диссоциацию конвертазы C3bBb на C3b и Bb 150 Кда, 500 мкг/мл Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма и микроорганизмах

Фактор I (протеаза плазмы) Подавляет образование конвертазы C4b2a классического пути 90 Кда, 35 мкг/мл Подавляет активацию комплемента по классическому пути на мембранах клеток собственного организма и микроорганизмах

Вместе с одним из кофакторов (МКБ, CR1, C4bp) расщепляет 4b на C4c и C4d; вместе с одним из кофакторов (МКБ, CR1, H) расщепляет C3b; фактор катаболизма C3b и C3i Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма

C4bp (C4 binding protein, белоксвязыва-ющий C4b) Подавляет связывание C2 с C4b; подавляет образование конвертазы C4b2a классического пути; вызывает диссоциацию C4b2a на C4b и 2a; кофактор катаболизма C4b под действием фактора I 560 Кда, 250 мкг/мл Подавляет активацию комплемента по классическому и лектиновому пути на мембранах клеток собственного организма и микроорганизмах

С1-ингибитор (C 1-inh, серпин) Связывает и ингибирует C1r и C1 s (сериновых протеаз ингибитор); отщепляет C1r и C1 s от C1q (C1q остается связанным с Fc-фрагментом Ig); ограничивает время контакта C1 s с C4 и C2; ограничивает спонтанную активацию C1 в плазме крови 110 Кда, 180 мкг/мл Подавляет активацию комплемента по классическому и лектиновому пути на мембранах клеток собственного организма и микрорганизмах

S-белок (витронектин) Образует комплекс 5b67-S, инактивирует его способность внедриться в липидный слой мембраны 85 Кда, 500 мкг/мл Блокирует образование МАК

Подавление образования МАК Напротив, регуляторные белки плазменного происхо-

ждения ингибируют активацию комплемента не только на поверхности соматических клеток, но и на мембранах патогенов.

Опсонизация микроорганизмов компонентами комплемента

Комплементарный лизис микроорганизмов является ранней реакцией макроорганизма на попадание патогенов в его внутреннюю среду [28]. Образующиеся при активации комплемента по альтернативному или лектиновому пути субкомпоненты С2Ь, СЗа, С4а, С5а, Ва привлекают в очаг воспаления клетки и активируют их эффекторные функции.

Из компонентов комплемента опсонизирующими свойствами обладают в основном ЗЬ и 4Ь. Для их образования необходимы два условия: первое — активация комплемента одним из описанных выше путей, второе — блокирование активационного процесса, благодаря которому невозможно образование МАК и лизис патогена. В этом и состоит

на поверхности патогенов.

1. Гидрофобный комплекс С5Ь67, который начинает встраивается в липидный бислой мембраны, может быть инактивирован S-белком (витронектином). Образовавшийся комплекс 5b67S внедриться в липидный слой мембраны не может.

2. Присоединение компонента 8 к комплексу С5Ь67 в жидкой фазе может быть блокировано липопротеидами низкой плотности (ЛПНП).

3. Погружение в мембрану С5Ь678 и присоединение С9 предотвращает CD59 (протектин), белок мембраны клеток макроорганизма.

4. Удаление фрагментов мембраны клеток макроорганизма со встроенным МАК путем эндоцитоза либо экзоцитоза.

Таким образом, регуляторные белки клеточного происхождения самостоятельно ингибируют активацию комплемента с образованием МАК только на поверхности соматических клеток и не эффективны в ингибиции литической

К мембранному СЗЬ и его мембранному субкомпоненту деградации СЗЫ на клетках макроорганизма имеются соответствующие рецепторы (табл. 4). СЗЬ и инактивированный СЗЬ (СЗЫ) являются лигандами для рецепторов CR1 (СЗЬ, СЗЫ), CR3 (СЗЫ), CR4 (СЗЫ), расположенных на нейтрофи-лах [4, 5, 6], моноцитах (макрофагах) [4, 5, 6], эндотелии пуповины [22]. СЗЬ и СЗЫ выполняют роль активных опсони-нов [4—6, 30].

