Научная статья на тему 'Актуальные вопросы наноматериаловедения'

Актуальные вопросы наноматериаловедения Текст научной статьи по специальности «Химические науки»

CC BY
229
71
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВЫДЕЛЕНИЕ ВОДОРОДА / КАТОДНАЯ РЕАКЦИЯ / КОНСТАНТА СКОРОСТИ / МИКРОГРАФИТ / НАНОРАЗМЕРНЫЙ ЭФФЕКТ / НАНОТРУБКИ / СВОБОДНАЯ ЭНЕРГИЯ / CATHODE REACTION / FREE ENERGY / HYDROGEN RELEASE / MICRO-GRAPHITE / NANOSIZE EFFECT / NANOTUBES / VELOCITY CONSTANT

Аннотация научной статьи по химическим наукам, автор научной работы — Вигдорович Владимир Ильич, Мищенко Сергей Владимирович, Цыганкова Людмила Евгеньевна, Ткачев Александр Григорьевич, Алексашина Елена Васильевна

Рассмотрен ряд факторов, позволяющих управлять проявлением наноразмерных эффектов наноструктурированных материалов. Приведены конкретные примеры их проявления. Исследованы закономерности катодной поляризации прессованных микрографитовых электродов, модифицированных многослойными углеродными нанотрубками и кинетика реакции выделения водорода на них в кислых водных средах.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Вигдорович Владимир Ильич, Мищенко Сергей Владимирович, Цыганкова Людмила Евгеньевна, Ткачев Александр Григорьевич, Алексашина Елена Васильевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Es sind die Faktoren, die von der Erscheinungsform der nanodimensionalen Effekten der nanostrukturierten Stoffe zu leiten erlauben, betrachtet. Es sind die konkreten Beispiele angeführt. Es sind die Gesetzmäßigkeiten der Katodenpolarisation der gepreßten mikrographitischen Elektroden und die Kinetik der Reaktion der Aussonderung des Wasserstoffes in den saueren Wassermedien untersuchtEst examinée une série de faits permettant de commander la manifestation des effets des matériaux nanostructurés. Sont cités quelques exemples de leur manifestation. Sont étudiées les régularités de la polarisation cathodique des électrodes pressées de micrographites modifiées par les nanotubes carboniques ainsi que la cinétique de la réaction du dégagement de lhydrogène sur elles dans les milieux deau acides.The paper studies the number of factors enabling to control nanosize effects of nanostructural materials. The examples of their manifestation are given. It examines the regularities of cathode polarization of pressed micro-graphite electrodes modified with multi-layer carbon nanotubes and kinetics of hydrogen release reaction in aqueous acidic solutions.

Текст научной работы на тему «Актуальные вопросы наноматериаловедения»

Машиностроение. Строительство. Материаловедение. Металлообработка

УДК 541.16: 541.8: 544.651

АКТУАЛЬНЫЕ ВОПРОСЫ НАНОМАТЕРИАЛОВЕДЕНИЯ

В.И. Вигдорович1, С.В. Мищенко2, Л.Е. Цыганкова4,

А.Г. Ткачев3, Е.В. Алексашина1

Кафедры: «Химия» (1), [email protected]; «Автоматизированные системы и приборы» (2), «Техника и технология машиностроительных производств» (3), ГОУ ВПО «ТГТУ»; кафедра «Аналитическая и неорганическая химия», ГОУ ВПО «Тамбовский государственный университет им. Г.Р. Державина» (4)

Ключевые слова и фразы: выделение водорода; катодная реакция; константа скорости; микрографит; наноразмерный эффект; нанотрубки; свободная энергия.

Аннотация: Рассмотрен ряд факторов, позволяющих управлять проявлением наноразмерных эффектов наноструктурированных материалов. Приведены конкретные примеры их проявления. Исследованы закономерности катодной поляризации прессованных микрографитовых электродов, модифицированных многослойными углеродными нанотрубками и кинетика реакции выделения водорода на них в кислых водных средах.

Введение

Триединая идея разработки теории возникновения наноразмерных эффектов, получения нанодисперсных материалов в виде дисперсных систем (НДС) и создания соответствующих лабораторных и промышленных технологий практического использования НДС рассматривается, прежде всего, в связи со стремлением приблизиться к эффективности природных процессов, отбираемых природой многие миллионы лет. Нужно отчетливо представлять, что в самой идее наноматериаловедения заложено, по крайней мере, два тесно связанных между собой аспекта:

- получение наноструктурированных материалов с наноразмерными свойствами;

- их практическое использование.

Первое без второго представляет собой лишь достаточно узкий теоретический интерес; второе без первого просто невозможно.

Рассмотрим некоторые термодинамические и кинетические аспекты проявления наноразмерных эффектов, теоретические основы которых только начинают обсуждаться в научной литературе [1, 2], и экспериментально наблюдаемые особенности кинетики реакции выделения водорода на углеродных материалах, модифицированных активированными многослойными углеродными нанотрубками (МУНТ).

Теоретический анализ проблемы

Наноразмерные эффекты в условиях равновесия. Повышение физикохимической активности и реакционной способности ультрадисперсных систем обычно связывают с возрастанием вклада поверхностной энергии, энергии дефектов и теплоты фазовых переходов [3]. Для реакции

жен. Со снижением эффективного параметра частиц от массива (условие <») до некоторой величины г концентрация вакансий определяется уравнением

где А¥ - изменение объема при замене атома в кристаллической решетке вакансией, остальные обозначения определены или общеприняты.

При г < 10 нм вклад роста концентрации вакансий является существенным [3], а г - начинает играть роль температуры как термодинамического параметра. При диспергировании

где с - поверхностное натяжение; М - молярная масса; р - плотность; Сг - концентрация вакансий на атом по (4); Ыд - число Авогадро.

