Научная статья на тему 'Study of the technological process of mechanical processing of parts with shaped surfaces in milling machines'

Study of the technological process of mechanical processing of parts with shaped surfaces in milling machines Текст научной статьи по специальности «Техника и технологии»

CC BY
4
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Science and Education
Область наук
Ключевые слова
cutting area / consistency / durability / punching / punching design / cutting parameters

Аннотация научной статьи по технике и технологии, автор научной работы — Akmaljon Mavlonjonovich Gafurov, Abdumalik Khasanjon Ogli Khamidjonov

In modern mechanical engineering, the development of a technological process for processing stamping forms on shaped surfaces remains the most important task of today. Before processing the shaped surfaces, it will be necessary to study the working surfaces of the stamping molds. This article describes methods for determining the geometric parameters of the surface when processing stamping forms on shaped surfaces, in particular, the drawing structures of the cutting zone of shaped surfaces, the penetration of the cutter into the cutting zone and data on the conditions of editing in the cutting zone.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Study of the technological process of mechanical processing of parts with shaped surfaces in milling machines»

Study of the technological process of mechanical processing of parts with shaped surfaces in milling machines

Abstract: In modern mechanical engineering, the development of a technological process for processing stamping forms on shaped surfaces remains the most important task of today. Before processing the shaped surfaces, it will be necessary to study the working surfaces of the stamping molds. This article describes methods for determining the geometric parameters of the surface when processing stamping forms on shaped surfaces, in particular, the drawing structures of the cutting zone of shaped surfaces, the penetration of the cutter into the cutting zone and data on the conditions of editing in the cutting zone.

Keywords: cutting area, consistency, durability, punching, punching design, cutting parameters

Determination of geometric parameters of untreated surfaces

When developing a control program, the CAM system itself calculates only the trajectory of the cutting tool. The technologist-programmer sets the following parameters:

Working push; thrust of the first cutter; adding cutting tools and adding thrust; accelerated push value; the number of revolutions of the spindle.

It should be noted that the values of these parameters do not change during the processing of the control program.

It is necessary to develop a new method that allows influencing the forming process by means of algorithms of control of cutting parameters in any part of the treated surface.

Batuev V.V. suggests the following relationships to calculate the change in shear forces:

Akmaljon Mavlonjonovich Gafurov smyalik1989@mail.ru Abdumalik Khasanjon ogli Khamidjonov Fergana Polytechnic Insitute

Vk

Vk

dP4

= Z 1.15* f -

n-1 VN

a

sinß1

sinßsintpR^ + O,252*1 f ^R^W

Vn

Here:

z-number of milling teeth; sl-intensive shear stress, Pa; a-cut layer thickness; b1-turning angle of the cutting plane; b-the angle between the cutting line and the direction of the resultant force Rfr; ^-friction coefficient; 9-milling shape angle; Rfr- milling radius, mm; The degree of curvature of the I3 tooth, mm; phk-the angle between the axis of the cutter and the upper point of intersection with the work piece; ^N-the angle between the cutting axis and the bottom point of the milling cutter intersecting with the work piece.

In the expressions, the relationship between the geometric parameters and the cutting force is established in milling with finger cutters, but the integral form is not accepted for the use of RDB machines, and the milling procedure is not taken into account in these expressions, there is a need to change these expressions.

Considering the cutting speeds from V=1000 m/min to V=0.1 m/min and the value of thrust in the range of S=0.001 mm/tooth to S=0.2 mm/tooth S tooth=0.2 mm

values are shown in the expressions in clauses 1 -2 :

/

dPZ = 0.252a¿R^p.(<pa - (h)

15.87 S.

ram

V

N

2 R

+ l2tg(s0 + A- 2arcsin1)) (6)

dPZ = 0,252(TiR^v((pa - (pH)cos(p

(

5.24S.

ram

V

N

2 R

+ l2tg(s0 + A- 2arcsin1)) (7)

dPZ = 0,252(TiR^p.((pa - (PH)sin(p

(

5.24 S.

ram

V

N

2 R

+ I2tg (80 + A - 2arcsin1) ) (8)

z

The resulting expressions allow determining the changes in the cutting force in a wide range of thrusts and speeds with different geometrical parameters of the cutting surface. Their simplified form is optimal for automatic use at the program level in RDB milling machines, and their calculated parameters differ less than 5% from the parameters of expressions (1)-(3).

The maximum thickness of the cut layer during milling varies from zero to the maximum value for a part of the milling cycle. It is determined by the angle ps measured in the direction of the radius (Fig. 1), the largest value is calculated according to the following formula:

STHm sin^ 2STHm

N

t t2 D — D2 (9)

The resulting formula:

a = 2S

t

D (10)

Figure 1. Calculation scheme of the section of the cut layer It is taken into account that the thrust parameters do not exceed 0.3 mm during clean processing of surfaces, and then the development of control programs can be simplified. This expression applies to the bevel angle of the machined surface, the part perpendicular to the axis of the cutting tool, and the first pass of the end mill.

Below is a comparison of the recommended correlations and a graphic model of a o20 milling cutter with each tooth Stish=0.3 mm.

