Транс$0рмацмa BKOCMCTeM ISSN 2619-0931 Online
Ecosystem Transformation
www.ecosysttrans.com
DOI 10.23859/estr-230410 EDN KXIEPN
UDC 574.622 (574.583+574.587)
Article
Modern state of plankton and benthos of large fishery water bodies in Vologda region
Ekaterina V. Lobunicheva1* , Nadezhda N. Makarenkova1 , IgorV. Filonenko1 , Kseniya N. Ivicheva2 , Anatoliy I. Litvin1, Nelya V. Dumnich1
1 Vologda Branch of FSBSI "VNIRO" ("VologodNIRO"), ul. Levicheva 5, Vologda, 160012 Russia
2 St. Petersburg Branch of FSBSI "VNIRO" ("GosNIORKH" named after L.S. Berg), ul. Makarova 26, St. Petersburg, 199053 Russia
Abstract. The paper deals with monitoring results of phytoplankton, zooplankton and zoobenthos of the Sheksna reservoir, lakes Kubenskoye and Vozhe in Vologda Oblast in 2018-2022. The highest biomass of algae was recorded in lake Beloye (10.1 g/m3). In other water bodies, the average biomass made up 6.3-7.3 g/m3. Diatom and cyanobacteria dominated in phytoplankton: diatom number was maximum in the river part of the Sheksna Reservoir, while cyanobacteria - in lake Beloye. Highly abundant Aph-anizomenon flos-aquae induced annual water bloom of lake Beloye. Density of zooplankton was the greatest in Vozhe (131 thous. ind./m3, 3.5 g/m3). Similar average biomass of zooplankton was noted in different parts of the Sheksna Reservoir (2.0 g/m3). In lake Kubenskoye, biomass reached 0.9 g/m3. Co-pepoda formed the base of zooplankton number and cladocera - of biomass. In contrast to lake Vozhe (2.6 g/m2), zoobenthos in lake Kubenskoye was highly abundant (7.6 g/m2). The average biomass of zoobenthos in the Sheksna Reservoir accounted for 4-5 g/m2. The dominant complex of zoobenthos included oligochaeta Limnodrilus hoffmeisteri, Tubifex newaensis, T. tubifex in all water bodies; chiron-omid larvae Chironomus sp., Procladius sp. - in the open sites; chironomids Endochironomus albipen-nis, Glyptotendipes gripekoveni, Cricotopus gr. sylvestris - in thickets. Chironomidae dominated in the Sheksna Reservoir and lake Vozhe, oligochaeta - in lake Kubenskoye.
Keywords: phytoplankton, zooplankton, zoobenthos, Sheksna Reservoir, lake Kubenskoye, lake Vozhe
Funding. This study was carried out as a part of State Task (No. 076-00004-23-00).
Acknowledgements. The authors thank all the colleagues of the Vologda Branch of the VNIRO for their assistance in sampling from the water bodies under study.
ORCID:
E.V. Lobunicheva, https://orcid.org/0000-0002-4158-1804 N.N. Makarenkova, https://orcid.org/0000-0001-8917-0150 I.V. Filonenko, https://orcid.org/0000-0001-9259-4261
K.N. Ivicheva, https://orcid.org/0000-0002-4764-6138 N.V. Dumnich, https://orcid.org/0000-0001-9599-0358
To cite this article: Lobunicheva, E.V. et al., 2023. Modern state of plankton and benthos of large fishery water bodies in Vologda region. Ecosystem Transformation 6 (4), 33-63. https://doi.org/10.23859/estr-230410
Received: 10.04.2023 Accepted: 06.06.2023 Published online: 25.10.2023
DOI 10.23859/estr-230410 EDN KXIEPN
УДК 574.622 (574.583+574.587)
Научная статья
Современное состояние планктона и бентоса крупных рыбохозяйственных водоемов Вологодской области
Е.В. Лобуничева1* , H.H. Макарёнкова1 , И.В. Филоненко1 , К.Н. Ивичева2 , А.И. Литвин1, Н.В. Думнич1
1 Вологодский филиал ФГБНУ «ВНИРО» («ВологодНИРО»), 160012, Россия, г. Вологда, ул. Левичева, д. 5
2 Санкт-Петербургский филиал ФГБНУ «ВНИРО» («ГосНИОРХ» им. Л.С. Берга), 199053, Россия, г. Санкт-Петербург, наб. Макарова, д. 26
Аннотация. Представлены результаты мониторинга фитопланктона, зоопланктона и зообенто-са Шекснинского водохранилища, озер Кубенское и Воже Вологодской области в 2018-2022 гг. Наибольшая биомасса водорослей была характерна для озера Белое (10.1 г/м3). В других водоемах средняя биомасса составляла 6.3-7.3 г/м3. В фитопланктоне преобладали диатомовые водоросли и цианобактерии. Численность диатомовых водорослей была максимальна в речной части Шекснинского водохранилища, цианобактерий - в оз. Белом. В оз. Белое наблюдалось ежегодное «цветение» воды из-за высокой численности Aphanizomenon flos-aquae. Наибольшее обилие зоопланктона регистрировалось в оз. Воже (131 тыс. экз./м3, 3.5 г/м3). Средняя биомасса зоопланктона на всей акватории Шекснинского водохранилища была сходна (2.0 г/м3), в оз. Кубенское равна всего 0.9 г/м3. Основу численности зоопланктона составляли копеподы, биомассы - кладоцеры. Наибольшее обилие зообентоса было характерно для оз. Кубенское (7.6 г/м2), наименьшее - для оз. Воже (2.6 г/м2). Средняя биомасса зообентоса в Шекснинском водохранилище составила 4-5 г/м2. В состав доминантов зообентоса во всех водоемах входили олигохеты Limnodrilus hoffmeisteri, Tubifex newaensis, T. tubifex, хирономиды родов Chironomus, Procladius в открытой части водоемов и хирономиды Endochironomus albipennis, Glyptotendipes gripekoveni, Cricotopus gr. sylvestris - в зарослях. Хирономиды доминировали в Шекснинском водохранилище и оз. Воже, олигохеты - в оз. Кубенское.
Ключевые слова: фитопланктон, зоопланктон, зообентос, Шекснинское водохранилище, озеро Кубенское, озеро Воже
Финансирование. Работа выполнена в рамках государственного задания № 076-00004-23-00.
Благодарности. Авторы благодарят всех сотрудников Вологодского филиала ФГБНУ «ВНИРО», принимавших участие в отборе проб на анализируемых водоемах.
ORCID:
Е.В. Лобуничева, https://orcid.org/0000-0002-4158-1804 Н.Н. Макарёнкова, https://orcid.org/0000-0001-8917-0150 И.В. Филоненко, https://orcid.org/0000-0001-9259-4261 К.Н. Ивичева, https://orcid.org/0000-0002-4764-6138 Н.В. Думнич, https://orcid.org/0000-0001-9599-0358
Для цитирования: Лобуничева, Е.В. и др., 2023. Современное состояние планктона и бентоса крупных рыбохозяйственных водоемов Вологодской области. Трансформация экосистем 6 (4), 33-63. https://doi.org/10.23859/estr-230410
Поступила в редакцию: 10.04.2023 Принята к печати: 06.06.2023 Опубликована онлайн:25.10.2023
Introduction
Large reservoirs of Vologda Oblast - the Sheksna Reservoir (its lake and river parts), including lakes Kubenskoye and Vozhe, are of vital importance in terms of fishery. The studies of aquatic organisms in large reservoirs of this region began at the beginning of the 20th century (Arnold, 1925; Linko, 1903). The large-scale investigations of plankton and benthos of lakes and the Sheksna Reservoir (built in 1963) were carried out in 1950-1970 (Antropogennoe vliyanie..., 1981; Gidrobiologiya ozyor..., 1978; Guseva, 1959; Kiseleva, 1951; Kuzmin, 1966a, b, 1976; Luferova, 1966; Mordukhay-Boltovskoy, 1978; Mordukhay-Boltovskoy and Mitropolskiy, 1959; Nikolaev, 1977; Ozero Kubenskoye..., 1977a, b; Pid-gaiko, 1969; Pikhtova, 1981; Poddubnaya, 1966; Rodionov et al., 1987; Sostoyanie rybnykh..., 1951; Strugach, 1951) and partially continued in the 1990s. (Sovremennoe sostoynie..., 2002).