словливающий самопроизвольное протекание (1) вправо (создание нового процесса). Обобщая этот результат, отметим, что диспергирование обусловливает появление новых процессов, запрещенных для массивных образцов. Согласно [3], сочетание (5) с (6) и их продукта с формулой (2) позволяет оценить связь константы равновесия с дисперсностью

(1)

i ] изменение свободной энергии Гиббса равно

АО = -к71пкр ,

где к и кр - константы Больцмана и равновесия, соответственно, и

(2)

у 1

Пусть в массивном образце ДО° > 0 и самопроизвольный процесс невозмо-

Cu,r = CU,^ exP К2% I кТ )],

(4)

5G = (2Mc/Pi)MArt - кТ(Ca,r - Ca^),

(5)

у 1

и АО0он < АО^сх , где АОр < 0, то есть наблюдается скачок энергии Гиббса, обу-

По оценкам [3], для наночастиц с г < 100 нм ЪОi находится в пределах 10...100 кДж/моль.

Рассмотрим достаточно подробно характерный пример подобной ситуации. Фазовая диаграмма системы М^-Си включает интерметаллические соединения Мя2Си и МяСи2 [4]. При обработке порошка Mg2Cu 0,1 М раствором НС1 в жидкую фазу переходит исключительно магний в виде Mg2+ (качественный анализ на Си2+ после экспериментов на вращающемся дисковом электроде Mg2Cu). Рентгеноструктурный анализ обработанного 0,1 М НС1 порошка интерметаллида показал [5, 6], что в результате избирательного растворения магния, как электрохимически более активного элемента, происходит самопроизвольный фазовый переход

Mg2CUдеф ^ MgCU2. (7)

Одновременно в твердых продуктах взаимодействия появляется металлическая фаза (медь), хотя исходный порошок представлял собой практически только Mg2Cu. Индекс «деф» в (7) указывает на наличие дефектной кристаллической решетки (КР), которая и перегруппировывается в новую первоначально стабильную фазу, более богатую электроположительным компонентом. В этих экспериментах остается неясным, - металлическая медь появляется в результате твердофазной перегруппировки

Mg2Cuдеф ^ Cu, (8)

или за счет протекания процесса

MgCu2,деф ^ Cu. (9)

Из возможных (8) и (9) последняя реакция является более предпочтительной. Естественно, что определенный уровень дефектности КР имеет место и в исходной фазе Mg2Cu. Однако с избирательным окислением магния по реакции

Mg + 2 Н+ ^ Mg2+ + Н2,

вместо уходящих из КР атомов магния возникают дополнительные вакансии.

Очевидно, что при комнатной температуре самопроизвольный переход по уравнению

Mg2Cu ^ MgCU2, (10)

невозможен, так как иначе бы фаза Mg2Cu просто не существовала, то есть для реакции (10)

АО > 0. (11)

В случае же (7)

АО < 0. (12)

Таким образом, по мере увеличения концентрации вакансий АО реакции (7) снижается по некоторому закону, и при определенной ее величине, в расчете на отдельную ячейку кристаллической решетки, реализуется неравенство (12).

Следует отметить, что подобная фазовая перегруппировка не является каким-то частным случаем. Сходная картина имеет место и в случае избирательного окисления 1п до 1п3+ и выходом иона из интерметаллида 1п2Б1 в раствор (0,1 М НС1) с последующим протеканием реакции

1П2Б1деф ^ 1пБ12,

что также доказано рентгеноструктурным анализом [5]. Однако возможные последующие фазовые превращения

!п2Б1деф ^ Б1;

наблюдать не удалось. Вместе с тем, доказано наличие фазовых превращений ин-терметаллидов [7, 8]:

Л18Ъдеф * 8Ъ,

2п28Ьз,деф * 8Ь.

Причем внешняя катодная поляризация интерметаллида и соответствующая величина потенциала коррозии при высокой атомной доле электроотрицательного компонента оказывают идентичное действие.

Некоторые детали процесса обобщены в [9, 10]. Согласно представлениям, рассмотренным в [10], сток электрохимически отрицательного компонента из гомогенной системы АтВп является основным каналом инжекции точечных дефектов, прежде всего, вакансий в его приповерхностном слое. Далее происходит неравновесное фазовое превращение электроположительного компонента В, который находится в энергонасыщенном состоянии за счет обрыва части межатомных связей.

Такой подход, в первом приближении, объясняет особенности процессов, наблюдаемых в гомогенных твердых растворах, если исходная фаза типа АтВп перегруппировывается в кристаллическую решетку компонента В. Однако очевидно, реальные процессы гораздо сложнее, так как широко наблюдаются фазовые превращения по маршруту

Л Б ^ Л Б

^т^п ^ ^т^щ '

где т > т\ и п < щ. Подобная картина характерна и для ряда твердых растворов, если несколько таких фаз существуют на диаграмме состояния. В частности, наблюдается перегруппировка в ряду фаз

е * у * в * а

в системе ^-2п, где е- и а-фазы - наиболее и наименее богатые цинком твердые растворы соответственно. В этих случаях перегруппировываются, в целом, элементы кристаллической решетки, включающие атомы различных химических веществ, которые в нужном соотношении должны оказаться в нужное время в нужном месте. Очевидно, в таком процессе большую роль играет поверхностная диффузия атомов, но природа движущей силы процесса пока не ясна.

Следует иметь ввиду, что подобные фазовые превращения интерметаллических соединений наблюдаются не всегда. Например, не протекает реакция

Mg2Znдеф * MgZn2, (13)

хотя оба интерметаллических соединения существуют в бинарной системе Mg-Zn [4]. Невозможность перегруппировки по реакции (13) обусловлена, прежде всего, тем, что интерметаллид Mg2Zn растворяется равномерно, то есть химическое соотношение компонентов в исходном сплаве и растворе одинаково и Mg2Znдeф практически не возникает. Если же дефектная кристаллическая решетка и появляется в первые моменты растворения сплава за счет некоторого повышения концентрации вакансий по сравнению с исходной структурой, то подобный уровень дефектности оказывается недостаточным для обращения знака АО.

