Научная статья на тему 'Zooplankton of lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park)'

Zooplankton of lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park) Текст научной статьи по специальности «Биологические науки»

CC BY
9
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Ecosystem Transformation
Область наук
Ключевые слова
taxonomic composition / dominants / winter and summer zooplankton / macrophytes / small lakes / protected areas / Vologda Oblast / таксономический состав / доминанты / подледный и летний зоопланктон / макрофиты / малые озера / особо охраняемые природные территории / Вологодская область

Аннотация научной статьи по биологическим наукам, автор научной работы — Lobunicheva E.V., Litvin A.I., Dumnich N. V.

The zooplankton of the lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park) has been studied in 1975, 2008, and 2021. The zooplankton composition is similar in the lakes. In total, 70 zooplankton species are registered (21 species of Rotifera, Cladocera, 32, Copepoda, 17). The relict species Limnocalanus macrurus has been found earlier in the lakes. The zooplankton abundance is higher in the shallower Lake Borodaevskoye. The ratio of zooplankton groups in the water bodies was similar throughout the study period, with crustaceans as dominating group. The core of dominants includes 5 to 7 species (Kellicottia longispina, Diaphanosoma brachyurum, Daphnia сucullata, D. сristata, Bosmina coregoni, Mesocyclops leuckarti, and Thermocyclops oithonoides). The zooplankton abundance depends on the water temperature. As the latter has increased by 5 °С in summer 2021, there was an increase in the abundance and biomass of zooplankton in deep water areas of the studied lakes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Зоопланктон озер Бородаевского и Ферапонтовского (Национальный парк «Русский Север»)

Представлены результаты исследований зоопланктона озер Бородаевского и Ферапонтовского (Национальный парк «Русский Север», Вологодская область) в 1975, 2008 и 2021 гг. Зоопланктон водоемов сходен по составу. Всего в озерах зарегистрировано 70 видов зоопланктона (Rotifera – 21, Cladocera – 32, Copepoda – 17). Ранее в озерах был отмечен реликтовый Limnocalanus macrurus. Обилие зоопланктона выше в более мелководном оз. Бородаевском. Соотношение групп зоопланктона в водоемах в отдельные периоды исследований сходно. Наибольшая численность характерна для ракообразных. Комплекс доминантов насчитывал 5–7 видов (Kellicottia longispina, Diaphanosoma brachyurum, Daphnia сucullata, D. сristata, Bosmina coregoni, Mesocyclops leuckarti, Thermocyclops oithonoides). Обилие зоопланктеров в озерах зависело от температуры воды. При ее увеличении на 5 °С летом 2021 г. наблюдался рост численности и биомассы зоопланктона глубоководных участков озер.

Текст научной работы на тему «Zooplankton of lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park)»

Транс$0рмацмa BKOCMCTeM ISSN 2619-0931 Online

Ecosystem Transformation

www.ecosysttrans.com

DOI 10.23859/estr-230226 EDN NQSLIU UDC 574.583:591.5

Article

Zooplankton of lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park)

E.V. Lobunicheva , A.I. Litvin, N.V. Dumnich

Vologda Branch of FSBSI "VNIRO" ("VologodNIRO"), ul. Levicheva 5, Vologda, 160012 Russia *lobunicheva_ekat@mail.ru

Abstract. The zooplankton of the lakes Borodaevskoe and Ferapontovskoe (Russky Sever (Russian North) National Park) has been studied in 1975, 2008, and 2021. The zooplankton composition is similar in the lakes. In total, 70 zooplankton species are registered (21 species of Rotifera, Cladocera, 32, Copep-oda, 17). The relict species Limnocalanus macrurus has been found earlier in the lakes. The zooplankton abundance is higher in the shallower Lake Borodaevskoye. The ratio of zooplankton groups in the water bodies was similar throughout the study period, with crustaceans as dominating group. The core of dominants includes 5 to 7 species (Kellicottia longispina, Diaphanosoma brachyurum, Daphnia cucullata, D. cristata, Bosmina coregoni, Mesocyclops leuckarti, and Thermocyclops oithonoides). The zooplankton abundance depends on the water temperature. As the latter has increased by 5 ^ in summer 2021, there was an increase in the abundance and biomass of zooplankton in deep water areas of the studied lakes.

Keywords: taxonomic composition, dominants, winter and summer zooplankton, macrophytes, small lakes, protected areas, Vologda Oblast

Acknowledgements. The authors are grateful to the employees of the Vologda Branch of the "VNIRO" (VologdaNIRO) for their invaluable help in hydrobiological sampling at the lakes Ferapontovskoe and Borodaevskoe during field studies. Special thanks go to leading researcher V.I. Lazareva (IBIW RAS), who checked the correctness of the taxonomical identification of some copepods.

ORCID:

E.V. Lobunicheva, https://orcid.org/0000-0002-4158-1804 N.V. Dumnich, https://orcid.org/0000-0001-9599-0358

To cite this article: Lobunicheva, E.V. et al., 2024. Zooplankton of lakes Borodaevskoye and Ferapontovskoye (Russky Sever (Russian North) National Park). Ecosystem Transformation 7 (3), 186-204. https://doi.org/10.23859/estr-230226

Received: 26.02.2023 Accepted: 06.04.2023 Published online: 09.08.2024

DOI 10.23859^Г-230226 EDN NQSLIU УДК 574.583:591.5

Научная статья

Зоопланктон озер Бородаевского и Ферапонтовского (Национальный парк «Русский Север»)

Е.В. Лобуничева* , А.И. Литвин, Н.В. Думнич

Вологодский филиал ФГБНУ «ВНИРО» («ВологодНИРО»), 160012, Россия, г. Вологда, ул. Левичева, д. 5

*lobunicheva_ekat@mail.ru

Аннотация. Представлены результаты исследований зоопланктона озер Бородаевского и Ферапонтовского (Национальный парк «Русский Север», Вологодская область) в 1975, 2008 и 2021 гг. Зоопланктон водоемов сходен по составу. Всего в озерах зарегистрировано 70 видов зоопланктона (РоШега - 21, СЫосега - 32, Copepoda - 17). Ранее в озерах был отмечен реликтовый Limnocalanus macrurus. Обилие зоопланктона выше в более мелководном оз. Бородаевском. Соотношение групп зоопланктона в водоемах в отдельные периоды исследований сходно. Наибольшая численность характерна для ракообразных. Комплекс доминантов насчитывал 5-7 видов (KeШcottia longispina, Diaphanosoma brachyurum, Daphnia сucullata, D. сristata, Bosmina coregoni, Mesocyclops leuckarti, Thermocyclops oithonoides). Обилие зоопланктеров в озерах зависело от температуры воды. При ее увеличении на 5 °С летом 2021 г. наблюдался рост численности и биомассы зоопланктона глубоководных участков озер.

Ключевые слова: таксономический состав, доминанты, подледный и летний зоопланктон, макрофиты, малые озера, особо охраняемые природные территории, Вологодская область

Благодарности. Авторы благодарят всех сотрудников Вологодского филиала ФГБНУ «ВНИРО», принимавших участие в отборе гидробиологических проб на озерах Ферапонтовском и Бородаевском, а также г.н.с. ИБВВ РАН В.И. Лазареву за помощь в определении таксономической принадлежности отдельных копепод.