For several decades, regular monitoring of plankton and benthos in the study water bodies was implemented by the Vologda Branch of VNIRO (Dumnich and Bolotova, 1996; Dumnich and Lobunicheva, 2016; Dumnich et al., 2021; Filonenko and Ivicheva, 2018; Ivicheva and Filonenko, 2018, 2023; Lobunicheva et al., 2022a; Makarenkova, 2015; Rastopchinova, 2004;). Since 2016, the monitoring of aquatic animals state in large water bodies has been carried out at a quarterly basis, including ice periods (Fig. 1). In conditions of natural and anthropogenic transformations of aquatic ecosystems, based on standard methods long-term observations of plankton and benthos make it possible to identify the changes occurring in their communities.
The purpose of this work is to assess the state of phytoplankton, zooplankton and zoobenthos of large fishery reservoirs in Vologda Oblast in summer of 2018-2022.
Material and methods
Characteristics of water bodies under study
In August-November 2018-2022, aquatic animals of the lake and river parts of the Sheksna reservoir, lakes Kubenskoye and Vozha were studied at the stations of the unified monitoring net (Fig. 1).
The Sheksna Reservoir is located in the western part of the Vologda Oblast. Created by damming the river Sheksna near the village Ust-Ugolskoye in June 1963, it is currently an integral part of the Volga-Baltic Waterway. The reservoir consists of three sections: the river Kovzhi (Belozerskaya), lake Beloye and the Sheksna flooded riverbed. The total length of the reservoir (from the Pakhomovsky to Sheksna hydroelectric complexes) is 262 km.
Fig. 1. Schematic map of location of sampling sites at large fishery reservoirs of Vologda oblast (2018-2022).
Lake Beloye is one of the largest fishery reservoirs in Vologda Oblast. The area of its water surface is 1284 km2; the average depth - 4.1 m and the maximum - 6.3 m; the length of the lake - 46 km; the average width - 32 km (Litvinov, 2002). Rather constant water level in the lake favors to navigation. Lake Beloye is of a rounded shape without bays, with uniform distribution of depths, without a pronounced thicket zone. At a distance of up to 2 km from the shore line to its center, bottom sediments are represented by sands. In some places, there are pebbles and boulders. The central part of the lake is composed of clayer silts. Substrates with different proportions of silts occupy almost 90% of the lake area. The deepest sites of its river mouths are covered by substrates with large plant detritus. In the northwestern part, there are remains of flooded woody vegetation along the coast.
The river part of the Sheksna reservoir includes the Sheksna flooded channel from lake Beloye to the Sheksna hydroelectric complex. The reservoir is stretched from north to south for 120 km. After its filling, more than 530 km2 of wetland forests (approximately 70% of which in the river part) were inundated (Ershova, 1968). A vast shoal was formed, i.e. the Sizma Razliv (Flood) occupying more than a half of the riverine part of the reservoir. Unlike lake Beloye, the river part of the Sheksna Reservoir has the deep-water zone (fairway) with depths of 20 m. At the same time, there are shallow water areas overgrown by macrophyte thickets in many parts of the reservoir. The average depth of the river part of
the reservoir is 3.3 m (Litvinov, 2002). At the site from lake Beloye to Sizma Razliv, bottom sediments are represented by a combination of peat, eroded soils and silty sands. Because of shipping, in the bottleneck places of the Volga-Baltic Canal a permanent destruction of its banks brings to formation of the narrow sandy littoral with the precipice. The fairway is heavily silted and periodically dredged.
Lakes Kubenskoye and Vozhe belong to the White Sea basin. Lake Kubenskoye is located in the central part of the Vologda Oblast. The total area of the reservoir is 417 km2 and its average depth -2.5 m (Polyakov, 2002). From northwest to southeast, the lake has an elongated shape with a strongly indented coastline. The characteristic feature of its hydrological regime is significant water fluctuations. It should be noted that after the reconstruction of the North Dvina water system their amplitude decreased. The majority of the coastal shoals are formed of sands. However, along the coast, there are also rocky bottom sites. Bottom sediments of the central part are represented by gray silts. In clay places of the northeastern part of the water body, silts in various combinations with pebbles, shell rock and sand are noted. The mouth sections of inflowing rivers are characterized by silted sandy alluviums.
Lake Vozhe is located in the north of the Vologda Oblast; it is not connected by artificial waterways with other water bodies. In fact, this is currently the only large water body in Vologda Oblast with a natural hydrological regime, not regulated by hydraulic structures. Its average area of 418 km2 varies significantly, depending on a season and water content. The long-term fluctuations of its water stages can reach 2 m; the average depth varies within 0.5-1.8 m (Tatarinova, 1979). The reservoir has the indented coastline, thick macrophyte thickets and swampy shores. The bottom sediments of the bays at the mouths of the inflowing rivers are represented by peat. Open areas of the littoral are composed of sands, in some places - of rocky ridges. The deep-water southern part of lake Vozhe is occupied by silts with sediments up to 2 m thick. The soils of the profundal in the northern part of the reservoir are predominantly sandy-clay with little silt.
Sample collection and processing
Phytoplankton sampling was implemented from the photic water layer with a Patalas bathometer (1 l) following the methodological recommendations (Metodika izucheniya..., 1975). The samples were fixed by Lugol solution with addition of formalin and then concentrated to 25 ml by settling. We quantitatively processed and identified algae using a Nageotte camera (0.01 ml) and a LOMO Mikmed 6 microscope. Biomass was calculated by the volumetric method; the specific algae weight was assumed to be 1 g/m3 (Kuzmin, 1975). Species > 10% of the total number and biomass of phytoplankton were classified as dominant. The taxonomic identification of algae was determined from "Opredelitel' pres-novodnykh vodorosley SSSR" and other literature (Komarek, 2013; Komarek and Anagnostidis, 1998, 2005; Komarek and Fott, 1983; Krammer and Lange-Bertalot, 1986, 1988, 1991a, b, etc.). The taxa representing more than 50% of all species found in the community were identified as dominants. The frequency of occurrence was defined from the ratio of the number of samples (where the given species was recorded) to the total number of samples.
Zooplankton samples were collected with a Judy net (inlet diameter of 18 cm, sieve with a mesh size of 75 ^m) followed by fixation with a 4% formalin solution. Sampling was made in the littoral and pelagic zones of water bodies. In the littoral, the material was collected in macrophyte thickets occupying most of this area. In the pelagic zone of lakes Kubenskoye and Vozhe, plankton was taken from the sites with depths of 2-3 m; in lake Beloye - from 2-4 m, in the river part of the Sheksna reservoir - on the fairway.
Laboratory processing of zooplankton samples was carried out in accordance with the standard methods (Metodicheskie rekomendatsii..., 1982). The taxonomic identification of organisms was performed using the appropriate Key (Korovchinsky et al., 2021; Kutikova, 1970; Opredelitel' zooplanktona..., 2010; etc.). The biomass of zooplankters was calculated by the formulas of the relationship between the mass and body length of organisms (Balushkina and Vinberg, 1979; Metodicheskie rekommendatsii..., 1982; Ruttner-Kolisko, 1977). In addition, the complexes of dominant species (with a relative abundance of more than 5%) were identified for rotifers and crustaceans. The total number (thous. ind./m3) and biomass (g/m3) of zooplankton, as well as individual taxonomic groups, were calculated.