В период интенсивного изучения характера растворения интерметаллидов в электролитах вопросов, связанных с наноструктурированием и кластерообразова-

нием, не возникало. Однако подобное изменение знака AGp нуждается в физическом и термодинамическом обосновании. С этой целью постулируем, что возникновение дефектной кристаллической решетки происходит на сравнительно небольшую глубину по нормали от границы раздела фаз (ГРФ) «интерметаллид -раствор». Иначе говоря, толщина образующегося нанодефектного кристаллического слоя не превышает 100 нм, то есть 500 атомных слоев. Уровень дефектности снижается по мере удаления от ГРФ в силу малого коэффициента твердофазной диффузии компонентов при приведенной температуре эксперимента Тэкс/ Тил, но характер такой зоны на данном этапе не имеет значения. Принципиально важно, чтобы AG изменялась по определенному закону - AG = f (концентрация вакансий). Применительно к рассматриваемым условиям в роли r выступает толщина нанодефектного слоя L, а в качестве массивного образца - исходный уровень дефектности интерметаллида. Тогда выражение (4) можно записать в виде

CD, l = CD,„ exp [ L/rL )АУ/кТ )], (14)

где Cl - поверхностное натяжение в слое, удаленном на расстояние L от ГРФ.

При образовании нанодефектного поверхностного слоя растет и его поверхностная энергия (ПЭ), под которой, в рассматриваемом случае, следует понимать энергию в слое, удаленном от ГРФ на величину L. Конечно, ПЭ слоя зависит от L, но, в целом, она стремиться к некоторой предельной величине, при которой становиться возможным самопроизвольное протекание реакции типа (8). Таким образом, имеет место самоорганизация некоторого поверхностного слоя, причем динамика процесса при стационарных условиях, видимо, является функцией L, ведущей не только к поверхностному нанокластерообразованию, но и к организации новой термодинамически разрешенной реакции. Под нанокластером мы, в данном случае, понимаем новую структуру, представленную дефектными элементарными объемами кристаллической решетки интерметаллида. Причем уровень разупорядоченности структуры такого кластера меняется по мере удаления его ячеек от ГРФ, то есть является функцией L.

Рост поверхностной энергии кластера представлен в виде зависимости

5G = Д°исх + кТ(Ca,L - Са,х ) ,

тогда

АОр = AG0 + dG ,

и

Д°р 0 - [[cx + [Т(Сп,L - Са,х)]

а константа равновесия равна

кр, L = кр, ^lexP[- А°исх + кТ (Ca, L - Са,х )]/rT },

где кр х = exp(- AG°/rT).

Таким образом, в подобном подходе именно рост энергии элементарных объемов, определяемых размерами ячейки кристаллической решетки, находящей-

ся на расстоянии Ь от ГРФ, и площадью, соответствующей сечению, параллельному ГРФ, определяет возможность фазовых нанопревращений.

Следует отметить, что подобные дефектные структуры, отличные от стационарных термодинамически стабильных, можно рассматривать и как кристаллические, и как аморфные системы. Скорее всего, это некоторое промежуточное состояние, характеризующееся повышенной величиной энтропии нежели элементарный объем исходной КР интерметаллида. Иначе говоря, А& перехода от нее к образованию, названному нанокластером, всегда больше нуля.

Наноразмерные эффекты в условиях, удаленных от состояния равновесия. В этом случае речь идет о константах скоростей кс химических реакций, которые, согласно уравнению Аррениуса, при прочих равных условиях, определяются величиной энергии активации [11]

Таким образом, если энергия активации процесса многократно снижается с диспергированием, то соответственно возрастает константа скорости кс. Для интерпретации возможных эффектов используем подходы теории абсолютных скоростей реакций, связывающей величину кс со структурой вещества и теплотой его активации [12, 13]. Для упрощения выводов без снижения информативности, рассмотрим некоторый конечный интервал 5и вдоль координаты реакции, включающей потенциальный барьер.

Пусть т = 5/й, где т и и - среднее время жизни и скорость прохождения активного комплекса (АК) через его вершину, соответственно. С учетом числа актов удельных взаимодействий скорость реакции 9 равна:

где С », х и т - концентрация АК, трансмиссионный коэффициент, меньший

ЛБ

или равный 1, и приведенная масса реагирующих частиц соответственно.

Учтем, что для прямого направления бимолекулярной реакции типа (1) при

V = Ц/ = I

dlnkc = (- Ea/RT 2)dT или kc = р exp( - Ea/RT ).

3 = kcCAC]

cCACB.

(16)

Для простейшего процесса образования активного комплекса

А + В ^ АВ*,

9 также описывается уравнением (16).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Тогда

(17)

kc = X

W U,B )]( im )

^Г± (.8)

2nm ) 5

Константа равновесия процесса (17), согласно статистической термодинамики, равна [12, 13]

kP = /fA fB)exP(- E0/RT) :

р Vab

где Ео - энергия активации при абсолютном нуле; f - статистическая сумма состояний i-й частицы. Не вдаваясь в детали, изложенные более тщательно в [12, 13], имеем уравнение

кР = (fAB* /fA fBfenmkТ)1/2(5/h)exp(- Eo/RT),

которое упростим до вида

kP = (пткТ)/2(S/h)K*, (19)

где К* - свободная энергия активации; h - постоянная Планка. Выразив 5 из (19),

5 = (кр И)/(2пткТ )1/2 К * ,

и подставив в (18), имеем

кс = [х(кТ)/h] (f^/fA fB)exp(- Eo/RT). (20)

В случае изобарно-изотермического процесса К* может быть легко найдена. Для этого учтем:

* * *

АО = AH - TAS

- О = RT ln кр,

где верхний индекс ( ) указывает на принадлежность всех членов уравнения к процессу активации. Тогда

г *

k ' = e-AS 'Re-АН 'RT , (21)

р

и окончательно, сочетая уравнение (21) и (20), имеем

кс = хкТе^*/яе-АЯУят . (22)

к

При постоянстве предэкспоненциального множителя и, следовательно, трансмиссионного коэффициента, рост константы скорости реакции определяется

(а с * — АН * Т VН

величиной экспоненты е\ ' “ . Увеличение кс имеет место при

* * I

АС > АН /Т и соответственно снижение - при обращении неравенства.