Предположительно, совместное действие факторов I и Н может переключать образование литического комплекса (МАК, комплементарный киллинг) на другой механизм уничтожения патогена — фагоцитарный киллинг (рис. 6). Растворимые ингибиторы активации комплемента (I и Н), продуцирующиеся макрофагами, позже появляющимися в очаге воспаления, действуют в микроокружении фагоцита, препятствуя образованию конвертазы СЗ на поверхности бактерий и обеспечивая, таким образом, наличие «свободных» СЗЬ. Рецептор макрофага к СЗЬ, связывая лиганд (СЗЬ), фиксирует бактерию на поверхности макрофага. Ее фагоцитоз осуществляется при совместном участии двух лиганд-рецеп-торных комплексов: рецептор к СЗЬ + СЗЬ и FcyR + ^ [14]. Другая пара — рецептор к СЗЬ + СЗЫ инициирует фагоцитоз и без участия антител [8].

Биологический смысл переключения активации комплемента с литической на опсоническую функцию, вероятно, заключается в том, что все бактерии, которые не лизировались до встречи с фагоцитом, должны быть фагоцитированы с помощью СЗЬ-опсонина. Такой механизм переключения активации комплемента на опсонический необходим не только для фагоцитоза жизнеспособных патогенов в ранние сроки инфекции, но и для утилизации фагоцитами «осколков» микроорганизмов.

Таблица 4

Рецепторы к субкомпонентам комплемента

Рецептор (complement receptor, CR) Лиганды Экспрессия на клетках Эффект связывания

CR1 (CD35) C3bi > C3b, C4b Нейтрофилы, моноциты (макрофаги), В-лимфоциты, фолликулярные дендритные клетки, эритроциты, эпителий почечных клубочков Опсонизированный фагоцитоз, активация В-лимфоцитов, транспорт иммунных комплексов на эритроцитах

CR3 (CD11b/CD18) C3bi Нейтрофилы, моноциты (макрофаги), НК-клетки, фолликулярные дендритные клетки Опсонизированный фагоцитоз

CR4 (р 150-95) (CD11c/CD18) C3bi Нейтрофилы Опсонизированный фагоцитоз

CR2 (CD21), компонент коре-цепторного комплекса В-лим-фоцитов (BCR + CD19, CR2, CD81) C3bi, C3dg В-клетки, фолликулярные дендритные клетки Усиливает активационные реакции BCR, индуцирует нефагоцитируемое связывание комплекса АГ—АТ на фолликулярных дендритных клетках

переключение литической программы активации комплемента на опсоническую.

В реальных условиях инфекционного процесса переключение на опсоническую программу активации комплемента, обеспечивающую фагоцитоз патогена и клиренс иммунных комплексов [17], может происходить благодаря эффектам регуляторных белков. Сборка на мембране компонентов комплемента может завершиться образованием мембраноатакующего комплекса, а может быть прервана на уровне образования 4Ь и еще более активно на уровне образования ЗЬ факторами I и Н [9].

Фактор I является основным ферментом, вызывающим деградацию СЗЬ. Фактор Н в этом процессе выполняет роль кофактора. Действуя совместно, они обладают способностью инактивировать как жидкофазный, так и мембранный СЗЬ (свободный или в составе любой конвертазы), отщепляя от него фрагмент C3f (инактивированный СЗЬ обозначается как СЗЫ). Затем они продолжают расщепление СЗЫ следующим образом:

ф ^ субкомпонент субкомпонент

1§М

или 186

С

I

С2

4Ь 1

СЗа

СЗЬ

сз зь зь зь зь

Блокада дальнейшей активации комплемента

Бактерия

3

Переключение на процесс фагоцитоза

Фактор I

+

Фактор Н (кофактор)

Макрофаг

Поглощение бактерии

У Рецептор к Рс-фрагменту X ,1 СЗЬ компонент комплемента

1| |1 V Рецептор к СЗЬ или СЗЫ компоненту комплемента

Рис. 6. Переключение активации комплемента на процесс фагоцитоза

Является целесообразным рассмотреть вопрос о возможной роли комплемента в патогенезе различных групп бактериозов, разделенных ранее [1] в зависимости от механизма саногенеза.