Collection of zoobenthos on silts was carried out by the Peterson or Van Veen grabs with a capture area of 0.025 m2 (once) and on dense substrates - with a GR-91 rod grab with a bucket area of 0.007 m2 (three times). Sampling was made in the profundal and littoral zones (along the water edge and at depths less than 1 m), in bays and in the mouth of tributaries (the rivers Kovzha, Vozhega, Bolshaya
Elma, and Koy). Samples were washed using a sieve with a mesh size of 250 ^m, fixed with a 40% formalin solution, and studied in the laboratory. Bottom animals were identified to the lowest taxonomic levels possible (Opredelitel' zooplanktona..., 2016; Opredelitel' presnovodnykh..., 1977, 1999, 2001).
The average abundance and biomass of phytoplankton and zooplankton were analyzed based on material collected in August, zoobenthos - in August-November 2018-2022 A total of 488 hydrobiolo-gical samples were taken and processed (phytoplankton - 98, zooplankton - 144, zoobenthos - 246).
Mathematical data processing, including the estimate of the coefficient of variation (CV) and the error of mean values, were carried out by the standard statistical methods (Ivanter and Korosov, 2010) using MS Excel 2016 software (note: built-in functions and macros were specially created for calculating individual parameters). The classification of reservoirs by the level of a food base was made in accordance with M.L. Pidgaiko et al. (1968) and I.S. Trifonova (1990). The ArcGis 10 package served as the main tool in analyzing spatial data.
Results
The lake part of the Sheksna reservoir (Lake Beloye)
Phytoplankton
The phytoplankton composition of lake Beloye mainly consisted of cyanobacteria, diatoms and green algae. Other divisions were represented to a lesser extent. The genera Aulacoseira Thw., Fragilaria Lyngb., Navicula Bory (Bacillariophyta), Monoraphidium Kom.-Legn., Scenedesmus Meyen (Chlorophyta), and Aphanocapsa Näg. (Cyanophyta) stood out for species number and intraspecies taxa. Chlorococcales, Chroococcales, and Raphales dominated. Aulacoseira islandica (O. Müll.) Sim. (79%), Asterionella formosa Hass. (79%), Aphanizomenon flos-aquae Ralfs ex Born. & Flah. (67%), Actinocyclus normanii (Greg. ex Grev) Hust. (58%), Komma caudata (Geitler) D.R.A. Hill (50%), Stephanodiscus sp. (50%), Aulacoseira ambigua (Grun.) Sim. (46%), Aulacoseira sp. (42%), Cryptomonas marssonii Skuja (42%) were most common.
The average biomass of summer phytoplankton in lake Beloye reached 10.1 ± 2.37 g/m3 largely due to diatoms (6-99%) and cyanobacteria (1-87%), which also formed the bulk of cells (1-93% and 4-98%, respectively). Phytoplankton number was on average 97.5 ± 23.71 mln. cells/l (Table 1). Maximum abundance of phytoplankton was recorded mainly due to intensive development of Aulacoseira islandica and Aphanizomenon flos-aquae in 2021 (9.3 ± 1.50 g/m3 and 116.5 ± 29.66 mln. cells/l) and 2022 (11.8 ± 1.94 g/m3 and 93.5 ± 12.99 mln. cells/l). In 2018-2020, algae biomass was within 4.6-5.4 g/m3, its number - 23.2-55.0 mln. cells/l. Among diatoms, Actinocyclus normanii, Asterionella formosa, Aulacoseira ambigua, A. granulata (Ehr.) Sim., A. islandica, Aulacoseira sp., Fragilaria crotonensis Kitt., Stephanodiscus sp., Surirella sp. dominated in plankton. Among cyanobacteria, Aphanizomenon flos-aquae, Aphanocapsa delicatissima W. & G.S. West, A. holsatica (Lemm.) Cronb. & Kom., Dolichospermum sp., Microcystis aeruginosa (Kütz.) Kütz., M. wesenbergii (Kom.) Kom. ex Kom., Planktolyngbya limnetica (Lemm.) Kom.-Legn. & Cronb., Snowella lacustris (Chod.) Kom. & Hind., Woronichinia compacta (Lemm.) Kom. & Hind. prevailed in number and biomass. Dominant complexes also included Ceratium hirundinella (O.F. Müll.) Duj., Dictyosphaerium ehrenbergianum Näg., Pseudopediastrum boryanum (Turp.) Hegew., Pediastrum duplex Meyen, Staurastrum sp.
Zooplankton
Zooplankton of the lake part of the Sheksna Reservoir in 2018-2022 was represented by species widespread in the region. In 2020, invasive North American rotifer Kellicottia bostoniensis (Rousselet, 1908) was again noted in the water body. It was first detected there in 2005 (Lazareva and Zhdanova, 2014) and one specimen was found in March 2017 (Lobunicheva et al., 2022b).
The average number and biomass of zooplankton in the reservoir during the study period were 65.2 ± 8.29 thous. ind./m3 and 2.1 ± 0.30 g/m3, respectively (Table 2). Zooplankton abundance varied significantly over the years. CV for zooplankton number was 58%, for biomass - 49%. The maximum number and biomass of zooplankton (46.6 ± 3.04 thous. ind./m3 and 3.7 ± 0.74 g/m3) were recorded in August 2022. In 2018-2021, CV of the total number and biomass made up 49 and 16%, respectively. The average number of summer zooplankton was within 70.8 ± 10.47 thous. ind./m3 and biomass - 1.5 ± 0.23 g/m3.
Copepods (51-66%) formed the basis of zooplankton number in lake Beloye every summer. Among dominants were Mesocyclops leuckarti (Claus, 1857), Eudiaptomus gracilis (G.O. Sars, 1863). In
Table 1. Average number and biomass of phytoplankton in large fishery reservoirs of Vologda oblast (August 2018-2022).
Water body
Division Sheksna Reservoir River part Lake part (Lake Beloye) Lake Kubenskoye Lake Vozhe
Abundance, mln. cells/l
Bacillariophyta 14.21 ± 2.932 10.23 ± 1.812 19.83 ± 5.392 28.28 ± 8.206
Cyanophyta 16.22 ± 3.729 83.32 ± 23.678 59.13 ± 27.296 124.58 ± 28.259
Chlorophyta 3.20 ± 1.239 1.44 ± 0.336 11.63 ± 5.980 15.11 ± 3.929
Chrysophyta 0.12 ± 0.044 0.35 ± 0.108 1.05 ± 0.446 1.96 ± 0.521
Xanthophyta 0.03 ± 0.019 0.01 ± 0.007 0.03 ± 0.016 0.19 ± 0.042
Cryptophyta 3.40 ± 0.976 2.05 ± 0.617 3.59 ± 1.786 4.35 ± 1.188
Euglenophyta 0.27 ± 0.092 0.08 ± 0.037 1.53 ± 0.691 0.45 ± 0.107
Dinophyta 0.05 ± 0.018 0.02 ± 0.008 0.23 ± 0.123 0.42 ± 0.098
Total 37.50 ± 7.889 97.50 ± 23.706 97.02 ± 39.790 175.34 ± 40.662
Biomass, g/m3
Bacillariophyta 5.04 ± 1.114 4.82 ± 0.792 4.32 ± 1.130 4.42 ± 0.841
Cyanophyta 0.53 ± 0.103 4.51 ± 1.825 2.17 ± 1.086 1.35 ± 0.312
Chlorophyta 0.26 ± 0.045 0.29 ± 0.065 0.32 ± 0.114 0.74 ± 0.167
Chrysophyta 0.07 ± 0.035 0.05 ± 0.020 0.07 ± 0.024 0.18 ± 0.047
Xanthophyta 0.01 ± 0.007 < 0.01 ± 0.001 0.01 ± 0.002 0.03 ± 0.009
Cryptophyta 0.23 ± 0.039 034 ± 0.107 0.25 ± 0.077 0.18 ± 0.028
Euglenophyta 0.07 ± 0.023 0.05 ± 0.019 0.15 ± 0.062 0.08 ± 0.024
Dinophyta 0.09 ± 0.042 0.03 ± 0.009 0.02 ± 0.006 0.07 ± 0.017
Total 6.30 ± 1.133 10.09 ± 2.369 7.31 ± 2.463 7.05 ± 1.320
August, the share of Cyclops nauplii (up to 39%) in the community was high. Maximum biomass was characteristic of cladocerans (45-85% of the total biomass). Every year, Daphnia galeata Sars, 1864 dominated in the lake at the end of summer. In some years, a relatively high number of Daphnia cristata Sars, 1862, Chydorus sphaericus (O.F. Müller, 1776), Limnosida frontosa Sars, 1862 was recorded during this period.
