MEXANIKA
UDK. 621.9.02
ANALYSIS OF FORCES IN THE CUTTING ZONE OF MILLING CUTTERS
Fayzimatov Shukhrat Numanovich Fergana polytechnic insitute, DSc, sh.fayzimatov@ferpi.uz
YakupovArtur Mansurovich Tashkent State Technical University named after Islam Karimov,PhD, Artur.yakupov1989@mail. ru
Gafurov Akmaljon Mavlonjonovich Fergana polytechnic insitute, PhD, a. gafurov@ferpi.uz.
Annotation. This article provides information on methods for determining the geometric parameters of the surface when cutting with stamps on shaped surfaces, in particular on the structure of the cutting zone of shaped surfaces, the penetration of the cutter into the cutting zone and control conditions in the cutting zone. Determining errors that occur during the cutting of surfaces of parts in mechanical engineering remains the most important task. Before cutting the surfaces of the workpieces, it is necessary to study the working surfaces of the dies.
Annotatsiya. Ushbu maqolada shakldor yuzalarda shtamp qoliplarini kesishda yuzaning geometrik parametrlarini aniqlash usullari, xususan, shakldor yuzalarni kesish zonasining tuzilishi, keskichning kesish zonasiga kirib borishi va kesish zonasida nazorat qilish shartlari haqida ma'lumot berilgan. Mashinasozlikda detallarning yuzalarni kesish jarayonida yuzaga keladigan xatolarni aniqlash eng muhim vazifa bo'lib qolmoqda. Kesib ishlanadigan yuzalarni kesishdan avval, shtamplash qoliplarining ishchi yuzalarini o'rganish kerak bo'ladi.
Аннотация. В данной статье приведены сведения о методах определения геометрических параметров поверхности при резке штампами на фасонных поверхностях, в частности о строении зоны резания фасонных поверхностей, проникновении фрезы в зону резания и условиях контроль в зоне резания. Определение ошибок, возникающих в процессе резания поверхностей деталей в машиностроении, остается важнейшей задачей. Прежде чем раскроить поверхности заготовок, необходимо изучить рабочие поверхности штампов.
Keywords: strength parameters, diagnostics, models, cutting area, strength, durability, stamping, stamping form, cutting parameters.
Kalit so'zlar: mustahkamlik parametrlari, diagnostika, modellar, kesish zonasi, mustahkamlik, chidamlilik, shtamplash, shtamplash shakli, kesish parametrlari.
Ключевые слова: прочностные параметры, диагностика, модели, зона резания, прочность, долговечность, штамповка, форма штамповки, параметры резания.
Introduction. Special importance is attached to the issues of increasing product quality, increasing processing productivity and ensuring dimensional accuracy in the processing of complex machine-building details. Nowadays, it is an important task to increase the weight of the parameters that should be taken into account in programming in order to increase the productivity of processing details of complex shapes in machines controlled by digital programs. In this regard, in developed countries, including the research centers of countries such as the USA, England, Germany, Japan, and China, the development of optimal parameters of processing modes, the development of the ratio between the processed material and the cutting tool in accordance with the cutting modes, and the development of complex shapes on machines controlled by digital programs special attention is paid to the improvement of work efficiency in the development of details.
Materials and Methods. In the field of engineering and technology, ensuring the
Mexanika va Texnologiya ilmiy jurnali 5-jild, 1-son, 2024 Maxsus son
MEXANIKA
geometric parameters of details and their accuracy indicators is of particular importance in increasing the quality and service life of machinery and automotive products. At the same time, increasing the physical and mechanical properties of the metal surface layer is one of the important tasks. In this regard, in the research centers of developed countries, including the USA, Russia, England, Germany, Japan, and other countries, special attention is paid to the development of technologies that ensure dimensional bending of cutting tools during operation and increase accuracy indicators during mechanical processing of complex surface details [7].
The experience of processing complex-shaped details on CNC milling machines shows that the current level of technology development is characterized by the concentration of black, semi-clean and clean processing processes in one machine, that is, very many-pass processing. This type of processing is used in automotive industry, machine tool industry, tool industry and other industries. Thus, in the production of parts with a flat surface processed by surface milling, processing in machine tools makes up to 40% of the labor share of the total production [10].
During the black transition, large deposits of up to 20 mm are removed from the workpiece, which in turn leads to large processing errors. When working with a cutting tool in a clean transition, the required accuracy is controlled by changing the thrust value and the depth of cut and the cutting speed during the cutting process [8].
In diagnostics, it is determined how to perform control operations in a sequence and how to process the obtained results, while controlling the entire process or a separate operation. Three types of devices are used in technical diagnostics. One of them is the construction of a process model, the development of diagnostic methods based on the use of the built model. In the problem of the first group, each element in the process is studied and includes the following issues: studying the normal functioning of the technological process, dividing the process into possible cases, including the separation of failure combinations; to collect and process statistical data about the technical feasibility of monitoring the signs characterizing the process state, how the probability of dividing process states is divided, and at the same time to study the patterns of failure in individual operations; creating a process model and methods of its construction [6].