Токсигенные бактериозы (дифтерия, газовая гангрена, ботулизм, столбняк и др.). Обычная локализация возбудителей — входные ворота инфекции. Основной эффектор патогенеза — токсин (Т-зависимый антиген, антиген первого типа). Т-зависимые поверхностные антигены этих бактерий в индукции иммунного ответа принимают незначительное участие. Основной эффектор саногенеза — антитоксин Тип иммунного ответа — Т1л2. Выздоровление наступает вследствие образования и последующей элиминации иммунных комплексов, а также фагоцитарного киллинга бактерий в очаге воспаления. Роль комплемента при этих бактериозах, вероятно, ограничена участием в элиминации иммунных комплексов токсин — антитоксин. В нейтрализации токсина (т.е. в саногенезе токсигенных инфекций) комплемент существенной роли не играет.

Нетоксигенные негранулематозные бактериозы

1. Возбудители содержат поверхностные Т-неза-висимые антигены (Т'1-антигены, антигены второго типа):

— бактерии содержат классический ЛПС (Тьантигены энтеропатогенных кишечных палочек, сальмонелл, шигелл и др.). Обычная локализация возбудителей — от входных ворот в слизистых кишечного тракта до региональных лимфатических узлов. Основной эффектор патогенеза — эндотоксин и живые бактерии. Тип иммунного ответа — Т1л2. Иммунный

ответ на ЛПС характеризуется продукцией антител 1дМ-класса. Саногенез наступает прежде всего вследствие уничтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционного процесса за счет лектинового и альтернативного пути активации комплемента. В иммунную фазу инфекционного процесса — за счет иммунного лизиса с участием 1дМ и комплемента по классическому пути активации. Фагоцитоз не имеет существенного значения в саногенезе при бактериозах этой группы. Активация системы комплемента при этих заболеваниях может способствовать саногенезу [7];

— бактерии содержат поверхностные (капсульные) 7!-антигены (пневмококки, гемофильные бактерии и др.). Обычная локализация возбудителей — от входных ворот в слизистых дыхательного тракта до региональных лимфатических узлов, нередко проникают в кровь. Основной эффектор патогенеза — живые бактерии. Тип иммунного ответа — Т1л2. В иммунном ответе на поверхностные антигены происходит образование антител 1дМ-класса. Саногенез осуществляется прежде всего вследствие уничтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционного процесса за счет лектинового и альтернативного пути активации комплемента. В иммунную фазу инфекционного процесса — за счет иммунного лизиса с участием 1дМ и комплемента по классическому пути активации. В случае проникновения бактерий этой группы в кровь основную роль в очищении макроорганизма от возбудителей играет селезенка — основное место фагоцитоза слабоопсонизирован-ных (или неопсонизированных) бактерий — и способность

!дМ «нацеливать» сенсибилизированные им бактерии на фагоцитоз купферовыми клетками с последующим переносом еще не дезинтегрированных до конца фрагментов бактерий в желчные капилляры. Соли желчных кислот расщепляют фрагменты бактерий, которые выводятся в кишечник. Активация системы комплемента при этой группе заболеваний также может способствовать саногенезу [27].

2. Возбудители содержат поверхностные Т-зависи-мые антигены (Т-антигены, антигены первого типа).

Локализация возбудителей (стафилококки, стрептококки и др.) — входные ворота (кожа, слизистые), региональные лимфатические узлы, системное поражение (органы). Основные эффекторы патогенеза — живые бактерии и, в меньшей степени, их токсины. В иммунном ответе четко прослеживается смена синтеза !дМ на ДО. Тип иммунного ответа при адекватном течении инфекционного заболевания (у пациентов без признаков иммунодефицита) — Т1г2. Саногенез обусловлен иммунным фагоцитозом, иммунным лизисом и антитоксинами. При этих инфекциях в преиммунную фазу саногенез осуществляется за счет альтернативного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фагоцитозом. В иммунную фазу инфекционного процесса саногенез связан с комплементарным кил-лингом при классическом пути активации комплемента с участием !дМ и ДО, а также с фагоцитозом опсонизирован-ных продуктами активации комплемента и ДО бактерий [12, 16].