Rotifers were abundant only in some years due to local mass development of Kellicottia longispina (Kellicott, 1879) and Conochilus hippocrepis (Schrank, 1803) (Lobunicheva et al., 2022a). In 2018-2022, their share in the total number did not exceed 20%. K. longispina andEuchlanis dilatata Ehrenberg, 1832 prevailed. Starting from 2019, a low abundance of rotifers of the genus Polyarthra (P. major Burckhardt, 1900, P. vulgaris Carlin, 1943, P. euryptera Wierzejski, 1891) was recorded in August.
Abundance of cladocerans and rotifers varied significantly over the years (CV 61-95%). Cladocera characterized by higher number and biomass was responsible for variations in total abundance of zooplankton.
Zoobenthos
In 2018-2022, zoobenthos abundance was similar throughout lake Beloye. The average number and biomass of zoobenthos in the lake during the study period made up 908 ± 114.0 ind./m2 and 4.0 ± 0.55 g/m2, respectively (Table 3a). The zoobenthos of the profundal was most diverse. Here, bottom
Table 2. Average number (N, th. ind./m3) and biomass (B, g/m3) of zooplankton of large fishery reservoirs of Vologda oblast (August 2018-2022).
A group of organisms
Bcero
Biotope Cladocera Copepoda Rotifera
NBNBNBNB
Sheksna Reservoir, lake part (Lake Beloye)
Mean 17.2 ±3.16 1.4 ±0.26 37.3 ±4.47 0.6 ±0.07 10.7± 1.81 0.1 ±0.02 65.2 ±8.29 2.1 ±0.30
Sheksna Reservoir, river part
Pelagial 48.2 ± 13.4 1.4 ±0.34 59.5 ±8.39 0.7 ±0.13 9.4 ±2.45 0.5 ±0.39 117.1 ±20.93 2.6 ± 0.75
Littoral 33.2 ± 11.83 1.0 ±0.36 39.6 ±9.75 0.5 ±0.14 4.5 ±1.53 0.1 ±0.04 77.3 ± 18.57 1.6 ±0.45
Mean 42.0 ±9.19 1.3 ±0.25 50.9 ±6.51 0.6 ± 0.09 6.7 ±1.53 0.1 ±0.03 99.6 ± 11.45 2.0 ±0.28
Lake Kubenskoye
Pelagial 10.7 ±2.85 0.4 ±0.11 72.5 ±8.99 0.4 ±0.05 13.6 ±4.00 0.1 ±0.05 96.8 ± 11.68 0.9 ±0.14
Littoral 6.4 ±2.57 0.4 ±0.19 64.9 ± 18.00 0.4 ±0.15 7.5 ±4.07 <0.1 ±0.02 78.7 ±20.27 0.9 ±0.31
Mean 9.8 ±2.33 0.4 ±0.09 70.9 ±7.92 0.4 ±0.05 12.2 ±3.22 0.1 ±0.04 91.6 ± 10.09 0.9 ±0.13
Lake Vozhe
Pelagial 51.2 ±6.98 1.7 ±0.27 90.7 ± 10.67 0.7 ±0.09 22.4 ±3.54 1.2 ±0.43 164.3 ± 17.78 3.6 ±0.58
Littoral 42.5 ±6.08 2.6 ±0.54 44.1 ±6.31 0.4 ±0.09 15.5 ±5.46 0.5 ±0.23 98.0 ± 11.53 3.4 ±0.60
Mean 46.8 ±4.62 2.1 ±0.30 67.8 ±6.93 0.6 ±0.06 19.3 ±3.14 0.9 ±0.26 131.1 ± 11.39 3.5 ±0.41
substrates were composed of silts inhabited by dominant representatives of zoobenthos, i.e. large chironomids of the genera Chironomus, Procladius, Polypedillum and tubificids Limnodrilus hoffmeisteri Claparede, 1862, Tubifex newaensis (Michaelsen, 1903), T. tubifex (Müller, 1774).
The highest number and biomass of zoobenthos in lake Beloye were recorded in 2018 (3010 ± 220.5 ind./m2 and 7.8 ± 0.52 g/m2, respectively). In 2019-2022, the number and biomass of zoobenthos of the lake were low. The decreased average values of these indicators were mainly associated with a reduced number of chironomids in the reservoir. Dominant representatives of this group involved Chironomus sp. with relatively large larvae. Spatial distribution of Chironomus sp. in the reservoir was extremely uneven. The abundance of chironomids in a particular growing season strongly correlated with air temperature and wind regime during the period of adult swarming (Motyl' Chironomus..., 1983; Shilova, 1976). May-June of 2018-2022 in the Vologda Oblast was distinguished by anomalously high and low air temperatures (Doklad ob osobennostyakh..., 2023). Thermal fluctuations brought to reduction in the number and biomass of chironomids in the lake.
The river part of the Sheksna reservoir
Phytoplankton
The composition of phytoplankton in the river part of the Sheksna Reservoir in summer was formed mainly of green and diatom algae, and to a lesser extent - of representatives of other divisions and cyanobacteria. The genera of green Monoraphidium, Oocystis A. Br., Pediastrum Meyen, Scenedesmus, diatoms - Aulacoseira, Fragilaria, cyanobacteria - Dolichospermum (Ralfs ex Born. & Flah.) Wacklin, Hoffmann & Kom., golden - Dinobryon Err., and cryptophyte algae - Cryptomonas Ehr. stood out for species number and intraspecific taxa. The leading divisions in phytoplankton included Araphales, Chlorococcales, Melosirales, and Raphales. The most common species in the community were Aulacoseira islandica (62%), Asterionella formosa (58%), Aphanizomenon flos-aquae (58%), Aphanocapsa incerta (Lemm.) Cronb. & Kom. (54%), Monoraphidium contortum (Thur.) Kom.-Legn. (54%), Actinocyclus normanii (50%).
In summer, the average long-term phytoplankton biomass reached 6.3 ± 1.13 g/m3 (Table 1) mostly due to diatoms Aulacoseira ambigua, A. islandica, Aulacoseira sp., Actinocyclus normanii, Gyrosigma attenuatum (Kütz.) Rabenh., Melosira varians Ag., Stephanodiscus sp. (50-93%). On average, the highest biomass indicators were observed in 2019 (12.3 ± 2.60 g/m3) because of intensive development of diatoms, in particular, of Aulacoseira and Asterionella formosa species. High algae biomass was also noted in 2022 (8.2 ± 2.18 g/m3) at high concentrations of both diatoms (Asterionella formosa, Aulacoseira islandica) and cyanobacteria (Aphanizomenon flos-aquae, Aphanocapsa delicatissima, A. holsatica, Microcystis aeruginosa, M. wesenbergii, Planktolyngbya limnetica, Pseudanabaena limnetica (Lemm.) Kom.). The average abundance of algae varied as 7.8 ± 4.03 and 77.5 ± 8.89 mln. cells/l in 2020 and 2022, respectively. The long-term average number accounted for 37.5 ± 7.89 mln. cells/l. The basis of phytoplankton number was cyanobacteria (up to 76% of the total number), among which Aphanizomenon flos-aquae, Aphanocapsa holsatica, A. delicatissima, Dolichospermum sp., Oscillatoria sp., Phormidium sp., Microcystis aeruginosa, Planktolyngbya limnetica, Pseudanabaena limnetica prevailed. Diatoms also dominated (12-65%). The largest number of cyanobacteria was noted in 2021-2022 (34.2 ± 6.29 and 21.0 ± 3.19 mln. cells/l, respectively).