Таблица 1

Влияние изменения AS* и АН* на величину кс реакции

(при х = const и Т = 293 К)

* AAS , Дж/моль * AAH , кДж/моль Возрастание кс

19,1 0 10

38,2 0 102

57,3 0 103

76,4 0 104

0 5,6 10

0 11,2 102

0 16,8 103

0 22,4 104

*

Пусть х = const и Т = 293 K. Очевидно, рост AS повышает кс, увеличение * * * АН - вызывает обратный эффект. В табл. 1 приведены величины AAS и AAH , необходимые для увеличения кс на несколько порядков.

Подобный подход позволяет оценить влияние температуры и величины

**

трансмиссионного коэффициента на кс (AS = const и AH = const), учитывая, что х может меняться на четыре порядка

10-4 < х < 1.

* *

Таким образом, изменения AS , AH и х могут явиться причиной проявления наноразмерного эффекта наночастиц и кластеров.

Между тем, продолжим рассмотрение характера влияния энтропийного фактора. Предварительно примем за внимание, что взаимодействие материальных объектов выражается в переносе от одного из них к другому вполне определенного свойства, присущего обоим. Подобные свойства называются обобщенными координатами (ОК) [14]. Таким образом, каждому виду взаимодействия между объектами соответствует своя ОК. Передача этой ОК от одного объекта к другому через разделяющую их поверхность является определяющим признаком взаимодействия между ними. Согласно гипотезе, на которой базируется термодинамический метод [14], сохраняемостью обладают все ОК, кроме одной - энтропии.

Обозначим ОК через q. Тогда в общем случае для изолированной системы применительно к энтропии S не выполняются равенства:

^т^зол = const,

(^т)изол = °.

Отличительной особенностью S является ее способность изменяться за счет внутренних процессов в самой рассматриваемой системе.

Изолированная система. Для изолированной системы в стационарном равновесном состоянии (йК)изол = 0, в нестационарном неравновесном - (йК)изол > 0. Иначе говоря, возрастание энтропии в подобном состоянии закономерно. Следовательно, энтропия изолированной системы может только возрастать. Таким образом, если процессы в кластере протекают в условиях, приближенных к условиям изолированной системы (абсолютной изоляции не существует), то наноматериал на основе таких кластеров может обладать выраженным наноразмерным эффектом.

Неизолированная система. В случае неизолированной системы справедливо выражение

ёБ = (23)

Первое слагаемое правой части обусловлено взаимодействием с окружающей средой. Оно может как убывать, так и возрастать. Второе, для которого

возможно только > 0, вызвано процессами внутри самой системы. Таким образом, и ёБ в (23) может как возрастать, так и убывать.

В нестационарном неравновесном состоянии за счет эффектов диссипации

(рассеяния) внутри системы > 0. Неравновесный процесс в неизолированной

системе всегда необратим. В нестационарном квазиравновесном состоянии ~ 0. И, следовательно, в целом, возможно влияние энтропийного фактора в соответствии с уравнением (22), ведущее к возрастанию константы скорости процесса, протекающего внутри системы или с ее участием.

Следует отметить, что резкого торможения, а фактически запрещения протекания тех или иных реакций можно добиться, по существу, в равной мере двояко:

- обращением знака АО с отрицательного на положительный;

- соотношением Еа ^ да, когда кс ^ 0. С практической точки зрения эти пути равноценны, теоретически они далеко не всегда различимы, если это вообще возможно.

Роль кластерных образований

Обратимся теперь к понятию кластера, которое в настоящее время достаточно широко используется, в том числе и применительно к наноматериалам и процессам, происходящим с их участием [2]. Вместе с тем, пока это чаще всего не более чем некоторое условное понятие, применяемое для моделирования, часто искусственного, тех или иных протекающих процессов.

Молекулярные кластеры металлов - это многоядерные комплексные соединения, в основе молекулярной структуры которых лежит окруженный лигандами остов (ячейка) из атомов металла (число их должно быть не меньше двух) [2]. Однако такое определение вряд ли приближает к пониманию сути кластеров. Тем более что под термином многоядерных комплексных соединений (КС) объединяются разнообразные группы КС, характеризующиеся тем, что они имеют несколько координационных сфер, центральные атомы которых связаны в одно целое посредством определенных атомов или их групп, называемых в химии КС мостиками [15]. Не менее широко изучены коллоидные растворы, частицы которых также попадают под определение [2]. Далеко не ясно, что понимать под твердотельными кластерами и какими рамками состава они ограничены. Более того, неизвестно существуют ли вообще подобные рамки. Естественно, что использование кластера и роль его природы вызывают значительное количество вопросов. Вот лишь некоторые из них.

При каком минимальном и максимальном количестве частиц (атомов, молекул) их объединение может быть названо кластером?

Как сказывается число частиц и структура кластера на межчастичном взаимодействии внутри этого образования и, следовательно, на подвижности (химической и адсорбционной активности) его составляющих?

Равноценны ли в энергетическом отношении составляющие кластера?

Представляет ли кластер, в целом, однородную систему?

Характерно ли для кластера единое уравнение состояния?

Перечень подобных вопросов можно продолжить, хотя ответить на них без создания единой теории кластеров практически невозможно.

Более широкая классификация кластеров, включающая молекулярные, газофазные, коллоидные, твердотельные, матричные и пленочные, приведена в [2].