ОКОЮ:

Е.В. Лобуничева, https://orcid.org/0000-0002-4158-1804 Н.В. Думнич, https://orcid.org/0000-0001-9599-0358

Для цитирования: Лобуничева, Е.В. и др., 2024. Зоопланктон озер Бородаевского и Ферапонтовского (Национальный парк «Русский Север»). Трансформация экосистем 7 (3), 186-204. Ийрэ:// doi.org/10.23859/estr-230226

Поступила в редакцию: 26.02.2023 Принята к печати: 06.04.2023 Опубликована онлайн: 09.08.2024

Introduction

Many water bodies locate on territory of Russky Sever (Russian North) National Park. Most small reservoirs are of glacial origin. Many lakes are connected by natural channels or are the part of the North Dvina River watershed area, forming a system of rivers, canals, and lakes. Close location, similar genesis, and diversity of their morphology predetermine the composition and structure of the natural communities (including zooplankton) of small waterbodies of the national park.

The largest water bodies here include lakes Borodaevskoe and Ferapontovskoe. These reservoirs have similar origin but different morphology; they are connected to each other by a relatively wide channel. They locate in a protected area, so the anthropogenic load manifests mainly in the active residential development on their shores that has expanded in recent decades.

Studying of zooplankton in small lakes of the Russky Sever (Russian North) National Park began in 1969 as part of a lake research expedition of the Vologda State Pedagogical Institute (Antipov et al., 1981). Cadastral studies covered 21 lakes. These surveys brought the first information about the aquatic inhabitants of the lakes Borodaevskoe and Ferapontovskoe. Unfortunately, these results comprise only fragmentary data on the zooplankton abundance. During that period, it amounted up to 1.8 g/m3 in Lake Borodaevskoe and up to 0.8 g/m3 in Lake Ferapontovskoe.

In 1975, in order to assess the possibility of organizing a fish farm, the Vologda laboratory of Gos-NIORKH (currently, the Vologda Branch of Russian Federal Research Institute for Fisheries and Oceanography, hereinafter, VologdaNIRO) conducted a comprehensive study of 12 largest lakes in the national park, including the lakes Borodaevskoe and Ferapontovskoe1. The research included four surveys (In March, May-June, July-August, and September-October). In 2004-2021, VologdaNIRO employees studied zooplankton in 12 small lakes in the Russky Sever (Russian North) National Park, nine of them were studied for the first time.

The studies of some lakes of the national park (Siverskoe, Zaulomskoe) was carried out by I.D.Pap-anin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS). In 1983, 1993, 2005-2009, and 2013, zooplankton of Lake Ferapontovskoe was analyzed including the subglacial period (Lazareva and Zhdanova, 2020; Rivier, 2012; Verbitsky et al., 2016).

This work aims at studying the composition, structure and zooplankton abundance in the lakes Borodaevskoe and Ferapontovskoe during different periods2.

Material and methods

Studies on zooplankton of the lakes Borodaevskoe and Ferapontovskoe were carried out in June 2008, and March and July 2021. The paper also presents an analysis of the VologdaNIRO archival materials containing the results of the research conducted in 19751 and published works (Lazareva and Zhdanova, 2020; Rivier, 2012; Verbitsky et al., 2016).

The analyzed water bodies locate in the central part of Russky Sever (Russian North) National Park, they are of glacial origin and are connected by a wide strait, which was expanded for timber rafting (Maksyutova et al., 2007). The lakes differ significantly in area, depth, and shape (Table 1). Lake Borodaevskoe has a maximum depth of 10.5 m, an indented shoreline, many islands in the water area, and a pronounced littoral zone, overgrown with macrophytes. Lake Ferapontovskoe has an abrupt depth increase down to 30 m and much less macrophyte thickets. According to the relative depth index (Ivan-ov, 1948), this reservoir is classified as deep, while Lake Borodaevskoe belongs to the group of shallow lakes. At the same time, both lakes have a similar degree of vertical dissection of the basin as evidenced by equal values of the capacity coefficient (Table 1).

In summer, lakes are characterized by similar surface water temperature, transparency, and pH. In March 2021, the surface temperature in Lake Borodaevskoe was 1.0 °C, in Lake Ferapontovskoe, 0.5 °C. In July 2021, there was a pronounced temperature stratification in both lakes; metalimnion was located at a depth of 4-6 m. During this period, the surface temperature in the lakes was 5 °C higher than in June 2008 (Table 1).

1 Development of recommendations for the rational management of fisheries on the lakes of Lozsko-Azat fish farm (final report on stage 1 - Lakes Kirillovskie), 1976. Research report. Vologda Laboratory of "GosNIORKH", Vologda, USSR, 89 p.

2 The materials of the paper were presented at the XV Regional Conference "Local History Research in the European North" dedicated to the 30th anniversary of the establishing of Russky Sever (Russian North) National Park.

In 1975, the zooplankton sampling was performed using a Juday net (mesh size of 110 ^m) at three stations in each reservoir (Fig. 1). In 2008 and 2021, the sampling was carried out with a small Juday net (mesh size 75 ^m). The samples were fixed by 40% formaldehyde solution down to a final concentration of 4%. In March 2021, the samples were taken from depths of 7.0-8.5 m in Lake Borodaevskoe and 18-25 m in Lake Ferapontovskoe, at three stations in each reservoir. The sampling stations during this period were located in the deepest parts of the lakes. In summer of 2008 and 2021, the sampling stations were both in in deep lake areas and in typical macrophyte communities (Fig. 1). In the littoral zone, the samples were taken from the bottom to the surface of the water (depth of 1.0-1.5 m), in the pelagic zone, at a 3-9-m depth in Borodaevskoe Lake and 3-29-m depth in Ferapontovskoe Lake. In total, 52 zooplankton samples were collected and processed in 2008 and 2021.

Zooplankton samples were processed in the laboratory in accordance with generally accepted methods (Metodika..., 1975). The taxonomy analysis was carried out using identification keys (Korovchinskii et al., 2021; Kutikova, 1970; Lazareva and Zhdanova, 2020; Opredelitel' zooplanktona..., 2010). The nomenclature of rotifers and crustaceans is given in accordance with N.M. Korovchinskii et al., 2021 and "Opredelitel' zooplanktona..., 2010". The individual body mass was calculated using the body length to body mass equations (Balushkina and Vinberg, 1979; Ruttner-Kolisko, 1977). The zooplankton abundance (ind./m3) and biomass (g/m3) was calculated. The dominant species were those with a relative abundance exceeding 5% of total. Species occurrence was assessed as the ratio of the number of samples where the species was recorded to the total number of samples.

Data were processed using standard methods (Ivanter and Korosov, 2010) using MS Excel 2016 software with the built-in functions and the original macros developed. The zooplankton composition was classified using hierarchical cluster analysis based on the Bray-Curtis similarity index using the pairwise joining method using Past 4.0.

Table 1. Characteristics of the studied lakes.