Zooplankton
In summer, zooplankton in deep-water and coastal areas of the river part of the Sheksna Reservoir differed. The peak of zooplankton abundance was usually recorded in the fairway of the reservoir (Table 2). Only in August 2018, its number and biomass in macrophyte thickets were higher due to relatively high density of phytophilic Sida crystallina (O.F. Müller, 1776) or Mesocyclops leuckarti. At some stations, abundant S. crystallina contributed to widely varying over the years the average number, and, especially, zooplankton biomass. Except for this species, CV for zooplankton abundance in the river part of the Sheksna Reservoir in August was 40% and biomass - 34%.
In August of 2018-2022, the average number of zooplankton in the reservoir made up 99.6 ± 11.45 thous. ind./m3 and biomass - 2.0 ± 0.28 g/m3. The highest and comparable number and biomass of zooplankton were recorded in the years 2018, 2021 and 2022.
The dominant group of zooplankters in the reservoir were crustaceans. In different years, their community was mainly formed by cladocerans or copepods. Cladocerans produced maximum biomass.
For the analyzed five-year period, the average biomass of Cladocera and copepods in August was comparable only for 2019. In 2021, rather high biomass (up to 6.3 g/m3) of rotifer Asplanchna priodonta Gosse, 1850 was recorded in some stations.
The composition of the dominant zooplankton complex in the reservoir remained the same. Chydorus sphaericus, Mesocyclops leuckarti, Eudiaptomus gracilis, Kellicottia longispina prevailed in the reservoir every year. Also, among the dominants were Bosmina coregoni Baird, 1857 and species of the genus Polyarthra. In some years, a high number of Diaphanosomabrachyurum(Lievin, 1848), Daphniacristata, Asplanchna priodonta, Keratella cochlearis (Gosse, 1851), Euchlanis dilatata was noted.
Zoobenthos
The greatest contribution to the number and biomass of zoobenthos in the riverine part of the Sheksna Reservoir was made by the inhabitants of silts concentrated along the fairway and in the old riverbeds existed before the reservoir construction. The number of organisms in these parts of the reservoir was most stable. Large chironomids of the genera Chironomus and Procladius, including tubificids Limnodrilus hoffmeisteri, Tubifex newaensis, T. tubifex predominated. In 2018-2022, the average number of zoobenthos in this part of the reservoir reached 1693 ± 346.9 ind./m2, biomass - 4.9 ± 0.91 g/m2 (Table 3a). The number was lower than the long-term average, while biomass - close to the latter one (Filonenko et al., 2021). In 2021, zoobenthos number was particularly low in the reservoir. In 2022, this indicator was within the average long-term values.
We recorded maximal number and biomass of zoobenthos in the bays and in the littoral of the river part of the Sheksna Reservoir. On rocky coastal sites and in vegetation of shallows, abundance of amphipod Gmelinoides fasciatus (Stebbing, 1899) was the highest. The number of this species in the water body could reach 7 thous. ind./m2, biomass - 21 g/m2.
Lake Kubenskoye
Phytoplankton
Diatoms and to a lesser extent - green and other divisions of algae, formed the basis of phytoplankton of lake Kubenskoye. The leading genera among greens were Monoraphidium, Pediastrum, Scenedesmus, diatoms - Euglena Ehr., euglenidae - Aulacoseira, Synedra Ehr, golden algae - Dinobryon, and cyanobacteria - Dolichospermum. They accounted for more than half of all species found in the community. In phytoplankton, Araphales, Chlorococcales, Euglenales, and Raphales were in the lead. By frequency of occurrence, Aulacoseira sp. (100%), A. ambigua (92%), Asterionella formosa (80%), Aulacoseira granulata (62%), Dolichospermum sp. (62%), Monoraphidium contortum (62%), Aphanizomenon sp. (50%), Pediastrum duplex (50%), Planktolyngbya limnetica (50%), Pseudanabaena limnetica (50%) predominated.
Summer phytoplankton of lake Kubenskoye was characterized by the average biomass of 7.4 ± 2.46 g/m3 and number of 96.9 ± 39.79 mln. cells/l (Table 1); diatoms accounted for 49-95% of biomass and 5-96% of population, while cyanobacteria - around 1-50% and 2-88%, respectively. The average biomass of algae varied from 1.6 ± 0.56 (2018) to 21.0 ± 7.85 g/m3 (2022). In 2018, cyanobacteria reached 86% of the total number of phytoplankton, among which Aphanocapsa delicatissima, A. holsatica;species of the genus Dolichospermum, Planktolyngbya limnetica, and Pseudanabaena limnetica dominated. The total number was 39.8 ± 19.58 mln. cells/l. The largest contribution to biomass was made by diatoms (up to 51%), in particular, threadworms Melosira varians, Aulacoseira ambigua, A. islandica, Aulacoseira sp. In 2022, when phytoplankton number showed its maximum (324.3 ± 109.35 mln. cells/l), cyanobacteria, green algae, and diatoms dominated in the community. The complex of cyanobacteria was predominantly formed by non-heterocyst filamentous alga Oscillatoriales (Planktolyngbya limnetica and Pseudanabaena limnetica dominated). Green algae were represented by Chlorococcal species. In particular, Ankistrodesmus falcatus (Corda) Ralfs, Pediastrum duplex, Scenedesmus quadricauda (Turp.) Breb. Among diatoms, Aulacoseira sp., Asterionella formosa, Stephanodiscusbinderanus (Kutz.) Krieg prevailed. In 2019-2021, algae biomass was 3.6-4.5 g/m3; its number - 5.0-99.6 mln. cells/l. In different years, dominant groups also included Ceratium hirundinella, Cymatopleura nobilis Hantzsch, Dolichospermum sp., Pediastrum angulosum Ehr. ex Menegh., Ulnaria acus (Kutz.) Aboal.
Zooplankton
In August of 2018-2022, the average number of zooplankters in lake Kubenskoye made up 91.6 ± 10.09 thous. ind./m3 with biomass of 0.9 ± 0.13 g/m3 (Table 2). The structure and abundance of zooplankton were similar throughout the water area.
Zooplankton of the lake demonstrated interannual fluctuations in its number and biomass. In 20182021, CV of the total number and biomass was 55 and 60%, respectively. Abundance of cladocerans varied greatly during the study period (106%). In different years, the average number and biomass of rotifers also differed significantly (124 and 128%, respectively). In August of 2021-2022, rotifers Euchlanis dilatata or Asplanchna priodonta were highly abundant. Rather high average zooplankton biomass was recorded in August 2018 (1.5 ± 0.40 g/m3) due to Daphnia cucullata Sars, 1862 and numerous Sida crystallina in different parts of the lake. Extremely low number and biomass of zooplankton were noted in August 2019 (19.8 ± 2.36 thous. ind./m3 and 0.1 ± 0.02 g/m3, respectively).
In lake Kubenskoye, copepods were the basis of zooplankton number. The relative biomass of copepods and cladocera were similar. In different years, the composition of dominants included up to six species. In late summer, Thermocyclops oithonoides (G.O. Sars 1863) and rotifers of the genus Polyarthra (P. euryptera, P. vulgaris, P. dolichoptera Idelson, 1925) dominated yearly. In some years, among cladocera, Daphnia cucullata or Diaphanosoma brachyurum while among copepods -Mesocyclops leuckarti prevailed. The composition of the dominant rotifers was most diverse. For instance, in addition to the mentioned above, they included Kellicottia longispina, Asplanchna priodonta, Keratella cochlearis, Euchlanis dilatata.