Гранулематозные бактериозы

1. Возбудители острых неэпителиоидноклеточ-ных гранулематозных бактериозов (листерии, сальмонеллы брюшного тифа, паратифов А, В и др.).

Возбудители содержат поверхностные Т-зависимые антигены. Эффекторами патогенеза являются живые бактерии. Фагоцитоз незавершенный. Тип иммунного ответа — Т1г2 и ТМ. Появление !дМ сопровождается образованием гранулем [2]. Смена !дМ на ДО ведет к обратному развитию гранулем. Саногенез осуществляется за счет альтернативного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фагоцитозом. В иммунную фазу инфекционного процесса сано-генез связан с комплементарным киллингом при классическом пути активации комплемента с участием !дМ и ДО, а также с фагоцитозом опсонизированных продуктами активации комплемента и ДО бактерий.

2. Возбудители хронических эпителиоиднокле-точных гранулематозных бактериозов (микобактерии туберкулеза, лепры; бруцеллы и др.).

Возбудители содержат поверхностные Т-зависимые антигены. Эффекторами патогенеза являются живые бактерии. Фагоцитоз незавершенный. Тип иммунного ответа — Th2 и Th1. Появление IgM, по-видимому, также может являться ведущим фактором образования гранулем. Действия цитокинов Thl-набора недостаточно для завершенности фагоцитоза, что приводит к появлению в гранулеме эпителио-идных клеток. Ни один из вариантов активации комплемента в саногенезе не играет существенной роли [11].

Заключение

Комплемент (система комплемента) является одним из первых гуморальных факторов, с которым сталкивается патоген при его попадании во внутреннюю среду макроорганизма. Механизмы активации компонентов комплемента позволяют использовать его как для лизиса патогенов, так и для усиления фагоцитоза. Не при всех бактериальных инфекционных заболеваниях содержание и уровень комплемента в крови можно использовать как прогностический тест.

Литература

1. Одинцов Ю.Н., Перельмутер В.М., Климентьева Т.К. Тафтсин: роль в развитии негранулематозных и гранулематозных бактериозов // Бюл. сиб. медицины. 2002. Т. 1. № 3. С. 98—102.

2. Перельмутер В.М., Одинцов Ю.Н. Основная функция иммуноглобулинов класса M (IgM) — регуляция проницаемости гема-тотканевого барьера для бактерий и их антигенов // Бюл. сиб. медицины. 2005. Т. 4. № 3. С. 38—42.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Ройт А. Основы иммунологии. Пер. с англ. М.: Мир, 1991. 328 с.

4. Ройт А, Бростофф Дж, Мейл Д. Иммунология. Пер. с англ. М.: Мир, 2000. 581 с.

5. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. М.: Медицина, 2000. 432 с.

6.Ярилин АА Основы иммунологии. М.: Медицина, 1999. 607 с.

7. Alban S., Classen B., Brunner G., Blaschek W. Differentiation between the complement modulating effects of an arabinogalactan-protein from Echinacea purpurea and heparin // Planta Med. 2002. V. 68 (12). P. 1118—1124.

8. Ambrosio A.R., De Messias-Reason I.J. Leishmania (Viannia) braziliensis: interaction of mannose-binding lectin with surface gly-coconjugates and complement activation. An antibody-independent defence mechanism // Parasite Immunol. 2005. V. 27. P. 333—340.

9. Andersson J., Larsson R, RichterR. et al. Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation // Biomaterials. 2001. V. 22. P. 2435—2443.

10. Bohana-Kashtan O., Ziporen L, Donin N. et al. Cell signals transduced by complement // Mol. Immunol. 2004. V. 41. P. 583—597.

11. Bohlson S.S., Strasser J.A., Bower J.J., Schorey J.S. Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3 // Infect. Immunol. 2001. V. 69. P. 7729— 7735.