Figure 2. Sections of the cut layer at different angles of the shaped surfaces

Figure 3. Sections of the cut layer when cutting the previously untreated surface

References

1. V. S. Kushner. Materialovedenie: uchebnik/V. S. Kushner, O. Yu. Burgonova, D. A. Negrov, A. A. Novikov, A. G. Shkirtladze.-Minobrnauki Rossii, OmGTU.-Omsk: Izd-vo OmGTU, 2014.-252 p.

2. CAMokhotsky, A. I. Technology termicheskoy obrabotki metallov/A. I. CAMokhotsky, N. G. Parfenovskaya.-2-e izd. Pererab. I dop.-M. : Mashinostroenie, 1976.-311 p.

3. Morozov O. I., Kokorin V. N., Tabakov V. P., Sagitov D. I., Ilyushkin M. V., Shirmanov N. A. Increasing the durability of the working surface of detailed stamps with the use of complex modification//"Izvestiya TulGU. Technical science". 2018. No. 8. S. 261-273.

4. Fayzimatov, S. N., & Gafurov, A. M. (2021). THE IMPORTANCE OF AUTOMATION IN THE DESIGN OF SHAPED SURFACES. Scientific progress, 2(6), 1564-1570.

5. Ulugxodjaev, R. S., Gafurov, A. M., & Rakhmatdinov, K. S. (2022, June). OPTIMIZATION OF THE TECHNOLOGICAL PROCESS BASED ON THE HEAT PHYSICAL PHENOMENON. In E Conference Zone (pp. 5-12).

6. Файзиматов, Ш. Н., Булгаков, С. Б., & Гафуров, А. М. (2021). Ways to increase stability of stamps in improving working designs. Tashkent state Technical University named after Islam Karimov, Technical Science and Innovation, Tashkent, (3), 09.

7. Fayzimatov, S. H., & Gafurov, A. M. (2021). IMPROVING THE PRODUCTIVITY OF METHODS FOR PROCESSING SHAPED SURFACES. МЕХАНИКА ВА ТЕХНОЛОГИЯ ИЛМИЙ ЖУРНАЛИ, (2), 104.

8. Fayzimatov, S. N., Yakupov, A. M., & Gafurov, A. M. (2022). THE GEOMETRY OF THE CONTACT SURFACE DURING PLASTIC DEFORMATION. Web of Scientist: International Scientific Research Journal, 3(12), 231-239.

9. Fayzimatov, S. N., Yakupov, А. М., & Gafurov, A. M. (2022). DETERMINATION OF THE SHAPE AND DIMENSIONS OF DEFORMING ELEMENTS ACCORDING TO A GIVEN SHAPE AND DIMENSIONS OF THE CONTACT ZONE. Academic research in educational sciences, 3(12), 163-171.

10. Gafurov, A. M., Raxmonov, S. S. H., & Musajonov, A. A. STUDY OF THE EFFICIENCY OF METHODS OF RECONSTRUCTION OF SHAPED FACES.

11. Fayzimatov, S. N., & Gafurov, A. M. INVESTIGATION OF THE MANUFACTURING PROCESS OF STAMP FORMS IN MECHANICAL ENGINEERING.

12. Turayevich, T. T., Adiljonovich, E. D., & Mirodilovich, M. B. (2022). IMPROVING THE DURABILITY OF COMPRESSOR EQUIPMENT PARTS IN THE CHEMICAL AND PETROCHEMICAL INDUSTRIES. Global Book Publishing Services, 01-124.

13. Таджибаев, Р. К., Гайназаров, А. А., & Турсунов, Ш. Т. (2021). Причины Образования Мелких (Точечных) Оптических Искажений На Ветровых Стеклах И Метод Их Устранения. Central Asian Journal of Theoretical and Applied Science, 2(11), 168-177.

14. УлуFхожаев, Р. С. (2021). КЕСИШ ЗОНАСИДА ;ОСИЛ БУЛУВЧИ ВИБРОАКУСТИК СИГНАЛЛАРДАН ДЕТАЛНИНГ АНЩЛИГИНИ НАЗОРАТ КИЛИШДА ФОЙДАЛАНИШ. Oriental renaissance: Innovative, educational, natural and social sciences, 1(11), 114-123.

15. Тураев, Т. Т., & Мадаминов, Б. М. (2022). ПОВЫШЕНИЕ ТЕХНОЛОГИЧЕСКОЙ ВОЗМОЖНОСТИ СТРОГАЛЬНЫХ СТАНКОВ ПРИ ИНТЕГРАЦИИ РЕЗАНИЯ И ПОВЕРХНОСТНОЙ ПЛАСТИЧЕСКОЙ ОБРАБОТКЕ. Universum: технические науки, (11-2 (104)), 36-39.

16. Улугхожаев, Р. С. (2022). Методы контроля точности при резания металлов. Science and Education, 3(11), 591-598.

17. Тураев, Т. Т., Акрамов, М. М., & Мадаминов, Б. М. (2023). ИЗУЧЕНИЯ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА ПРИ ИСПОЛЬЗОВАНИЯ МЕТОДА ОБРАБОТКИ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ. European Journal of Interdisciplinary Research and Development, 14, 290-295.