Lake

Parameters

Borodaevskoe Ferapontovskoe

Coordinates N 59.961665E 38.477368 N 59.956696 E 38.547311

Area, km2 5.5 1.5

Perimeter, km 22.3 7.1

Maximum depth, m 10.5 30.0

Average depth, m 3.1 8.2

Shoreline indentation coefficient 2.7 1.6

Capacity factor 0.3 0.3

Openness percentage 1.8 0.2

Relative depth indicator 1.8 7.2

Period (month, year) VII .1975 VI.2008 2021 III VII VII.1975 VI.2008 2021 III VII

Transparency, m 2.2 2.0 - 2.2 2.0 2.5 - 3.0

Oxygen concentration, mg/L 7.5 9.7 11.4 9.2 8.1 9.8 12.8 8.7

pH 8.2 8.8 8.0 7.8 8.2 8.8 8.0 7.8

Surface water temperature, °C 23.2 20.0 1.0 25.9 24.0 20.7 0.5 25.7

Fig. 1. Zooplankton sampling sites at the lakes Borodaevskoe and Ferapontovskoe during different study periods.

Results

In total, 70 zooplankton species were registered in the lakes Borodaevskoe and Ferapontovskoe, of which 21 species of Rotifera, Cladocera, 32, and Copepoda, 17 (Table 2). The Bray-Curtis similarity index was 0.7. The greatest similarity (0.80-0.83) was found for the zooplankton communities of similar biotopes (Fig. 2A). In Lake Ferapontovskoe, several species of cold-water rotifers were noted (Conochiloides natans, Keratella hiemalis, K. irregularis, and Polyarthra dolichoptera). The finding of these species might be associated with more detailed winter studies of Lake Ferapontovskoe by IBIW RAS (Rivier, 2012).

In 1975, Limnocalanus macrurus, one of the species of relict crustaceans inhabiting water bodies of the Vologda Oblast, was registered in Lake Borodaevskoe. According to the published data, L. macrurus was discovered in Lake Ferapontovskoe as well in summer of 2005 and 2007 (Rivier, 2012). Its abundance was only ~200-300 ind./m3. This is a stenothermic, cold-loving crustacean demanding on the concentration of oxygen in water. Due to the limited distribution, small numbers, and sensitivity to water quality, L. macrurus is listed in the Red Book of the Vologda Oblast (2010) with status 3 (NT) as a rare species in a status of being close to the threatened one3. In 2021, L. macrurus was not registered in the lakes Borodaevskoe and Ferapontovskoe; this indicated a low abundance of this species in the studied water bodies or even its total disappearance from them.

In 2021, copepodites and adults of Cyclops bohaterwere found in the lakes. This species was registered quite recently in the water bodies of the northern and central parts of European Russia (Lazareva and Zhdanova, 2020; Zhdanova and Lazareva, 2009). In Lake Ferapontovskoe, it was first discovered in 2013 (Lazareva and Zhdanova, 2020). Previously, it was probably registered as Cyclops abyssorum (Rivier, 2012).

In Lake Ferapontovskoe, crustacean abundance was significantly higher comparing to that in Lake Borodaevskoe. In March, the average number of cyclops in this reservoir was 170 ind./m3, which accounted for 8% of total zooplankton abundance. Single copepodites IV-V of C. bohater were found in Lake Borodaevskoe. In July 2021, the average abundance of C. bohater was only 5 ind./m3 (0.2% of total zooplankton abundance and 0.7% of the copepod abundance) in Lake Borodaevskoe, and 443 ind./m3 (0.3% and 0.5%, respectively) in Lake Ferapontovskoe.

3 Decree of the Government of the Vologda Oblast dated July 25, 2022, No. 942 "On approval of lists of rare and endangered species (intraspecific taxa) of plants, fungi and animals listed in the Red Book of the Vologda Oblast, lists of species (intraspecific taxa) of plants, fungi and animals in need in scientific monitoring in the Vologda Oblast".

Table 2. Taxonomic composition of zooplankton in the lakes Borodaevskoye and Ferapontovskoye: "+++" - high occurrence (> 80% samples), "++" - average occurrence (50-80% samples), "+" - low occurrence (< 50% samples); * - species discovered by IBIW RAS only (Rivier, 2012).

Lake Borodaevskoe

Lake Ferapontovskoe

Taxon

Ю CO T-

О CN

900 T- eg cn

ю oo о

90 12

2 0 2

PHYLUM ROTIFERA Fam. Filiniidae Harring and Myers, 1926

Filinia longiseta (Ehrenberg, 1834)

F. maior (Colditz, 1914) Fam. Conochilidae Harring, 1913 Conochilus unicornis Rousselet, 1892

Conochilus sp. Conochiloides natans (Seligo, 1900) Fam. Euchlanidae Ehrenberg, 1838 Euchlanis dilatata Ehrenberg, 1838 Fam. Brachionidae Ehrenberg, 1838 Kellicottia longispina (Kellicott, 1879) Keratella cochlearis (Gosse, 1851) K. hiemalis Carlin, 1943 K. irregularis (Lauterborn, 1898) K. quadrata (Müller, 1786) Fam. Asplanchidae Eckstein, 1883 Asplanchna priodonta Gosse, 1850 Fam. Trichocercidae Harring, 1913

Trichocerca (s. str.) capucina (Wierzejski et Zacharias, 1893)

Trichocerca sp.

Fam. Synchaetidae Hudson and Gosse, 1886

Synchaeta oblonga Ehrenberg, 1838

S. verrucosa Nipkov, 1961 Polyarthra dolichoptera Idelson, 1925 P. euryptera Wierzejski, 1891 P. major Burckhardt, 1900 P. vulgaris Carlin, 1943 Polyarthra sp.

CLASS CRUSTACEA Brünnich, 1772 SUPERORDER CLADOCERA Latreille, 1829

Fam. Sididae Baird, 1850

Diaphanosoma brachyurum (Lievin, 1848)