Сравнительно глубоко изучены кластеры применительно к процессам катализа, а их наиболее полная картина приведена в монографии [16], авторы которой обобщили результаты квантомеханических расчетов модельных кластеров, рассмотренных более чем в 700 статьях, монографиях и обзорах. Исследователями использовались две группы моделей:

- твердотельные, в которых система адсорбат-адсорбент рассматривается с точки зрения макроскопического твердого тела;

- молекулярные, типа адсорбционных комплексов, состоящие из «квазилигандов», окруженных атомами твердого тела. При этом в [16] кластер интерпретируется как некое замкнутое образование. Часто молекулярная модель адсорбционного комплекса (кластера) обозначена как включающая адсорбционный атом или молекулу и часть твердого тела. Иначе говоря, предполагается локальный характер образования, объединяющий частицы адсорбата с активными центрами поверхности посредством адсорбционной связи самой различной природы. В наиболее общей классификации связи можно разделить на сильные с энергией адсорбции Еадс ~ 0,50...0,8 эВ и слабые с Еадс ~ 0,05...0,50 эВ. Предполагается, что подобный адсорбционный комплекс может обладать определенной стехиометрией и характеристическими частотами колебаний связи адсорбат-адсорбент.

Основные требования к используемым моделям применительно к процессам адсорбции и гетерогенного катализа таковы:

- возможность установления размера кластера, правильно передающего свойства адсорбента;

- адекватная передача влияния структуры и состава;

- учет взаимного влияния кластера и подложки.

С точки зрения использования наноструктурированных материалов это лишь часть, хотя и важная, требований применительно к последующей интерпретации появления или отсутствия наноразмерных эффектов в вышесформулированной их трактовке. Самые простые кластеры металлов, по существу, одномерные, состоят из двух атомов - Ag2, Pd2, Cd2, Ni2 и др., с линейным размером порядка 0,3...0,4 нм. Они энергетически стабильны [16], а рассчитанные их электронные характеристики выше, чем в микрокристаллах. Более сложными кластерами являются образования, названные аналитическими кластерами, представляющие интерес для изучения их общих закономерностей [16]. Структура таких двух- и трехмерных образований приведена на рис. 1.

где к л

а) б)

Рис. 1. Некоторые типы двух- и трехмерных кластеров [16]:

а - двухмерные кластеры: е - решетка содержит гетероатом (остальное без пояснений); б - трехмерные кластеры: з - кубическая гранецентрированная; к - плотноупакованная кубическая; л - плотноупакованная гексагональная решетка (остальное - без пояснений)

Стабильность кластеров и их химическая активность

Зависимость средней (отнесенной к одному атому ДЕ = ДЕ/п, где п - число атомов) энергии связи существенно зависит от структуры кластера и величины п (рис. 2)

Энергетическая стабильность кластеров растет с увеличением числа атомов. Для п < 30 (линейный размер порядка 4,5...6,0 нм) кластеры с четными п стабильнее, чем с нечетными. При п > 50 средняя энергия в кубических и октаэдрических кластерах (линейный размер ~ 7,5 нм) не очень отличается от Еср в макрокристалле. Для них характерна малая энергия стабилизации, что позволяет относительно легко превращаться нестабильным формам в стабильные [16]. Именно эта особенность кластерных образований и обусловливает способность нестабильных структур с дефектной кристаллической решеткой, для которой характерен высокий уровень вакансий, перегруппироваться в стабильные фазовые формы.

Для кластерных образований характерно наличие различных зарядов атомов в зависимости от их расположения (грани, ребра, вершины). Так, атомы в центре квадрата обладают высшей, а в углах - низшей электронной плотностью (рис. 3).

а) б) в)

Рис. 2. Зависимость средней энергии связи, отнесенной на один атом, от числа атомов в кластере и его строения [4]:

в - характеризует прочность связи между атомами і и у а - примитивная кубическая решетка; б - квадрат; в - линейная цепь

1,2222

Рис. 3. Электронная плотность на атомах двухмерного кластера [16]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Таким образом, теоретическая интерпретация условий проявления нанораз-мерных эффектов встречает многочисленные трудности. К решению многих вопросов исследователи, по существу, и не приступали. Вместе с тем, не менее сложные проблемы наблюдаются и при получении и интерпертации экспериментальных данных, полученных в работе с нанообъектами. Рассмотрим это на примере МУНТ. Дело в том, что при модификации ими прессованного микрографи-тового порошка можно ожидать существенного изменения характеристик электрохимических реакций. В частности, величины их перенапряжения при прочих одинаковых условиях, констант скоростей, токов обмена и др. С этой целью начато исследование кинетики реакции выделения водорода на модифицированных микрографитовых катодах, содержащих фиксированное количество (масс. %) МУНТ.

Методика эксперимента

Многослойные углеродные нанотрубки получены каталитическим пиролизом пропан-бутановой смеси при 600... 650 °С (70 масс. % С3Н8 и 30 масс. % С4Н10, Ni/Mg катализатор с дисперсностью 80.500 мкм, нанесенный на подложку толщиной 0,1.0,5 мм [17]). Значения некоторых параметров МУНТ [18]: наружный диаметр - 10.20 нм; длина > 2 мм; удельная геометрическая поверхность 144 м2/г.

Полученные с закрытыми крышками нанотрубки обрабатывали в реакторном участке разбавленным раствором азотной кислоты для растворения остатков катализатора. Затем их открывали двух часовой обработкой при температуре 106 °С в смеси концентрированных азотной и серной кислот в объемном соотношении 1:3. Результаты рентгеноструктурного анализа подтвердили кристаллическую природу МУНТ, активированных в азотносернокислотной среде. Электроды представляли собой композиты, которые готовили прессованием микростуктури-рованного графита, содержащего 0,1 и 2 масс. % МУНТ в специально изготовленной пресс-форме при давлении 6-103 кг/см2 в виде цилиндров длиной (15 ± 3) мм и видимой площадью поперечного сечения ~ 0,80 см2. Затем в них с одного торца посредством тугой посадки вводили медный контакт и их вставляли в оправку из эпоксидной смолы, отвержденной полиэтиленполиамином. Использован микрографит следующего фракционного состава, мкм: > 88 - 0,9 масс. %; 80.70 -7 масс. %; 70.56 - 71 масс. %; 56.40 - 15,7 масс. %; ниже 40 - 5,5 масс. %. Исследования проведены при комнатной температуре.