Zoobenthos
In lake Kubenskoye, the inhabitants of silts in the deep-water area and the mouth areas of inflowing rivers provided the largest contribution to the number and biomass of zoobenthos. Chironomids of the genus Chironomus dominated in silts, while oligochaetes Limnodrilus hoffmeisteri, Tubifex newaensis, and T. tubifex - in sites of the confluence of the rivers. In 2018-2022, the average number of zoobenthos in the reservoir was 1442 ± 217.6 ind./m2, biomass - 7.6 ± 1.20 g/m2 (Table 3b). The obtained values of biomass were within the average long-term ones despite the decreased number of bottom organisms (Filonenko, 2018). The maximum quantitative characteristics of zoobenthos in the study period were noted in 2019.
High number and biomass of zoobenthos in the littoral of lake Kubenskoye (2300 ± 306.0 ind./m2 and 9.7 ± 1.47 g/m2, respectively) were caused by chironomid larvae and appeared in 2014 amphipod Gmelinoides fasciatus, which developed as on the open bottom areas as among meager thickets of submerged aquatic vegetation. A considerable biomass of benthic animals was also observed on silts of the deep-water zone (7.7 ± 1.20 g/m2) primarily due to Chironomus sp. development.
Lake Vozhe
Phytoplankton
Phytoplankton of lake Vozhe was represented mainly by diatoms, green algae and cyanobacteria. Other divisions of algae were less diverse and, generally, not abundant in plankton. High species richness was typical of the genera of diatoms Fragilaria, Navicula, Nitzschia Hass., Surirella Turp., Synedra; green - Pediastrum, Scenedesmus, cryptophytes Cryptomonas; cyanobacteria Aphanocapsa, Dolichospermum. Araphales, Chlorococcales, Chroococcales and Raphales dominated. By frequency of occurrence in the community, the species Fragilaria spp. (100%), Aulacoseira ambigua (85%), Ulnaria ulna (Nitzsch) Compère (85%), Aulacoseira sp. (62%), Planktolyngbya contorta (Lemm.) Anagn. & Kom. (62%), Tabellaria fenestrata (Lyngb.) Kutz. (62%), Cryptomonas marssonii (54%), Komma caudata (54%), P. limnetica (54%), Aphanocapsa holsatica (50%) prevailed.
The average long-term biomass of summer phytoplankton was 7.1 ± 1.32 g/m3 and its number -175.5 ± 40.66 mln. cells/l (Table 1). These indicators depended on the amount of diatoms and cyanobacteria, the proportions of which made up 22-97% and 1-68% of the total biomass, as well as 2-88% and 32-96% of the total number, respectively. The greatest quantitative characteristics were registered in 2021, 2022. (7.1 ± 1.41 and 14.8 ± 2.89 g/m3; 156.3 ± 33.27 and 440.2 ± 43.38 mln. cells/l). At the same time, the following species dominated: Aphanocapsa delicatissima, A. holsatica, A. incerta, Aulacoseira ambigua, Dolichospermum circinale (Rabenh. ex Born. & Flah.) Wacklin, Hoffmann & Kom., Microcystis wesenbergii, Planktolyngbya contorta, P. limnetica, Pseudanabaena limnetica, Pseudopediastrum boryanum, Scenedesmus quadricauda. In other years, the average biomass of algae in summer ranged from 2.8 ± 0.29 to 4.4 ± 0.52 g/m3, its number - from 76.1 ± 4.57 to 94.5 ± 16.83 mln. cells/l. Aphanocapsa delicatissima, Asterionella formosa, Aulacoseira ambigua, Aulacoseira sp., Cymatopleura solea, Dolichospermum viguieri (Denis & Frémy) Wacklin, Hoffmann
Table 3a. Average number and biomass of zoobenthos of the Sheksna reservoir in August-November 2018-2022. Above the line - average number (N, thous. ind./m3), below the line -biomass (B, g/m3).
Sheksna Reservoir, lake part (Lake Beloye)
Sheksna Reservoir, river part
A group of organisms
Profundal
Littoral
Mean
Biotope Profundal
Littoral
Bays and river mouths
Mean
Mollusca
104 ±15.1 0.37 ± 0.077
86 ±17.1 1.70 ±0.433
102 ± 15.2 0.51 ±0.158
43 ± 10.9 1.25 ±0.295
93 ±13.9 0.68 ±0.159
133 ±27.3 1.12 ±0.231
83 ± 18.6 1.09 ±0.251
Oligochaeta
307 ± 49.8 1.13 ± 0.189
470 ± 48.2 1.10 ±0.202
324 ± 49.6 1.12 ± 0.189
365 ± 44.8 0.69 ±0.118
173 ±24.9 0.14 ±0.022
788 ± 140.8 1.58 ±0.236
457 ±89.3 0.83 ±0.162
Amphipoda
42 ±14.6 0.20 ±0.103
37.3 ±6.3 0.33 ± 0.063
41 ± 13.9 0.21 ±0.099
15 ±4.2
0.02 ±0.002
1544 ±472.1 3.44 ±0.397
415 ± 138.3 0.95 ±0.109
483 ± 240.8 1.02 ±0.118
Chironomidae
442 ±85.1 1.72 ±0.254
310 ± 41.6 0.90 ± 0.060
428 ±81.6 1.58 ±0.245
194 ±24.9 0.98 ±0.221
380 ±40.3 0.88 ±0.136
1321 ±246.4 2.47 ±0.785
595 ± 151.6 1.40 ±0.457
Total
907 ± 117.1 3.93 ± 0.546
915 ±87.8 3.57 ± 0.632
908 ±114.0 3.89 ± 0.552
644 ± 57.0 3.00 ± 0.339
2253 ± 459.3 2808 ± 442.3
5.33 ± 0.846
7.61 ±1.422
1693 ±346.9 4.85 ±0.910
Table 3b. Average number and biomass of zoobenthos of the Lake Kubenskoye and Lake Vozhe in August-November 2018-2022. Above the line - average number (N, thous. ind./m3), below the line - biomass (B, g/m3).
Lake Kubenskoye
Lake Vozhe
A group of organisms
Profundal
Littoral
Bays and river mouths
Biotope
Mean
Profundal
Littoral
Bays and river mouths
Mean
Mollusca
340 ± 48.5
410 ±52.4
113 ±20.2
266 ±43.8
22 ±9.1
46 ± 8.8
30 ±8.1
32 ±8.5
1.82 ±0.426 1.49 ±0.458 0.28 ±0.125 1.06 ±0.353 0.05 ±0.018 0.09 ± 0.031 0.66 ± 0.235 0.36 ±0.167
Oligochaeta
95 ±101.0
474 ± 65.3
298 ±51.0
510 ±76.8 114.5 ± 10.55 187 ±18.6
192 ±21.5
171 ±18.7
1.94 ±0.438 0.31 ±0.063 0.34 ±0.112 0.71 ± 0.241 0.45 ± 0.080 0.44 ± 0.094 0.15 ±0.022 0.30 ± 0.067
Amphipoda
109 ±20.4
33 ±9.1
339 ± 77.7
166 ±51.4
0.36 ± 0.209 1.38 ± 0.553 1.01 ± 0.230 0.88 ± 0.337
10 ±4.9
3± 1.3
4 ±2.7
0.17 ±0.091 0.03 ±0.016 0.07 ±0.050
Chironomidae
249 ±28.1
843 ±196.0
156 ±24.8
411 ±121.5
204 ± 22.3
648 ± 94.9
700 ± 94.1
562 ± 84.9
2.51 ±0.865 2.05 ± 0.503 8.74 ± 1.507 4.99 ± 1.174 0.88 ±0.163 1.55 ±0.299 1.06 ±0.158 1.16 ±0.209
Total
1705 ± 148.9 2299 ±306.0 621.1 ±65.1 1442 ±217.6 352 ±31.5
994 ±117.9 1047 ± 103.7 859 ±100.1
7.69 ±1.156 4.93 ±0.716 9.65 ±1.472 7.59 ±1.200 1.39 ±0.187 2.58 ± 0.376 3.16 ±0.432 2.59 ± 0.377
& Kom., Melosira varians, Meridion circulare (Grev.) Ag., Microcystis novacekii (Kom. ) Compère, Planktolyngbya contorta, P. limnetica, Pseudanabaena limnetica, Pseudopediastrum boryanum, Snowella lacustris, Tabellaría fenestrata predominated.