+++

+ ++

+ +

+ +++ + + +++ +

+++

+ +

+ +

+ +

+ +

+ +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+ + +

- +++

++ ++

++

++

+ +++ ++ + +++ -

+ +++ +

+ +

+ + +* +* +

+ +++ + +

+ +

+* +* +* + +*

+++

- +++

+

+

+

*

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Lake Borodaevskoe

Lake Ferapontovskoe

Taxon

Ю CO

h- о 90 12

2 0 2

a t o

Ю CO

h- о 90 12

2 0 2

a t o

Latona setifera (O.F. Müller, 1776) - - - - + - - +

Limnosida frontosa Sars, 1862 + - - + - + - +

Sida crystallina crystallina (O.F. Müller, 1776) - + + + - + + +

Fam. Daphniidae Straus, 1820

Ceriodaphnia pulchella Sars, 1862 + - - + + - - +

C. quadrangula (O.F. Müller, 1785) - + ++ + - +++ + +

C. reticulata (Jurine, 1820) - - + + - - - -

Ceriodaphnia sp. - + ++ + - - ++ +

Daphnia (Daphnia) cristata Sars, 1862 + +++ +++ + + +++ ++ +

D. (D.) cucullata Sars, 1862 + +++ ++ + + ++ +++ +

D. (D.) galeata Sars, 1864 - - + + - - ++ +

D. (D.) longiremis Sars, 1862 - - + + - - + +

D. (D.) longispina O.F. Müller, 1785 + - + + + + - +

Simocephalus vetulus (O.F. Müller, 1776) - - - - - - + +

Fam. Bosminidae Sars, 1865

Bosmina (Eubosmina) cf. coregoni Baird, 1857 + +++ ++ + + +++ +++ +

B. (E.) cf. gibbera Schoedler, 1863 - - + + - - + +

B. (E.) cf. longispina Leydig, 1860 - - - - - - + +

B. (E.) cf. reflexa Seligo, 1900 - - + + - - - -

B. (Bosmina) longirostris (O.F. Müller, 1776) + +++ + + + +++ ++ +

Fam. Chydoridae Dybowski et Grochowski, 1894

Acroperus harpae (Baird, 1834) - - + + - - + +

A. quadranqularis (O.F. Müller, 1776) + - - + + - - +

Alona sp. - - - - - - + +

Alonopsis elongatus (Sars, 1862) - - + + - - - -

Coronatella (Coronatella) rectangula (Sars, 1862) + - - + - - - -

Chydorus ovalis Kurz, 1875 - - - - - - + +

C. sphaericus (O.F. Müller, 1776) + +++ +++ + + ++ ++ +

Flavalona costata (Sars, 1862) - - + + - - + +

Graptoleberis testudinaria (Fischer, 1851) - - + + - - + +

Leydigia (Leydigia) leydigi (Schödler, 1863) + - - + - - - -

Pleuroxus truncatus (O.F. Müller, 1785) - + - + - - - -

P. uncinatus Baird, 1850 - - - - + - - +

Pseudochydorus globosus (Baird, 1843) - - + + - - - -

Lake Borodaevskoe

Lake Ferapontovskoe

Taxon

m

9

8 0 0 2

2 0 2

m

9

8 0 0 2

2 0 2

Fam. Leptodoridae Lilljeborg, 1861

Leptodora kindtii (Focke, 1844) +

Fam. Polyphemidae Baird, 1845

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Polyphemus pediculus (Linnaeus, 1761) -

Fam. Macrothricidae Norman et Brady, 1867

Macrothrix laticornis (Jurine, 1820) +

SUPERORDER COPEPODA Milne-Edwards, 1840

Cем. Diaptomidae G.O. Sars, 1903

Eudiaptomus gracilis (Sars, 1863) +

E. graciloides (Lilljeborg, 1888) + Fam. Temoridae Sars, 1902

Heterocope appendiculata (Sars, 1863) -Fam. Centropagidae Giesbrecht, 1892

Limnocalanus macrurus Sars, 1863 +

Fam. Cyclopidae Dana, 1846

Cyclops bohater Kozminski, 1933 -

C. kolensis Lilljeborg, 1901 -

C. scutifer Sars, 1863 -

C. strenuus Fischer, 1851 -

Eucyclops macruroides (Lilljeborg, 1901) -

E. macrurus fSars, 1863) -

E. serrulatus (Fischer, 1851) -

Macrocyclops albidus (Jurine, 1820) -

Megacyclops viridis (Jurine, 1820) -

Mesocyclops leuckarti (Claus, 1857) +

Thermocyclops oithonoides (Sars, 1863) +

T. crassus (Fischer, 1853) -

Paracyclops affinis (Sars, 1863) -

Cyclopoida gen. sp. -Rotifera Cladocera Copepoda Total species number

++

+++

++

++

-+ -+ ++ -+++ --+ - ++ -+ -+ +++ +++ - +++ -+ ++ -+++ +

14 27 17 58

+ +

+ + + + + + + + + + + + +

+ +

+ +

++

+++

++ + ++ +++

++

+ +

++ +++

-+ -+ +++ +++ - +++ -+ +-+++ ++

19 25 17 61

+ +

+ + + + + + + + + + + + +

+

+

+

+

+

+

+

+

+

+

+

+

+

*

+

+

+

+

During the subglacial period, the zooplankton of the reservoirs was represented by 11 species in Lake Borodaevskoe (Rotifera, 6 species, Cladocera, 2, Copepoda, 3), and 14 species in Lake Ferapon-tovskoe (Rotifera, 5, Cladocera, 4, Copepoda, 5). The average zooplankton abundance in Lake Borodaevskoe was ~6.3 thous. ind./m3 with a biomass of 0.2 g/m3. The dominant group were copepods (88% and 95% of the total abundance and biomass, respectively). In Lake Ferapontovskoe, the abundance of the zooplankton was slightly lower in March 2021. The average abundance was ~4.6 thous. ind./m3, biomass, 0.15 g/m3. Copepods comprised 93% of the total abundance and 97% of the total biomass.

Cyclops kolensis, a typical representative of cold-water species, dominated in both lakes during subglacial period. In summer, this Cyclopidae representative entered diapause, so it was not found in plankton. In March 2021, the average abundance of C. kolensis in the studied lakes was quite similar; in Lake Borodaevskoe, ~2.3 thous. ind./m3 (37% of the total), in Lake Ferapontovskoe, ~2.5 thous. ind./m3 (55% of the total). Copepodites IV-V and adult males were recorded in both reservoirs.

Eudiaptomus graciloides was another dominant winter species in the studied lakes. Its abundance in Lake Ferapontovskoe was 2.4 thous. ind./m3 (21% of the total zooplankton abundance) in March 2021. In Lake Borodaevskoye, the average abundance of E. graciloides was ~1.0 thous. ind./m3 (39% of the total). In summer, the abundance of this species in the water bodies increased up to ~5.0 thous. ind./m3 on average, but its share in the total abundance was only 3%.

The relative abundance of rotifers in the reservoirs was similar in March 2021 (5-6% of the total zooplankton abundance). The highest numbers were observed for Filinia major, Kellicottia longispina, and the species of the genus Synchaeta. The share of cladocerans in the total zooplankton abundance was 2% in Lake Borodaevskoe and 5% in Lake Ferapontovskoe. Daphnia cristata u Bosmina longiros-tris were characterized by the highest abundance among cladocerans.

The abundance of summer zooplankton in the studied lakes varied between years (Fig. 3A, B). In Lake Borodaevskoe, the abundance and biomass of the zooplankton was higher during all periods. The ratio of the main zooplankton groups was similar in the water bodies during different periods of research.

In summer, copepods formed 60% of the zooplankton population in Lake Ferapontovskoe and 70% in Lake Borodaevskoe. Mesocyclops leuckarti and Thermocyclops oithonoides dominated (Table 3). In Lake Borodaevskoe, the abundance of these species was almost equal (~15 and ~16 thous. ind./m3, respectively). In Lake Ferapontovskoe, the abundance of Thermocyclops oithonoides was 3 times higher (~4.8 and ~145 thous. ind./m3, respectively).

A

0.9-

3

U

2 O.i

CO

0.7-

m

CO

Hh

03

B

1.0

0.9

0.8

u 0.7

I

LH

PQ

0.6

0.5

0.4

__, ,-! CO oo V) m

CN <N o o

o O o o ON ON

<N CM 1 C-l CM 1 |

PH m Ph 03 03 Ph

Fig. 2. Dendrogram of similarity for the composition of zooplankton (A) and the composition of the dominant complex (B) between the lakes Ferapontovskoye and Borodaevskoye. F - Lake Ferapontovskoye, B - Lake Borodaevskoye, M - littoral with thickets of macrophytes, P - pelagic zone; 1975, 2008, 2021 - study years.