Электрохимические измерения проведены в трехэлектродной ячейке из стекла «Пирекс» с разделенным шлифом анодным и катодным пространствами. Водный раствор с составом электролита х М НС1 + (1 - х) М NaCl получали насыщением сухим хлористым водородом с последующей оценкой концентрации ионов водорода в сольватной форме Н3О+ титрованием щелочью в присутствии фенолфталеина, и корректировкой до заданной СН сольвентом (Н2О) и введением рассчитанного количества сухого хлористого натрия (квалификации ч.д.а.) до постоянной ионной силы, равной 1. Потенциалы измерены в водородной атмосфере относительно водного насыщенного хлорсеребряного электрода, потенциостаты -П-5827 (потенциостатическая поляризация на прямом и обратном ходе с шагом 0,02 В) или IPC - Pro MF (потенциодинамическая поляризация со скоростью развертки потенциала 1 мВ-с-1) и приведены по стандартной водной водородной шкале.

Экспериментальные результаты

-0,5

0,5

1,0

1,5

Катодные поляризационные кри- Е, В

вые прессованного микрографито во го -1,0

электрода без добавок МУНТ имеют вид, показанный на рис. 4. Во всех исследованных растворах (электролит состава 0,99 М НС1 + 0,01 М №С1 избран лишь в качестве характерного примера) при использовании определенных катодных потенциалов достигается предельный ток, который переходит в тафелевский участок, связанный с протеканием реакции выделения водорода (см. рис. 4, участок АБ). При обратном ходе (без извлечения электрода из раствора) предельный ток, в большинстве случаев, не наблюдается (см. рис. 4, кривая 1), что приводит к широкой петле гистерезиса. Если выдерживать электрод, не извлекая из раствора при бестоковом потенциале 10.15 минут, то начальная катодная поляризация начинается от менее отрицательного потенциала (см. рис. 4, кривая 2), но вновь наблюдается предельный ток, как правило, меньшей величины, чем в первом цикле поляризации.

Однако он переходит в тот же или близкий по потенциалам тафелевский участок (см. рис. 4, кривые 1 и 2).

Уменьшается и петля гистерезиса. Если снижать время выдержки электрода при бестоковом потенциале твыд,

достигаемом при обратном ходе в анодную область, то сокращается и петля гистерезиса, которая в пределе при твыд ^ 0 практически исчезает.

Бестоковый потенциал прессованного графитового электрода, не содержащего МУНТ, после выдержки его в течение 1 ч при потенциале -0,7 В (водный раствор) сравнительно быстро сдвигается в положительную сторону (рис. 5). На кривых в координатах «потенциал-время» можно выделить два участка: АБ, на котором изменение потенциала во времени протекает со значительной скоростью и протяженность которого практически не связана с концентрацией ионов водорода

при ее изменении практически в 20 раз; участок БВ, на котором величина йЕ/йт существенно понижена и достигается ее значение, близкое или равное нулю. Со снижением кислотности среды устанавливаемый стационарный потенциал прессованного микрографита проявляет общую тенденцию сдвигаться в отрицательную сторону. Однако Естац непостоянен от опыта к опыту.

2 lg/'(/', А/м )

Рис. 4. Катодные поляризационные кривые прессованного микрографита в водном растворе с составом электролита 0,99 М НС1 + 0,01 М №01:

комнатная температура; водородная атмосфера: 1 - первый цикл поляризации;

2 - второй цикл поляризации. Стрелкой показано направление поляризации

Рис. 5. Изменение бестокового потенциала микрографита после прекращения его катодной поляризации в течение 1 ч при Е = -0,7 В: комнатная температура; водородная атмосфера; СНС1, моль/л: 1 - 0,05; 2 - 0,10; 3 - 0,50; 4 - 0,99

- 4 - 3 - 2 - 1 А/см2)

Рис. 6. Потенциодинамические поляризационные кривые (скорость развертки потенциала 1 мВ-с- 1) микрографитового электрода, содержащего 2 масс. % МУНТ, в водном растворе с составом электролита х М НС1 + (1 - х) М №01: комнатная температура; водородная атмосфера; х, моль/л: 1 - 0,05; 2 - 0,10; 3 - 0,50; 4 - 0,99; двухкратное цик-лирование: 1-4 - первый цикл; 1 '-4' - второй цикл

При катодной поляризации композита, содержащего 2 масс. % МУНТ, в водных растворах при тех же условиях картина качественно остается прежней (рис. 6). При этом тафелевский участок, соответствующий реакции выделения водорода, смещается при обратном ходе поляризационной кривой в катодном направлении (рис. 7). С увеличением СН скорость реакции выделения водорода (РВВ) возрастает в соответствии с закономерностями электрохимической кинетики, то есть dlg^/dlg СН > 0 (см. рис. 7). Величина тафелевского наклона Вк при

С+ = 0,05.0,50 моль/л составляет 0,140 В, что удовлетворительно согласуется со значением 2,3RT/aF (R - универсальная газовая постоянная, F - число Фарадея, T - температура по шкале Кельвина, а - определена ранее), обычно близким

0,116 В (комнатная температура). Указанной величине Вк соответствует коэффициент переноса а, равный 0,42. Исключение составляют результаты, полученные

при С Н = 0,99 моль/л, когда Вк повышен до 0,18 В.