Zooplankton
During the study period, zooplankton of lake Vozhe was characterized by high abundance. The average number of rotifers and crustaceans reached 131.1 ± 11.39 thous. ind./m3 and biomass -3.5 ± 0.41 g/m3. The average biomass of zooplankton was similar throughout the lake. The density of zooplankters in the central part of the lake was 1.5 times higher than in the coastal areas covered by macrophytes (Table 2). The community structure of the open water areas and macrophyte thickets also differed. In the central part of the lake, the majority of the community was formed by copepods. Cladocerans and rotifers had a relatively high biomass. In macrophyte thickets, the proportion of cladocera and copepods in the total number was similar; cladocerans dominated in biomass.
The composition of dominant species of zooplankton of lake Vozhe was diverse. Cyclopes included solely Thermocyclops oithonoides. Rather high abundance of Mesocyclops leuckarti was recorded only in August 2021. Daphnia cucullata and Sida crystallina belonged to the dominant complex of Cladocera. In some years, Daphnia cristata and Bosmina coregoni prevailed. Among rotifers, Kellicottia longispina, Asplanchna priodonta, Euchlanis dilatata, Trichocerca sp. dominated.
The lake zooplankton was characterized by significant interannual fluctuations in biomass (CV 68%), associated mainly with a very high biomass of rotifer Asplanchna priodonta and cladocera Sida crystallina in some years. For instance, the average biomass of A. priodonta in the water body was 11.1 ± 2.68 g/m3 in August of 2022. This indicator for S. crystallina made up 1.1 ± 0.57 g/m3 and 3.5 ± 3.25 g/m3 in 2018 and 2020, respectively.
The least number and biomass of zooplankton in lake Vozhe were recorded in August of 2019 (66.7 ± 18.17 thous. ind./m3 and 1.0 ± 0.26 g/m3, respectively). Here, the average number of zooplankton was high in 2018, 2020, and 2022 with the peak reached in 2022 (192.8 ± 28.20 thous. ind./m3 and 6.9 ± 1.74 g/m3).
Zoobenthos
The greatest abundance of zoobenthos of lakeVozhe was noted in the estuarine river sections. In the channels of lake tributaries, oligochaetes Tubifex newaensis and T. tubifex, while in the thickets -chironomids of the genera Endochironomus, Glyptotendipes, Cricotopus were common. On silts of the central part of the lake, among dominants were Chironomus sp. and Procladius sp., abundance of which varied significantly in different years. The average number of zoobenthos of lake Vozhe in 2018-2022 accounted for 859 ± 100.1 ind./m2 and biomass - 2.6 ± 0.38 g/m2 (Table 3b). Both indicators were a bit lower than the long-term averages (Filonenko and Komarova, 2017; Ivicheva and Filonenko, 2015). The best quantitative characteristics of zoobenthos for the analyzed period were noted in 2021 (number -905.2 ind./m2, biomass - 4.32 g/m2).
The number and biomass of zoobenthos were maximum in the bays near the river mouths (1047 ± 103.7 ind./m2 and 3.20 ± 0.43 g/m2) and on sands of the littoral (994 ± 117.9 ind./m2 and 2.58 ± 0.38 g/m2) where chironomid larvae dominated. The least number of zoobenthos was recorded for muds of the deep-water area (352 ± 31.5 ind./m2 and 1.4 ± 0.43 g/m2) populated only by Chironomus sp. and Procladius sp.; in some periods, the animals were completely absent there.
Discussion
In 2018-2022, cyanobacteria and diatoms along with green, cryptophytic and other algae formed the floristic and quantitative basis of phytoplankton in large water bodies of the Vologda Oblast. In all water bodies, the genus Scenedesmus stood out for its species richness. Species of the genus Aulacoseira were frequently found throughout.
In summer 2018-2022, the average biomass of algae was the highest in lakes Beloye, Vozhe, Kubenskoye and a bit lower - in the river part of the Sheksna reservoir. Maximum phytoplankton number was noted in lake Vozhe. According to the Trifonova classification (1990), the river part of the Sheksna reservoir, lakes Kubenskoye and Vozhe had eutrophic (biomass 5-10 g/m3), while Beloye - highly eutrophic status (more than 10 g/m3). In 2021-2022, high number and biomass of algae were observed in all water bodies when a large number of cyanobacteria, green and warm-water diatoms appeared during the prolonged period of warm weather.
The contribution of diatoms to the total biomass and number was, on average, the highest in the river part of the Sheksna Reservoir (80% and 38%, respectively). Species of the genus Aulacoseira were main dominants among diatoms throughout the growing season (Makarenkova, 2013). The predominance of Aulacoseira species was typical for plankton of large water bodies (Korneva, 2015; Letanskaya and Protopopova, 2012; Otchenash et al., 2021). In lake Beloye, the largest share in number and biomass of phytoplankton (45% and 85%) fell on cyanobacteria that annually resulted in intensive water bloom (Makarenkova, 2018). In lake Vozhe, cyanobacteria number was also significant (71%). At the same time, the structure of the cyanobacteria complex in both lakes differed: in Beloye - quantitative predominance of nitrogen fixers, in Vozhe - non-heterocyst species were observed. The reduced share of nitrogen fixers in the dominant complex of lake Vozhe could be induced by the inhibitory effect of ammonium nitrogen, i.e. the predominant form of mineral nitrogen (increased in late XX century) (Borisov, 2006). In the last few decades, the composition of cyanobacteria in this lake remained the same (Korneva et al., 2021; Makarenkova, 2012; stock materials of VologodNIRO, unpubl.). The predominance of non-heterocyst species among cyanobacteria was also marked in the Volga reservoirs (Korneva, 2015).
By zooplankton composition, large fishery reservoirs in the Vologda Oblast and the taiga zone demonstrate similarity (Pidgaiko, 1984). The community of the Sheksna reservoir was the richest in species (about 180 species). Relatively rare and scarce zooplankton species were found in this reservoir during the implemented comprehensive studies (Lazareva, 2022; Lazareva et al., 2013; Lobunicheva et al., 2022a). For example, such invasive species as Kellicottia bostoniensis, Brachionus diversicor-nis (Daday, 1883), Diaphanosoma orghidani Negrea, 1982 (Lazareva, 2008; Lazareva et al., 2013; Lobunicheva et al., 2022b) were detected among zooplankters only in the Sheksna Reservoir.
In all water bodies, summer zooplankton varied in number and biomass during the 5-year study period that was previously noted for some other reservoirs as well (Dumnich and Lobunicheva, 2016; Dumnich et al., 2021; Lobunicheva et al., 2022a). The level of phytoplankton development and water temperature were among driving factors influencing zooplankton abundance (Lazareva, 2010). Summer periods of 2021-2022 were very warm. In the Northwestern Federal District, the anomaly of air temperature made up +2.41 °C in 2021 and +2.31 °C in 2022 (Doklad ob osobbenostyakh..., 2023). As for water, it was by 1.8-2.0 °C higher than in 2018-2020. In addition, higher phytoplankton biomass during this period provided abundant zooplankton in 2021-2022.
The zooplankton structure was quite stable and similar in all studied water bodies. In August, cope-pods were characterized by the highest number among zooplankters, whereas cladocerans - by maximum biomass. Only in lake Kubenskoye, the average biomass of cladocerans and copepods was equal (Table 2). The composition of dominants in water bodies varied little over the years. The lake and river sections of the Sheksna Reservoir had similar zooplankton structure. Changes in the share of Cyclops nauplii in the total number of zooplankton were the most pronounced. Lake Vozhe had the most diverse composition of dominants.