Cladocerans (Bosmina coregoni, Daphnia cristata, and D. cucullata) formed the basis of the zooplankton biomass. The biomass of copepods was lower, since small-sized nauplii and young copepo-dites dominated. Only in summer of 2008, there was an increase in the relative abundance and biomass of rotifers, when water temperature was relatively low.

In summer, in different periods of research, the dominant species in the lakes were represented by 5-7 eurybiont species widespread in the region (Table 3). In addition to Mesocyclops leuckarti, there were also Kellicottia longispina, Diaphanosoma brachyurum, Daphnia cucullata, D. cristata, Bosmina coregoni, Thermocyclops oithonoides, which dominated in the studied reservoirs during almost all study periods. However, similarity in the composition and structure of the core of dominants was low through the entire research period in the studied water bodies (Fig. 2B, Table 3).

A

B

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fig. 3. Average Zooplankton abundance (A), biomass (B), and water surface temperature in the lakes Borodaevskoye and Ferapontovskoye during different study periods.

Table 3. Dominant species of summer zoopiankton in the lakes Borodaevskoe and Ferapontovskoe during different periods of research: %N - share (as %) in the total zooplankton abundance, %B - share (as %) in the total zooplankton biomass;"+" - the species dominated,"-" - the species was not registered for the certain study period.

Lake Borodaevskoe Lake Ferapontovskoe

Taxon 2008 2021 2008 2021

1975 1975

%N %B %N %B %N %B %N %B

ROTIFERA

Kellicottia longispina + 35 3 65 8 64 4 86 < 1

Keratella cochlearis + 21 < 1 - - 19 < 1 - -

K. quadrata 32 17 - - 7 3 2 < 1

Asplanchna priodonta 7 78 - - + 5 90 3 98

CLADOCERA

Bosmina coregoni + 17 22 2 2 + 29 32 3 3

B. longirostris + 20 11 < 1 < 1 3 1 < 1 < 1

Daphnia cristata 10 18 3 6 + 18 25 7 14

D. cucullata + 1 6 5 16 + < 1 2 7 23

Diaphanosoma brachyurum < 1 < 1 5 9 - - 6 9

Chydorus sphaericus 2 2 <1 < 1 + < 1 < 1 < 1 < 1

COPEPODA

Mesocyclops leuckarti + 5 15 17 9 + 6 14 10 6

Thermocyclops oithonoides - - 18 8 - - 16 8

Eudiaptomus gracilis 1 5 - - + 1 5 - -

The zooplankton developed differently in different lake biotopes. In 2008, both zooplankton abundance and biomass were higher in macrophyte thickets comparing to that in the pelagic zone. In 2021, the zooplankton abundance was higher in the deep-water part of the lakes due to the intense water heating during a long period of extremely hot weather (Fig. 4). The ratio of the main zooplankton groups was similar in different lake biotopes. A relative abundance and biomass of copepods increased in 2021.

In the pelagic zone of the lakes, the abundance and biomass of crustaceans were significantly higher in 2021 compared to 2008. In the deep-water part, the dominant species were Kellicottia longispina, Daphnia cristata, Mesocyclops leuckarti, and Thermocyclops oithonoides. In 2008, Bos-mina coregoni, Keratella cochlearis, and K. quadrata were the dominants here also, as well as Daphnia cucullata in 2021.

In 2008 and 2021, the average abundance of crustaceans and rotifers in macrophyte thickets amounted to ~299.5 and ~110.2 thous. ind./m3, respectively, in Lake Borodaevskoe, and ~89.3 and ~127.3 thous. ind./m3 in Lake Ferapontovskoe (Fig. 4A). The differences in the average zooplankton biomass were lower in these parts of both lakes. In Lake Borodaevskoe, the average biomass of coastal zooplankton was 1.8 g/m3 in 2008 and 1.6 g/m3 in 2021, in Lake Ferapontovskoe, 0.7 and 1.1 g/m3, respectively (Fig. 4B). Kellicottia longispina, Bosmina coregoni, and Mesocyclops leuckarti dominated in the macrophyte thickets. In 2008, the core of dominants has expanded due to Keratella cochlearis, K. quadrata, and Daphnia cristata; in 2021, it also included Euchlanis dilatata and Thermocyclops oi-thonoides (Fig. 5A).

The share of phytophile crustacean species in the total abundance and biomass of zooplankton in macrophyte thickets in Lake Borodaevskoe was 8% and 88%, respectively. In Lake Ferapontovskoe, the relative abundance of these species was lower (3% and 20%). The highest abundance and biomass were characteristic for Sida crystallina, Polyphemus pediculus, and Graptoleberis testudinaria.

In the deep-water areas of the lakes, the share of phytophile species was only 0.01% of the total zooplankton abundance. In thickets of aerial-aquatic plants (Phragmites australis (Cav.) Trin. ex Steud., Schoenoplectus lacustris (L.) Pallas), the relative abundance of phytophile species did not exceed 1%. Sida crystallina developed in large numbers in the thickets of macrophytes with floating leaves (Nym-phaea candida J. Presl et C. Presl, Nuphar lutea L. Smith) and especially among submerged plants (Potamogeton sp.). Relative abundance of crustaceans in these communities in Lake Borodaevskoe reached 30% of the total, in Lake Ferapontovskoe, 11%. The high share of phytophile species in the total zooplankton biomass in the overgrown biotopes was also due to the development of Sida crystallina. Due to its large size, this species formed up to 97% of the biomass of crustaceans here.

The structure of the core of dominant zooplankton species was similar in the pelagic zone and macrophyte thickets. The Bray-Curtis index for the zooplankton in different parts of the lakes was 0.85 in 2008. In 2021, high similarity was characteristic only for the core of dominant zooplankton species in the pelagic zone of the lakes (Fig. 5B). The zooplankton community of macrophyte thickets was very specific, especially in Lake Borodaevskoe. In July 2021, copepods, including nauplii, composed the bulk of the littoral zooplankton population in this reservoir. Rotifers from the family Brachionidae were not dominant in these parts of the lake, although they dominated throughout the entire water area of Lake Ferapontovskoe. Only Bosmina coregoni as a representative of cladocerans was among the dominants with a relative abundance of 5% in macrophyte thickets in Lake Borodaevskoe (Fig. 5A).

Discussion

Due to the common history of formation and the presence of the channel between the lakes Boro-daevskoe and Ferapontovskoe, the zooplankton composition is similar in these reservoirs. In Lake Borodaevskoe, a larger amount of benthic and phytophile cladocerans has been noted due to its pronounced littoral zone overgrown by macrophyte thickets.