Для расчета порядка реакции результаты, приведенные на рис. 7, при Е = -0,42 В (тафелевские участки), перестроены в координатах dlg^-dlg СН (рис. 8). Полученные точки хорошо аппроксимируются линейной зависимостью, что позволяет оценить порядок РВВ по ионам водорода пН, который равен 1. Это соответствует (при Е = const) требованиям замедленного разряда РВВ. В целом, рассматриваемая стадийная реакция в водных средах протекает по схеме: реакция Фольмера

Н3О+ + е Надс + Н2О

(24)

и далее сток Надс по реакции Гейровского

реакция Тафеля

Надс + Н3О + е

Надс + Надс

-> Н2 + Н2О,

-> Н2

(25)

(26)

Рис. 7. Скорость катодного восстановления ионов водорода на прессованном микрографите, содержащем 2 масс. % МУНТ в водном растворе с составом электролита х М НС1 + (1 - х) М №С1: х, моль/л: 1 - 0,05; 2 - 0,10; 3 - 0,50; 4 - 0,99

Рис. 8. Влияние концентрации ионов водорода при постоянном потенциале (Е = -0,42 В) на скорость РВВ на микрографите с 2 масс. % МУНТ в водных растворах с электролитом х М НС1 + (1 - х) М №С1: комнатная температура, водородная атмосфера

Если замедлена стадия Фольмера (пН = 1), то без дополнительных исследований нельзя определить какая из последующих стадий (Гейровского или Тафеля) ведет к удалению молекулярного водорода в газовую фазу.

Снижение концентрации многослойных нанотрубок в 20 раз (0,1 масс. %) качественно не изменяет кинетики РВВ (рис. 9). Вновь при циклировании со смещением потенциала на обратном ходе в анодную область тафелевский участок в большинстве случаев сдвигается в область более отрицательных потенциалов (рис. 10). Следует отметить, что как и в предыдущем случае (2 масс. % МУНТ),

оценка величины порядка реакции по ионам водорода (dlgjJS/dlg СН) на прямом ходе (в катодную область) приводит к практически идентичным результатам. Значение Вк(йЕ/^/к) равно (0,160 ± 0,005) В (0,1 масс. % МУНТ), то есть завышено

по сравнению с теоретическим, равным 2,3ЯТ/аЕ. Если принять, что причина завышения тафелевского наклона обусловлена величиной коэффициента переноса, то а должен быть близок к 0,39 (298 К), что, в принципе, вполне возможно, хотя обычно наблюдаемая на металлических электродах и принимаемая за теоретическую величина а = 0,5, если лимитирует стадия (24) РВВ. Но отклонения а до величины 0,39...0,40 вполне реально. Значение йЕ/йИ% СН составляет 0,08 В и удовлетворительно соответствует теоретическому значению для РВВ в условиях замедленного разряда.

Рис. 9. Катодные потенциодинамические поляризационные кривые прессованного микрографита с 0,1 масс. % МУНТ в водных растворах с составом электролита

х М НС1 + (1 - х) М №С1: комнатная температура, водородная атмосфера; стрелкой показано направление поляризации

-5

-4

-3

2 lgi (i, А/см2)

- Е, В 0,65 —

3,5 2,5 1,5 (/, А/см2)

Рис. 10. Влияние концентрации ионов водорода при постоянном потенциале (Е = - 0,55 В) на скорость РВВ на прессованном микрографите с 0,1 масс. % МУНТ в водном растворе с составом электролита х М НС1 + (1 - х) М №С1: комнатная температура; водородная атмосфера; х, моль/л: 1, 1 ' - 0,05; 2, 2' - 0,10; 3, 3' - 0,50; 4, 4' - 0,99; 1-4 - прямой ход, 1 -4' - обратный ход поляризации.

Для определения пН данные рис. 10 при потенциале, равном -0,55 В, перестроенные в двойных логарифмических координатах сй%/к, СН . В данном случае порядок реакции по ионам водорода равен (0,55 ± 0,05), что соответствует согласно многим исследованиям замедленной стадии (26). Очевидно, к смене природы лимитирующей стадии приводит снижение СМУНТ. Теоретическая величина йЕ/(И% СН для замедленной рекомбинации (26), равная 0,06 В, удовлетворительно коррелирует с наблюдаемой экспериментально. РВВ с замедленной стадией рекомбинации требует величины йЕ/йИ%/к, равной 0,029 В, что существенно выше полученной экспериментально и что практически никогда не наблюдается исследователями [19, 20].

В заключение отметим, что исследование природы наноразмерных эффектов и путей управления ими только начинается. Без создания общей теории нанораз-мерных процессов их обнаружение, а тем более использование, возможно только посредством метода перебора вариантов. При очень большом количестве возможных маршрутов этот метод крайне малоэффективен.

Разработка методов исследования наличия наноразмерных эффектов и их уровня также усложнена целой гаммой особенностей поведения наноразмерных систем. В одних случаях такие эффекты проявляются, в других, близких по условиям, отсутствуют. И только широкие исследования наноразмерных эффектов нанодисперсных систем в постоянном сопоставлении с микродисперсными могут приблизить время широкого практического использования наноматериалов.

Список литературы

1. Третьяков, Ю.Д. Процессы самоорганизации в химии материалов / Ю.Д. Третьяков // Успехи химии. - 2003. - Т. 72, № 8. - С. 731-763.

2. Суздалев, И.П. Нанокластеры и нанокластерные системы. Организация, взаимодействие, свойства / И.П. Суздалев, П.И. Суздалев // Успехи химии. -2001. - Т. 70, № 1. - С. 203-240.

3. О роли размерных факторов в сдвиге химического равновесия / Н.С. Ли-доренко [и др.] // Докл. АН СССР. - 1981. - Т. 257, № 5. - С. 1114-1116.

4. Хансен, М. Структуры бинарных сплавов / М. Хансен. - М. : Науч.-техн. изд-во литературы по черной и цветной металлургии, 1941. - 839 с.

5. Фазовые превращения интерметаллических соединений под действием растворов электролитов / И.К. Маршаков [и др.] // Электрохимия. - 1966. - Т. 2, № 2. - С. 254-258.

6. Вигдорович, В.И. Механизм растворения магниевых сплавов : дис. ... канд. хим. наук : 02.00.04 ; защищена 15.021966 ; утв. 10.09.1966 / Вигдорович Владимир Ильич. - Воронеж, 1966. - 157 с.