18. Гайназаров, А. Т., & Абдурахмонов, С. М. (2021). Системы обработки результатов научных экспериментов. Scientific progress, 2(6), 134-141.

19. Turaevich, T. T., Anvarxodjaevich, B. Y., & Mirodilovich, M. B. (2021). Choosing the Optimal Processing Method to Improve the Productivity of Machine Tools and Machine Systems. International Journal of Multicultural and Multireligious Understanding, 8(5), 490-494.

20. Файзиматов, Ш. Н., УлуFхожаев, Р. С., & Абдуллаев, Б. И. (2022). ДЕТАЛЛАРГА Ю^ОРИ ТЕЗЛИКДА ИШЛОВ БЕРИШ БИЛАН УНУМДОРЛИКНИ ОШИРИШ. Scientific progress, 3(5), 96-103.

21. Тураев, Т. Т., Батиров, Я. А., & Мадаминов, Б. М. (2021). Сравнительной оценки технического уровня станков и станочных систем. 36ipHrn наукових праць Л'ОГОЕ.

22. Gaynazarov, A. T., & Rayimjonovich, A. R. (2021). ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ КЛЕЯ В ПРОЦЕССЕ СВАРКИ НА ОСНОВЕ ЭПОКСИДНОГО СПЛАВА ДЛЯ РЕМОНТА РЕЗЕРВУАРОВ РАДИАТОРА. Oriental renaissance: Innovative, educational, natural and social sciences, 1(10), 659670.

23. Тураев, Т. Т., Батиров, Я. А., & Мадаминов, Б. М. (2021). Повышение эффективности разделения листовых материалов за счет снижения времени приработки инструмента. Universum: технические науки, (3-1 (84)), 70-73.

24. Файзимтов, Ш. Н., & Рустамов, М. А. (2017). ПРИМЕНЕНИЕ ПРОГРЕССИВНЫХ МЕТОДОВ ДЛЯ ОРИЕНТАЦИИ И УСТАНОВКИ ЗАКЛЕПОК В ОТВЕРСТИЕ С ГОРИЗОНТАЛЬНОЙ ОСЬЮ. In НАУЧНЫЙ ПОИСК В СОВРЕМЕННОМ МИРЕ (pp. 44-45).

25. Тураев, Т. Т., & Мадаминов, Б. М. (2022). Интеграция резания и поверхностного пластического деформирования на строгальных станках. Science and Education, 3(11), 583-590.

26. Таджибаев, Р. К., Турсунов, Ш. Т., & Гайназаров, А. А. (2022). Повышения качества трафаретных форм применением косвенного способа изготовления. Science and Education, 3(11), 532-539.

27. Мадаминов, Б. М. (2022). Борирования И Цементация Сталей 20, 40х И 45 С Этим Увеличить Поверхностной Твердости И Износостойкости. Central Asian Journal of Theoretical and Applied Science, 3(11), 194-200.

28. Turaevich, T. T., Mirodilovich, M. B., & Abdulhakim O'g'li, T. B. (2020). Physical Foundations Structural-Formation, Surface Layer Of Parts. The American Journal of Engineering and Technology, 2(09), 71-76.

29. Yulchieva, S. B., Mukhamedbaeva, Z. A., Bozorboev, S. A., Rubidinov, S. G., & Madaminov, B. M. (2022). Research of the Chemical Resistance of AntiCorrosion Composite Materials Based on Liquid Glass. Journal of Optoelectronics Laser, 41(6), 750-756.

30. Тураев, Т. Т., & Мадаминов, Б. М. (2022). Выбор эффективного метода разделения листовых материалов на мерных размеров. Science and Education, 3(11), 328-336.

31. Таджибаев, Р. К., Турсунов, Ш. Т., Гайназаров, А. А., & Сайфиев, Б. Х. (2023). КОНТРАФАКТНАЯ ПРОДУКЦИЯ. ДЕШЕВАЯ ПРОДУКЦИЯ ИЛИ

ГАРАНТИЯ БЕЗОПАСНОСТИ. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 4(2), 81-88.

32. УлуFхожаев, Р. С. (2021). Ишлов берилаётган деталнинг анщлигини ошириш учун метал киркдш дастгохларини бош^аришда виброакустик сигналлардан фойдаланиш. Scientific progress, 2(6), 1241-1247.

33. Nishonova, G. A. G. (2022). METHODS OF INCREASING THE DURATION OF THE BELT, WHICH IS THE MAIN BODY OF BELT CONVEYORS. International Journal of Advance Scientific Research, 2(11), 44-49.

34. Akbaraliyevich, R. M. (2022). Improving the Accuracy and Efficiency of the Production of Gears using Gas Vacuum Cementation with Gas Quenching under Pressure. Central Asian Journal of Theoretical and Applied Science, 3(5), 85-99.

35. Файзиматов, Ш. Н., & Рустамов, М. А. (2018). Аэродинамический эффект для автоматизации процесса перекачки химических агрессивных реагентов. Современные исследования, (6), 112-115.

i Надоели баннеры? Вы всегда можете отключить рекламу.