12. Brown J.S., Hussell T, Gilliland S.M. et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 16969—16974.

13. Caragine T.A., Okada N., Frey A.B., Tomlinson S. A tumor-expressed inhibitor of the early but not late complement lytic pathway enhances tumor growth in a rat model of human breast cancer // Cancer Res. 2002. V. 62. P. 1110—1115.

14. Celik I., Stover C, Botto M. et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis // Infect. Immun. 2001. V. 69. P. 7304—7309.

15. Donin N, Jurianz K., Ziporen L. et al. Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid // Clin. Exp. Immunol. 2003. V. 131. P. 254—263.

16. Fernie-King B.A., Seilly D.J., Willers Ch. et al. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of c567 onto cell membranes // Immunology. 2001. V. 103. Issue 3. P. 390—408.

17. Frumeaux-Bacchi V., Dragon-Durey M.A., Blouin J. et al. Investigation of the complement system in clinical practice // Ann. Med. Interne (Paris). 2003. V. 154. P. 529—540.

18. Imai M., Ohta R., Okada N, Tomlinson S. Inhibition of a complement regulator in vivo enhances antibody therapy in a model of mammary adenocarcinoma // Int. J. Cancer. 2004. V. 110. P. 875— 881.

19. Jiang H, WagnerE, Zhang H, Frank M.M. Complement 1 inhibitor is a regulator of the alternative complement pathway // J. Exp. Med.

2001. V. 194. № 11. P. 1609—1616.

20. Langeggen H, Berge K.E., Johnson E, Hetland G. Human umbilical vein endothelial cells express complement receptor 1 (CD35) and complement receptor 4 (CD11c/CD18) in vitro // Inflammation.

2002. V. 26. № 3. P. 103 — 110.

21. Laufer J., Katz Y, Passwell J.H. Extrahepatic synthesis of complement proteins in inflammation // Mol. Immunol. 2001. V. 38. P. 221 —229.

22. Leslie R.G.Q., Nielsen C.H. The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes // Immunology. 2004. V. 111. Issue 1. P. 86-98.

23. Lukas T.J., MunozH., Erickson B.W. Inhibition of C1-mediated immune hemolysis by monomeric and dimeric peptides from the second constant domain of human immunoglobulin G // J. Immunology. 1981. V. 127. № 6. P. 2555-2560.

24. Nauta A.J., Daha M.R., Tijsma O. et al. The membrane attack complex of complement induces caspase activation and apoptosis // Europ. J. of Immun. 2002. V. 32. Issue 3. P. 783—792.

25. Nielsen C.H., Marquait H.V., Prodinger W.M., Leslie R.G. CR2-medi-ated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes // Immunol. 2001. V. 104. P. 418—422.

26. Nielsen C.H., Pedersen M.L., Marquart H.V. et al. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells // Eur. J. Immunol. 2002. V. 32. P. 1359—1367.

27. Ren B., McCrory M.A., Pass C. et al. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection // J. Immunol. 2004. V. 173. P. 7506—7512.

28. Roos A., Ramwadhdoebe T.H., Nauta A.J. et al. Therapeutic inhibition of the early phase of complement activation // Immunobiology. 2002. V. 205. P. 595—609.

29. Roos A., Bouwman L.H., Munoz J. et al. Functional characterization of the lectin pathway of complement in human serum // Mol. Immunol. 2003. V. 39. P. 655—668.

30. Song H, He C., Knaak C. et al. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation // J. Clin. Invest. 2003. V. 111. P. 1875—1885.

31. Thiel S, Petersen S.V., Vorup-Jensen T. et al. Interaction of C1q and mannan-binding lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19 // J. Immunol. 2000. V. 165. P. 878—887.

32. Windbichler M., Echtenacher B., Hehlgans T. et al. Involvement of the lectin pathway of complement activation in antimicrobial immune defense during experimental septic peritonitis // Infection and Immunity. 2004. V. 72. № 9. P. 5247—5252.

Поступила в редакцию 01.09.2006 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.