Basin morphology and hydrological regime of Lake Ferapontovskoe favor habitat with optimal conditions for the relict crustacean Limnocalanus macrurus, preferring low water temperature and high oxygen concentration. Discovery of this crustacean in the shallow Lake Borodaevskoe in 1975 might be caused by the introduction of single individuals from Lake Ferapontovskoe. In 2005 and 2007, single specimens of L. macrurus were found in Lake Ferapontovskoe (Rivier, 2012). In 2021, this species was not registered in the reservoir. In Lake Sita (Belarus), the abundance of L. macrurus showed a catastrophic decline after an abnormally hot summer, when the surface water temperature warmed up to 26.2 °C. The population number recovered only four years later (Vezhnovets, 2017). During some years, intense water heating was registered in the water bodies of the Vologda Oblast as well. Most likely, it

A

B

Fig. 4. Average abundance (A) and biomass (B) of summer zooplankton in different biotopes in the lakes Borodaevskoye and Ferapontovskoye in 2008 and 2021.

also had a negative impact on the initially low abundance of L. macrurus in Lake Ferapontovskoe. Surveying this species in the studied lakes requires further monitoring.

In addition to Lake Ferapontovskoe, L. macrurus has been found so far only in the lakes Svyatozero and Korbozero (Vashkinsky District) among the numerous small lakes studied throughout the Vologda Oblast (Lobunicheva et al., 2022). Lake Svyatozero, as Lake Ferapontovskoe, provides the most favorable living conditions for glacial relict species. The metalimnion is located relatively shallow (at 3-4-m depth); the water warms up slightly in summer; the zone with an oxygen concentration of less than 6 mg/L is relatively small; sandy and rocky soils are common over a large area at the bottom. Together with a low anthropogenic load, it favors for a relatively high abundance of L. macrurus. In July 2021, the abundance of this relict crustacean in Lake Svyatozero was ~1.2 thous. ind./m3 (10% of the total zooplankton abundance). Every spring, population of L. macrurus in Lake Korbozero is replenished from Lake Svyatozero through a channel. At the same time, the number of crustaceans in this reservoir is very low in summer making 2.5-5.0 ind./m3 (less than 0.1% of the total zooplankton abundance).

A

100%

80%

I 60%

40%

20%

0%

2008 2021 2008 2021 Borodaevskoe Ferapontovskoe

pelagial

■1 2 3 ■4 ■5 ■6 ■7

2008 2021 2008 2021 Ferapontovskoe Borodaevskoe

macrophytes 18 ■ 9 иЮ 11 ■ 12 ■ 13

B

(N О <N

(N О <N

1.0 л

0.9-0.S

■ 22 0.7 H "С з U

>> 0.6

KS U

ffl

CP fe

(N О (N

I

CQ

00 оо

H oo о о

es О о о

о О CS 1 Ol

1 S, s

Рч Рч Рн m

oo О

о

(NI

CQ

0.50.4 0.30.2

Fig. 5. Relative abundance (A) and similarity of dominant zooplankton species (B) in different areas of the lakes Borodaevskoye and Ferapontovskoye in 2008 and 2021. Dominant species: 1 - Daphnia cucullata, 2 - D. cristata, 3 - Bosmina cf. coregoni, 4 -B. longirostris, 5 - Mesocyclops leuckarti, 6 - Thermocyclops oithonoides, 7 - nauplii, 8 - Kellicottia longispina, 9 - Polyarthra vulgaris, 10 - Euchlanis dilatata, 11 - Filinia longiseta, 12 - Keratella cochlearis, 13 - K. quadrata.

In addition to L. macrurus, stenothermic copepods Cyclops bohater and C. kolensis inhabit the lakes Borodaevskoe and Ferapontovskoe. The typical cryophile C. kolensis is only recorded during the ice-covered period. C. bohater is more adapted to temperature fluctuations (Lazareva et al., 2022), so it is found in these lakes all year round. In the early 2000s, the abundance of these copepods has decreased compared to that observed in 1983 and 1993 (Rivier, 1986). The abundance of both species in March and July of 2021 were similar to those registered in 2008 and 2009 (Rivier, 2012).

According to published materials and original data, constant species composition is a characteristic of zooplankton community in Lake Ferapontovskoe both in summer (ice-free) and winter (ice-cover) period. Both zooplankton community structure and abundance depend on the water temperature. In Lake Ferapontovskoe, the zooplankton abundance increases (correlation coefficient of 0.9) along with intense water warming, while opposite dependence is registered for Lake Borodaevskoe (correlation coefficient of -0.6). In 1975, 2005, and 2021, surface water temperature in Lake Ferapontovskoe exceeded 23 °С in summer, while in 2007 and 2008, it was less than 20 °С (Table 1; Rivier, 2012). Intense water warming contributes to an increase in both the zooplankton abundance in 2005 and 2021 and the number of warm-water species, when the share of Daphnia cucullata, Mesocyclops leuckarti, and Thermocyclops oithonoides increases in the core of the dominant species. The average zooplankton abundance in the surface water layer (0-2 m) was ~223 thous. ind./m3 in July 2005. In July 2021, when the surface water temperature exceeded 25 °С, it amounted to ~533 thous. ind./m3. In 2005 and 2021, in the lake areas, where the depth was about 14 m, the average zooplankton abundance in the entire water column was ~98.4 and ~84.5 thous. ind./m3, respectively.

During abnormally hot periods (as in July 2021), when the entire water column warms up significantly in the shallow waters of the reservoir, the abundance of dominant cladocerans (Bosmina coregoni, B. longirostris, Daphnia cristata) reduces sharply. A similar pattern is reported for these and some other cladoceran species, when heated water from power plants is discharged into water bodies (Elagina, 1975; Rivier, 1975). These cladoceran species are eurybionts with wide temperature range. The optimal temperature range for B. longirostris is 11-23 °С (Verbitsky and Verbitskaya, 2002); as the water temperature exceeds 26 °C, the population density of this species decreases sharply (Elagina, 1975). High mortality rates of warm-water crustaceans (Bosmina coregoni, Daphnia cucullata, Diaphanoso-ma brachyurum, Mesocyclops leuckarti) in July 2005 is linked to low oxygen concentration (less than 3 mg/L) at the depths below 8 m (Rivier, 2012).

As a result, when the population density of dominant species reduces, the structure of the zooplankton community simplifies in shallow water bodies, especially in Lake Borodaevskoe. This leads to a general decrease in the zooplankton abundance in the reservoir. Specific features of Lake Ferapontovskoe (abrupt underwater slopes and extensive deep-water zone) ensures the enrichment of coastal zooplankton with organisms from the central part of the reservoir along with the wind mixing of the water layers.

Conclusions

The common origin and the presence of a connecting channel predetermine significant similarity in the zooplankton composition in the lakes Borodaevskoe and Ferapontovskoe. Significant depths create the necessary conditions for the habitat of cold-water and glacial relict species (Limnocalanus macrurus, Cyclops bohater, and C. kolensis).

The differences in the lake basin morphology affect the zooplankton community structure. In a relatively shallow Lake Borodaevskoe, zooplankton abundance is higher in the coastal zone. This preconditions higher average zooplankton abundance and biomass here compared to Lake Ferapontovskoe. The zooplankton community structure is similar in deep-water parts of both lakes.