Results. The constant feed of the cutting edge and the contact angle with the machined surface can be obtained from the scheme shown in the useful work coefficient [5]:
(1)
(2)
(3)
(4)
Mexanika va Texnologiya ilmiy jurnali
5-jild, 1-son, 2024 Maxsus son
MEXANIKA
Figure 1. The scheme for determining the contact angle of the cutting edge.
b RnoB,-R^p RTp.; c RnoB,-T Rrp,+-R^p~T'
It follows from the expression that three parameters affect the angle when processing the detail walls [9].
R^p- the radius of the cutting tool path; R^p- the radius of the cutting tool sphere; T- first pass bet..
Figure 2 shows the graph of an expression that is a hyperbola:
from this
After
<»i = A - R~°is + B
1 Tp
here:
Rmp.i- radius of the trajectory on a randomly selected part.
35 fld
(5)
(6)
(7)
20 15 10
Figure 2. Graph of dependence of 9 on Rtr.
Mexanika va Texnologiya ilmiy jurnali
5-jild, 1-son, 2024 Maxsus ?on
MEXANIKA
Rmp.i+1, Rmp i+2- values are calculated by the following expressions.
flTpi+i = O.Sfl^p = (8)
Tthe amount of stock is determined for small processing.:
t(%)=(0,01.. ,0,2)-(Rp) t(%)for different values of ^i+1 and parameter values Figure 3 shows. Values for determining the contact angle of the cutting edge of the cutting tool with the surface to be processed [11].
Figure 3. Graph of dependence of 9 on Rtr.
Using the expressions and data in Figure 3, a, These empirical coefficients can be calculated, and using the expression, the control system allows you to adjust the cutting force parameters depending on the angle of dependence of the cutting edge during processing, the radius of the processed surface.
Figure 4. Scheme for determining the contact angle of the cutting edge in the previously
untreated part.
AB = ACcosa = RT„cos« => DC = H0K — (RT„ — RT„cos«)
Given that:
(9)
It follows from the above formula that:
Mexanika va Texnologiya ilmiy jurnali
(10)
5-jild, 1-son, 2024 Maxsus son
MEXANIKA
ED = J(H°K_ (R*f ~ RxpCosiOX^V ~ - (Rip - Rwcosa jj
(11)
First, the contact angle of the cutting edge in the untreated part is calculated by the
expression:
T7F1
<P (12)
. ED
Ф = arcsin—
T EO
Development of control programs in CAM systems is carried out according to 3D models built according to nominal dimensions, that is, the path of the cutting tool is formed along the nominal surface (Fig. 5). But as mentioned above, the forces that appear during cutting tend to move the cutting edge of the cutting tool from the working surface, creating a different surface than the nominal one. Because in practice, to ensure the accuracy of processing, the control program is organized by the geometric parameters tool [12].
Conclusion.
- CNC machines are one of the main means of automating multipass operations in the milling of shaped surfaces, the effectiveness of which depends on the completeness and correctness of using the software control capabilities;
- variation of cutting force in black and finishing processing in a wide range is characterized by multi-pass milling; there are reliable calculation methods and normative recommendations, and in addition, the influence of various performance factors on the number of each transition and cutting methods is not taken into account;
-milling of surfaces has a significant effect on accuracy, and errors in elastic deformations of the technological system are observed in the conditions of black, semi-clean processing;
Recommendations should be made for cutting tool wear under clean and finish machining conditions.
REFERENCES
1. Ш.Н.Файзиматов., Гафуров А.М. Support of Software Projects at Local Industrial Enterprises. International Journal of Advanced Research in Science, Engineering and Technology Vol. 6, Issue 12, December 2019, 12320-12328 p.
2. Ш.Н.Файзиматов., Гафуров А.М. Investigation of the manufacturing process of stamp forms in mechanical Engineering. International Journal of Advanced Research in IT and Engineering Vol. 10, Issue 12, December 2021, ISSN: 2278-6244 Impact Factor: 7.436 82-90 p.
3. Гафуров А.М., С.Ш.Рахмонов., А.А.Мусажонов. Study of the efficiency of methods of reconstruction of shaped faces. International Journal of Advanced Research in IT and Engineering Vol. 10, Issue 12, December 2021, ISSN: 2278-6244 Impact Factor: 7.436 101-112 p.
4. Ш.Н.Файзиматов., С.Б.Булгаков., Гафуров А.М. Ways to increase stability of stamps in improving working designs. Tashkent state Technical University named after Islam Karimov, Technical Science and Innovation, Tashkent 2021, №3(09)/2021., 263-267 p.