7. Цыганкова, Л.Е. Механизм растворения некоторых интерметаллических соединений на основе сурьмы / Л.Е. Цыганкова, В.И. Вигдорович // Электрохимия. - 1967. - Т. 3, № 10. - С. 1216-1219.

8. Вигдорович, В.И. Влияние рН на коррозионное поведение алюминий-сурьмяных сплавов / В.И. Вигдорович, Л.Е. Цыганкова // Защита металлов. -1967. - Т. 3, № 1. - С. 106-108.

9. Маршаков, И.К. Анодное растворение и селективная коррозия сплавов / И.К. Маршаков, А.В. Введенский, В.Ю. Кондрашин. - Воронеж : Изд-во Воронеж. гос. ун-та, 1988. - 208 с.

10. Козадеров, О.А. Кинетика фазовых превращений в поверхностном слое бинарного сплава при селективном растворении. I. Теоретический анализ / О.А. Козадеров, О.В. Королева, А.В Введенский // Физикохимия поверхности и защита металлов. - 2009. - Т. 45, № 1. - С. 34-38.

11. Штиллер, В. Уравнение Аррениуса и неравновесная термодинамика /

B. Штиллер. - М. : Мир, 2000. - 176 с.

12. Курс физической химии / Я.И. Герасимов [и др.]. - М. : Химия, 1966. -Т. 2. - 656 с.

13. Физическая химия / К.С. Краснов [и др.]. - М. : Высшая школа, 1995. -Т. 2. - 319 с.

14. Булатов, Н.К. Термодинамика необратимых физико-химических процессов / Н.К. Булатов, А.Б. Лундин. - М. : Химия, 1984. - 336 с.

15. Гринберг, А. А. Введение в химию комплексных соединений / А. А. Гринберг. - М. : Химия, 1966. - 631 с.

16. Дункен, Х.Х. Квантовая химия адсорбции на поверхности твердых тел / Х.Х. Дункен, В.И. Лыгин. - М. : Мир, 1980. - 288 с.

17. Вигдорович, В . И. Наноструктурированные материалы и технологии. Современное состояние, проблемы и перспективы / В.И. Вигдорович, С.В. Мищенко, А.Г. Ткачев. - Тамбов : Изд-во Тамб. гос. техн. ун-та, 2007. - (Препринт Вестн. Тамб. гос. техн. ун-та / Тамб. гос. техн. ун-т. - Препринт № 22. Рубрика 02. -2007. - Т. 13, № 4. - 40 с.).

18. Ткачев, А.Г. Углеродный наноматериал. «Таунит» - структура, производство, применение / А.Г. Ткачев // Перспективные материалы. - 2007. - № 3. -

C. 5-9.

19. Феттер, К. Электрохимическая кинетика / К. Феттер. - М. : Химия, 1967. - 856 с.

20. Кузнецов, В.В. Наводороживание металлов в электролитах / В.В. Кузнецов, Г.В. Халдеев, В.В. Кичигин. - М. : Машиностроение, 1993. - 244 с.

Present-Day Problems of Nanomaterials Science

V.I Vigdorovich1, S.V. Mishchenko2, L.E. Tsygankova4, A.G. Tkachev3, E.A. Aleksashina1

Departments “Chemistry " (1); [email protected]; “Automated Systems and Devices " (2), “Equipment and Technology of Mechanical Engineering" (3), TSTU; Department “Analytical and Nonorganic Chemistry ",

Tambov State University named after G.R. Derzhavin (4)

Key words and phrases: cathode reaction; free energy; hydrogen release; micro-graphite; nanosize effect; nanotubes; velocity constant.

Abstract: The paper studies the number of factors enabling to control nanosize effects of nanostructural materials. The examples of their manifestation are given. It examines the regularities of cathode polarization of pressed micro-graphite electrodes modified with multi-layer carbon nanotubes and kinetics of hydrogen release reaction in aqueous acidic solutions.

Aktuelle Fragen der Nanostoffkunde

Zusammenfassung: Es sind die Faktoren, die von der Erscheinungsform der nanodimensionalen Effekten der nanostrukturierten Stoffe zu leiten erlauben, betrachtet. Es sind die konkreten Beispiele angeführt. Es sind die Gesetzmäßigkeiten der Katodenpolarisation der gepreßten mikrographitischen Elektroden und die Kinetik der Reaktion der Aussonderung des Wasserstoffes in den saueren Wassermedien untersucht.

Problèmes actuels de la science des nanomatériaux

Résumé: Est examinée une série de faits permettant de commander la manifestation des effets des matériaux nanostructurés. Sont cités quelques exemples de leur manifestation. Sont étudiées les régularités de la polarisation cathodique des électrodes pressées de micrographites modifiées par les nanotubes carboniques ainsi que la cinétique de la réaction du dégagement de l’hydrogène sur elles dans les milieux d’eau acides.

Авторы: Вигдорович Владимир Ильич - доктор химических наук, профессор, руководитель секции «Химия наноматериалов» кафедры «Химия»; Мищенко Сергей Владимирович - доктор технических наук, профессор, заведующий кафедрой «Автоматизированные системы и приборы», ректор, ГОУ ВПО «ТГТУ»; Цыганкова Людмила Евгеньевна - доктор химических наук, профессор, заведующая кафедрой «Аналитическая и неорганическая химия», ГОУ ВПО «ТГУ им. Г.Р. Державина»; Ткачев Александр Григорьевич - доктор технических наук, профессор, заведующий кафедрой «Техника и технология машиностроительных производств»; Алексашина Елена Васильевна - аспирант кафедры «Химия», ГОУ ВПО «ТГТУ».

Рецензент: Коновалов Виктор Иванович - доктор технических наук, профессор кафедры «Химическая инженерия», ГОУ ВПО «ТГТУ».

i Надоели баннеры? Вы всегда можете отключить рекламу.