In summer 2021, under conditions of intense water heating, the highest abundance and biomass of the zooplankton were recorded in the deep-water areas of both lakes. Compared to data obtained in 2008, the zooplankton abundance in the macrophyte thickets increased in Lake Ferapontovskoe; in Lake Borodaevskoe, on the contrary, it decreased due to a reduction in the abundance of the dominant cladoceran species. This brings similar values of the average abundance and biomass of the zooplankton in the lakes during this period.

References

Antipov, N.P., Zhakov, L.A., Lebedev, V.G., Shevelev, N.N., 1981. Ozera landshaftov kholmisto-morennykh ravnin [Lakes of hilly-moraine plains landscapes]. In: Lyapkina, A.A., Shevelev, N.N. (ed.), Ozernye resursy Vologodskoi oblasti [Lake Resources of the Vologda Oblast]. Vologda State Pedagogical University, Vologda, USSR, 38-93. (In Russian).

Balushkina, E.V., Vinberg, G.G., 1979. Zavisimost' mezhdu dlinoi i massoi tela planktonnykh rakoobraznykh [The relationship between the length and the body weight in planktonic crustaceans]. In: Vinberg, G.G. (ed.), Eksperimental'nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer [Experimental and field studies of the biological foundations of lake productivity]. Leningrad: Zoological Institute of the USSR Academy of Sciences, Leningrad, USSR, 58-72. (In Russian).

Elagina, T.S., 1975. Zooplankton Gor'kovskogo vodokhranilishcha v raione Kostromskoi GRES [Zooplankton of Gorkovskoie Reservoir in the zone of Kostromskaya power plant]. Ecology of the organisms of the heated waters in reservoirs. Trudy IBVV SSSR [Transactions of Institute for Biology of Inland Waters, Academy of Sciences of USSR] 27 (30), 244-257. (In Russian).

Ivanov, P.V., 1948. Klassifikatsiya ozyor mira po velichine i ikh srednei glubine [Classification of the world's lakes by size and their average depth]. Nauchnyj byulleten' LGU [Scientific Bulletin of Leningrad State University] 20, 29-36. (In Russian).

Ivanter, E.V., Korosov, A.V., 2010. Elementarnaya biometriya. Uchebnoe posobie [Elementary Biometrics: Tutorial]. Petrozavodsk State University Publishing House, Petrozavodsk, Russia, 104 p. (In Russian).

Korovchinskii, N.M., Kotov, A.A., Sinev, A.Yu., Neretina, A.N., Garibyan, P.G., 2021. Vetvistousye rakoobraznye (Crustacea: Cladocera) Severnoi Evrazii. T. 2 [Cladocera (Crustacea: Cladocera) of Northern Eurasia. Vol. 2]. KMK Scientific Press Ltd, Moscow, Russia, 544 p. (In Russian).

Krasnaya kniga Vologodskoi oblasti. T. 3. Zhivotnye [Red Book of the Vologda Oblast. Vol. 3. Animals], 2010. Bolotova, N.L. et al. (eds.). Poligraf-kniga, Vologda, Russia, 216 p. (In Russian).

Kutikova, L.A., 1970. Kolovratki fauny SSSR (Rotatoria). Podklass Eurotatoria (otryady Ploimida, Monimotrochida, Paedotrochida) [Rotifera fauna of the USSR (Rotatoria). Subclass Eurotatoria (orders Ploimida, Monimotrochida, Paedotrochida)]. Nauka, Leningrad, USSR, 744 p. (In Russian).

Lazareva, V.I., Zhdanova, S.M., 2020. Copepod Cyclops bohater (Crustacea, Copepoda) in the European part of Russia. Inland Water Biology 13, 528-538. https://doi.org/10.1134/S1995082920040069

Lazareva, V., Mayor, T., Malysheva, O., Medyantseva, E., Zhdanova, S., Grishanin, A., Verbitsky, V., 2022. Thermal tolerance of Cyclops bohater (Crustacea:Copepoda): selection of optimal and avoided conditions in experimental conditions. Diversity 14, 1106. https://doi.org/10.3390/d14121106

Lobunicheva, E.V., Litvin, A.I., Dumnich, N.V., Borisov, M.Ya., 2022. Rasprostranenie Limnocalanus macrurus Sars, 1863 (Centropagidae, Calaniformes) v vodnykh ob'ektakh Vologodskoi oblasti [Dispersion of Limnocalanus macrurus Sars, 1863 (Centropagidae, Calaniformes) in the water bodies of Vologda Oblast]. Sbornik tezisov dokladov nauchno-prakticheskoi konferentsii "Aktual'nye problemy izucheniya rakoobraznykh" [Proceedings of the scientific-practical conference "Current issues of studying crustaceans'], Borok, May 23-25. Institute of Natural and Technical Systems, Sevastopol, Russia, 35. (In Russian).

Maksutova, N.K., Cherepanova, T.P., Bolotova, N.L., Dumnich, N.V., Borisov, M.Ya., Lobunicheva, E.V., 2007. Landshaftoobrazuyushchie faktory. Belozerskii morennyi kholmisto-ozyornyi yuzhnotayozhnyi landshaft [Landscape-forming factors. Belozersk morained hilly and lacustrine south taiga landscape].

In: Maksutova, N.K. (ed.), Raznoobrazie landshaftov natsionalnogo parka "Russkii Sever" [Diversity of the Russky Sever (Russian North) National Park]. Vologda, Russia, 22-31. (In Russian).

Metodika izucheniya biogeocenozov vnutrennikh vodoemov [Methodology of studying biogeocenoses of inland reservoirs], 1975. Mordukhai-Boltovskoi, F.M. (ed.). Nauka, Moscow, USSR, 240 p. (In Russian).

Opredelitel zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii. T. 1. Zooplankton [Identification Guide to Zooplankton and Zoobenthos of Freshwater Bodies of European Russia. Vol. 1. Zooplankton], 2010. Alekseev, V.R., Tsalolikhin S.Ya. (eds.). KMK Scientific Press Ltd, Moscow, Russia, 495 p. (In Russian).

Rivier, I.K., 1975. Zooplankton Ivan'kovskogo vodokhranilishcha v zone vliyaniya podogretykh vod Konakovskoi GRES [Zooplankton of Ivankovskoie Reservoir in the zone influenced by heated water from Konakovskaya power plant]. Ekologiia organizmov vodokhranilishch-okhladitelei. Trudy IBVV SSSR [Ecology of the organisms of the heated waters in reservoirs. Transactions of Institute for Biology of Inland Waters, Academy of Sciences USSR] 27 (30), 220-243. (In Russian).

Rivier, I.K., 1986. Sostav i ekologiya zimnikh zooplanktonnykh soobshchestv [Composition and ecology of winter zooplankton communities]. Nauka, Leningrad, USSR, 160 p. (In Russian).

Rivier, I.K., 2012. Kholodnovodnyi zooplankton ozer basseina Verkhnei Volgi [Cold-water zooplankton of lakes in the Upper Volga basin]. Permyakov Publishing House, Izhevsk, Russia, 390 p. (In Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ruttner-Kolisko, A., 1977. Suggestion for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie. Ergebnisse der Limnologie 8, 71-78.