5. Ш.Н.Файзиматов., С.М.Юсупов., Гафуров А.М. Махаллий ишлаб-чикариш корхоналарида автоматлаштирилган лойихдлаш тизимлари. Фаргона политехника институти «Илмий-техника журнали» ФарПИ махсус сони №1. Том 24. 2021 йил, 52-56.
6. Ш.Н.Файзиматов., С.М.Юсупов., Гафуров А.М. Автоматлаштирилган лойихалаш тизимларидан фойдаланиб мураккаб юзали деталларга ишлов бериш усуллари.
Mexanika va Texnologiya ilmiy jurnali 5-jild, 1-son, 2024 Maxsus son
MEXANIKA
Фаргона политехника институти «Илмий-техника журнали» ФарПИ махсус сони №1. Том 24. 2021 йил, 56-60 бетлар.
7. Ш.Н.Файзиматов., Гафуров А.М. РДБ дастгохларида мураккаб сиртларни куп координатали фрезалаш самарадорлигини ошириш истикболлари. Андижон машинасозлик институти «Илмий-техника журнали» АндМИ 2020 йил, 1-сон август 37-43 бетлар.
8. Ш.Н.Файзиматов., Гафуров А.М. Improving the productivity of methods for processing shaped surfaces. Наманган мухандислик-курилиш Институти «Механика ва технология илмий журнали» 2021 йил. №2, 104-110 бетлар.
9. Ш.Н.Файзиматов., Гафуров А.М. The importance of CAD/CAM/CAE application development. Наманган мухандислик-курилиш Институти «Механика ва технология илмий журнали» 2021 йил. №2, 110-116 бетлар.
10. Гафуров А.М., С.Ш.Рахмонов., А.А.Мусажонов. Automated design systems in local manufacturing plants. INNOVATIVE ACHIEVEMENTS IN SCIENCE 2021: a collection scientific works of the International scientific conference (9th November, 2021) - Chelyabinsk, Russia : "CESS", 2021. Part 3, Issue 1 - 105-112 p.
11. Axunov, J. A. (2022). Analysis of young pedestrian speed. Academicia Globe: Inderscience Research, 3(4), 1-3.
12. Abdujalilovich, A. J. (2022). Analysis of road accidents involving children that occurred in fergana region. Innovative Technologica: Methodical Research Journal, 3(09), 5762.
13. Abdujalilovich, A. J. (2022). Analysis of the speed of children of the 46th kindergarten on margilanskaya street. American Journal of Interdisciplinary Research and Development, 5, 9-11.
14. Axunov, J. A. (2021). Piyodani urib yuborish bilan bog'liq ythlarni tadqiq qilishni takomillashtirish. Academic research in educational sciences, 2(11), 1020-1026.
15. Axunov, J. A. (2022). Ta'lim muassasalari joylashgan ko 'chalarda bolalarning harakat miqdorini o 'zgarishi. Academic research in educational sciences, 3(4), 525-529.
16. Axunov, J. A. (2023). Avtobuslarda yo 'lovchilar tashishni tashkil etish. GOLDEN BRAIN,, 7(14), 91-93.
17. Axunov, J. (2023). Requirements for the structure and design of body buses and cars. International Bulletin of Engineering and Technology, 3(6), 67-72.
18. Axunov, J. A. (2023). Avtobuslar va yengil avtomobillar kuzovlar tuzilishiga qo'yiladigan talablar. Educational Research in Universal Sciences, 2(5), 69-71.
19. Axunov, J. A. (2023). O'zbekistonda tashqi iqtisodiy aloqalarni rivojlantirishda transport-ekspeditorlik xizmatining ahamiyati: o 'zbekistonda tashqi iqtisodiy aloqalarni rivojlantirishda transport-ekspeditorlik xizmatining ahamiyati.
20. Abdujalilovich, A. J., & Ibroximjon o'g'li, M. N. (2023). Methodology for Modeling the Efficiency of the Implementation of Objects to Improve the Transport Network of Tashkent City. Texas Journal of Engineering and Technology, 20, 23-26.
21. Axunov, J. A., & Xaliljonov, D. D. (2023). O'zbekiston respublikasining tashqi iqtisodiy faoliyati va tashqi savdo siyosati tahlili: o 'zbekiston respublikasining tashqi iqtisodiy faoliyati va tashqi savdo siyosati tahlili.
22. Choriyev, X., & Axunov, J. (2022). Шахдр йуловчи автомобиль транспорта тизимининг хизмат курсатиш сифатини таъминлаш жараёнининг функционал моделини ишлаб чи;иш (тошшахдртрансхизмат аж таркибидаги автобус йуналишлари мисолида). Journal of Integrated Education and Research, 7(1), 440-453.
Mexanika va Texnologiya ilmiy jurnali
5-jild, 1-son, 2024 Maxsus son