Verbitsky, V.B., Verbitskaya, T.I., 2002. Teploustoichivost' Bosmina longirostris O.F. Muller (Crustacea: Cladocera) i ee zavisimost' ot temperatury sredy obitaniya [The upper thermal tolerances of the Bosmina longirostris (O.F. Muller) (Crustacea: Cladocera) and its dependence on environmental temperatures]. Biologiya vnutrennikh vod [Inland Water Biology] 2, 55-59. (In Russian).

Verbitsky, V.B., Grishanin, A.K., Zhdanova, S.M., Lazareva, V.l., Malysheva, O.A., Medyantseva, E.N., 2016. Temperaturnye reaktsii 12 vidov presnovodnykh tsiklopov [Temperature reactions in twelve species of freshwater Cyclopoida copepods]. Zoologicheskii zhurnal [Zoological Journal] 95 (7), 815825. (In Russian). https://doi.org/10.7868/S0044513416070138

Vezhnovets, V.V., 2017. Vliyanie povysheniya temperatury na sostoyanie populyatsii reliktovogo rachka Limnocalanus macrurus Sars v mezotrofnom ozere [Influence of a temperature increase on the condition of the relic crustacean Limnocalanus macrurus Sars population in a mesotrophic lake]. Doklady Natsional'noi akademii nauk Belarusi [Reports of the National Academy of Sciences of Belarus] 61 (1), 73-77. (In Russian).

Zhdanova, S.M., Lazareva, V.I., 2009. Vidovoi sostav i prostranstvennoe raspredelenie letnego (iyul) zooplanktona ozera Glubokogo [Species composition and spatial distribution of summer (July) zooplankton of Lake Glubokoe]. Trudy gidrobiologicheskoj stantsii na Glubokom ozere [Proceedings of Gidrobiology Station at Lake Glubokoe] 10, 51-66. (In Russian).

Список литературы

Антипов, Н.П., Жаков, Л.А., Лебедев, В.Г., Шевелев, Н.Н., 1981. Озера ландшафтов холмисто-моренных равнин. В: Ляпкина, А.А., Шевелев, Н.Н. (ред.), Озерные ресурсы Вологодской области. ВГПИ, Вологда, СССР, 38-93.

Балушкина, Е.В., Винберг, Г.Г., 1979. Зависимость между длиной и массой тела планктонных ракообразных. В: Винберг, Г.Г. (ред.), Экспериментальные и полевые исследования

биологических основ продуктивности озер. Зоологический институт АН СССР, Ленинград, СССР, 58-72.

Вежновец, В.В., 2017. Влияние повышения температуры на состояние популяции реликтового рачка Limnocalanus macrurus Sars в мезотрофном озере. Доклады Национальной академии наук Беларуси 61 (1), 73-77.

Вербицкий, В.Б., Вербицкая, Т.И., 2002. Теплоустойчивость Bosmina longirostris O.F. Muller (Crustacea: Cladocera) и ее зависимость от температуры среды обитания. Биология внутренних вод 2, 55-59.

Вербицкий, В.Б., Гришанин, А.К., Жданова, С.М., Лазарева, В.И., Малышева, О.А., Медянцева, Е.Н., 2016. Температурные реакции 12 видов пресноводных циклопов. Зоологический журнал 95 (7), 815-825. http://www.doi.org/10.7868/S0044513416070138

Елагина, Т.С., 1975. Зоопланктон Горьковского водохранилища в районе Костромской ГРЭС. Экология организмов водохранилищ-охладителей. Труды ИБВВ АН СССР 27 (30), 244-257.

Жданова, С.М., Лазарева, В.И., 2009. Видовой состав и пространственное распределение летнего (июль) зоопланктона озера Глубокого. Труды Гидробиологической станции на Глубоком озере 10, 51-66.

Иванов, П.В., 1948. Классификация озер мира по величине и их средней глубине. Научный бюллетень ЛГУ 20, 29-36.

Ивантер, Э.В., Коросов, А.В., 2010. Элементарная биометрия. Учебное пособие. Издательство ПетрГУ, Петрозаводск, Россия, 104 с.

Коровчинский, Н.М., Котов, А.А., Синев, А.Ю., Неретина, А.Н., Гарибян, П.Г., 2021. Ветвистоусые ракообразные (Crustacea: Cladocera) Северной Евразии. Т. 2. Товарищество научных изданий КМК, Москва, Россия, 544 c.

Красная книга Вологодской области Т. 3. Животные, 2010. Болотова, Н.Л. и др. (ред.). Полиграф-книга, Вологда, Россия, 216 с.

Кутикова, Л.А., 1970. Коловратки фауны СССР (Rotatoria). Подкласс Eurotatoria (отряды Ploimida, Monimotrochida, Paedotrochida). Наука, Ленинград, СССР, 744 с.

Лазарева, В.И., Жданова, С.М., 2020. Копепода Cyclops bohater (Crustacea, Copepoda) в Европейской России. Биология внутренних вод 6, 550-561. http://www.doi.org/10.31857/ S032096522005006X

Лобуничева, Е.В., Литвин, А.И., Думнич, Н.В., Борисов, М.Я., 2022. Распространение Limnocalanus macrurus Sars, 1863 (Centropagidae, Calaniformes) в водных объектах Вологодской области. Сборник тезисов докладов научно-практической конференции «Актуальные проблемы изучения ракообразных», Борок, 23-25 мая 2022. Институт природно-технических систем, Севастополь, Россия, 35.

Максутова, Н.К., Черепанова, Т.П., Болотова, Н.Л., Думнич, Н.В., Борисов, М.Я., Лобуничева, Е.В., 2007. Ландшафтообразующие факторы. Белозерский моренный холмисто-озерный южнотаежный ландшафт. В: Максутова, Н.К. (ред.), Разнообразие ландшафтов национального парка «Русский Север». Вологда, Россия, 22-31.

Методика изучения биогеоценозов внутренних водоемов, 1975. Мордухай-Болтовской, Ф.М. (ред.). Наука, Москва, СССР, 240 с.

Определитель зоопланктона и зообентоса пресных вод Европейской России. Т. 1. Зоопланктон, 2010. Алексеев, В.Р., Цалолихин, С.Я. (ред.). Товарищество научных изданий КМК, Москва, Россия, 495 с.

Ривьер, И.К., 1975. Зоопланктон Иваньковского водохранилища в зоне влияния подогретых вод Конаковской ГРЭС. Экология организмов водохранилищ-охладителей. Труды ИБВВ АН СССР 27 (30), 220-243.

Ривьер, И.К., 1986. Состав и экология зимних зоопланктонных сообществ. Наука, Ленинград, СССР, 160 с.

Ривьер, И.К., 2012. Холодноводный зоопланктон озер бассейна Верхней Волги. Издательство Пермякова, Ижевск, Россия, 390 с.

Lazareva, V., Mayor, T., Malysheva, O., Medyantseva, E., Zhdanova, S., Grishanin, A., Verbitsky, V., 2022. Thermal tolerance of Cyclops bohater (Crustacea:Copepoda): selection of optimal and avoided conditions in experimental conditions. Diversity 14, 1106. https://doi.org/10.3390/d14121106

Ruttner-Kolisko, A., 1977. Suggestion for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie. Ergebnisse der Limnologie 8, 71-78.

i Надоели баннеры? Вы всегда можете отключить рекламу.