The greatest spatial differences in the structure and abundance of zooplankton were characteristic of the river part of the Sheksna Reservoir with its pronounced deep-water zone and numerous bays overgrown by macrophyte thickets favorable for the community formation with excellent features. In lakes Kubenskoye and Vozhe with their large shallow areas occupied by macrophytes, the spatial structure of plankton largely depended on wind mixing.
In the study period (August 2018-2022), the highest average number and biomass of zooplankton were typical for lake Vozhe (Table 2). The number and biomass of zooplankton in 2018-2022 and 19831984 were similar (Andronikova, 1985). From 2018, rather high zooplankton abundance was explained by mass development of some species (Asplanchna priodonta, Daphnia cucullata, Sida crystallina) almost throughout the lake. Previously, some investigators reported about sharp growth of these species number (Andronikova, 1985; Smirnova, 1978). The noted in recent decades increased zooplankton development in lake Vozhe (Dumnich et al., 2021) was caused by high summer water temperatures favorable (in some years) for the development of many zooplankters, expansion of macrophyte thickets in certain parts of the reservoir (Filonenko and Komarova, 2015), and growing density of small-sized planktonic algae (Dumnich et al., 2021). In terms of a food base, the lake was characterized as a water body with an average to above average food base (Pidgaiko et al., 1968).
The average number and biomass of zooplankton in the lake and river sections of the Sheksna Reservoir in 2018-2022 did not differ from the long-term values (Dumnich and Krylov, 2002; Lazareva,
2022; Lazareva et al., 2013; Lobunicheva et al., 2022a; Smirnova et al., 1981). In lake Kubenskoye, a slight reduction in the average zooplankton biomass of 2018-2022 (as compared to 1970-1980) was noted (Nikolaev, 1977; Rodionov et al., 1987). In contrast to the 2000s, the average number and biomass of zooplankton increased (Dumnich and Lobunicheva, 2016; Dumnich et al., 2021). The Sheksna reservoir is currently classified as a water body having an average food base, and Lake Kubenskoye - a poor one (Pidgaiko et al., 1968).
Quantitative indicators of zoobenthos in the study reservoirs differed by almost three times. Biomass was the highest in lake Kubenskoye and the lowest - in lake Vozhe. By the level of zoobenthos development, lake Beloye and the river part of the Sheksna Reservoir belong to water bodies with an average food base, lake Kubenskoye - above average, and lake Vozhe - the poor one (Pidgaiko et al., 1968).
In all water bodies, the main share in the total number and biomass falls on Chironomidae, Oligochaeta, and Mollusca. The proportion of Chironomidae in the total number is the greatest in lakes Vozhe (up to 65%) and Beloye (47%). Most zoobenthos biomass is formed of chironomid larvae, especially large Chironomus sp. Larvae abundance and the number of their generations directly depend on air temperature in the spring-summer period. Windless weather is optimal for chironomid swarming. Often, the prevailing wind direction affects the place of mass emergence of chironomid adults and further spatial distribution of zoobenthos in water bodies. The most favorable conditions for the development of insect larvae are formed in the littoral, a significant part of which can be drained during the low water period. Mass development of larvae in shallow waters during very dry water years subsequently brings to Chironomidae preimagos loss, including the reduced total number and biomass of zoobenthos. Oligochaets are represented by tubificids Limnodrilus hoffmeisteri, Tubifex nevaensis and T. tubifex. In the region, the best conditions for tubificids are formed on the moderately silted sands of the coastal shoals and precipices. Habitats favorable for the existence of these organisms are often small in area, periodically washed away and substituted by other substrates (sand, peat). For example, the sites of oligochaete assemblages in the profundal of lake Beloye are mosaic and change their position in different years (Filonenko and Ivicheva, 2018). Oligochaeta predominate in lake Kubenskoye (up to 35%).
In the Sheksna reservoir and lake Kubenskoye, among the dominants is Gmelinoides fasciatus -the only invasive species of amphipods currently inhabiting the water bodies of Vologda Oblast and locally producing high biomass. In the littoral of the riverine part of the Sheksna Reservoir, the average number and biomass of this crustacean are 1544 ± 472.1 ind./m2 and 3.44 ± 0.397 g/m2, respectively. This species has widely populated all water bodies of the Volga-Baltic and North-Dvina waterways of the Vologda Oblast (Ivicheva and Filonenko, 2019). First discovered in the Toporninsky canal of the North Dvina water system in 2010 (Ivicheva and Filonenko, 2019), G. fasciatus regularly appears in lake Kubenskoye as well. At present, this species is common in the lake littoral.
In the reservoirs of Vologda Oblast, assemblages of G. fasciatus are found in the narrow strip along the coast among pebbles and large plant detritus, fouling or in dense thickets of helophytes. In the deeper parts of the reservoirs, single amphipods are detected regularly. Perhaps, they come here from shallow waters. Such habitat preferences make G. fasciatus a prey object just for limited fish species of a narrow age range. G. fasciatus has been found in all large water bodies of the region, except for lake Vozhe. Not numerous Gammarus lacustris G.O. Sars, 1863 is the only amphipod representative in this lake.
In lakes, small bivalve mollusks dominate. In the river part of the Sheksna Reservoir, species of the genus Viviparus are subdominants. Unlike many water bodies in the European part of Russia (Perova et al., 2018; Pryanichnikova et al., 2011; Shcherbina and Buckler, 2006), the lakes and reservoirs of Vologda Oblast are not distinguished by the high number of Dreissena polymorpha (Pallas, 1771). Dreissena is able to develop intensively only on the remains of wood. The sites of flooded forests are confined to peaty substrates, where zoobenthic organisms are practically absent. A small number of benthic organisms is observed only in thickets of macrophytes. Empty shells of D. polymorpha are often found on the shores of lakes Beloye and Kubenskoye and very rare in soil samples. Locally, this species forms druses on the wood remains in shallow waters.
The structures of benthic communities in deep-water sites and in macrophyte thickets differ. Chironomus sp., oligochaetes L. hoffmestery, T. newaensis, and T. tubifex dominate in muds of the
deep - water zone. Overgrown biotopes in large lakes of the region occupy relatively small areas. In such placed, benthic organisms are noted both in the bottom and the surface of plants. The composition of the phytophilic fauna is practically independent of the macrophyte composition (Ivicheva et al., 2021). Small oligochaetes of the genera Nais and Stylaria are numerous in these communities; phytophilic chironomids (Endochironomus albipennis (Meigen, 1830), Glyptotendipes gripekoveni (Kieffer, 1913), Cricotopus gr. sylvestris is the base of biomass.
Conclusion
In 2018-2022, plankton and benthos of large fishery reservoirs of the Vologda Oblast were characterized by stable composition and interannual fluctuations in number and biomass. Plankton abundance depended on intensity of water heating in spring and summer. In 2021-2022, the recorded long summer periods of high air temperatures induced a significant increase in number and biomass of cyanobacteria, green and warm-water diatoms, certain species of cladocerans and rotifers. As a result, the average values of the total number and biomass of phyto- and zooplankton in most large water bodies of the region also increased.
In terms of the average long-term phytoplankton biomass, the river part of the Sheksna Reservoir, lakes Kubenskoye and Vozhe had eutrophic and lake Beloye - highly eutrophic status in 2018-2022. Diatoms and cyanobacteria dominated in all reservoirs. The number of diatoms was higher in the river part of the Sheksna Reservoir, cyanobacteria - in lake Beloye. Water bloom in late summer was observed in all reservoirs; it was especially strong in lake Beloye, where macroscopic floating masses persisted until autumn.
The greatest abundance of zooplankton was characteristic of lake Vozhe (food base: above average). By average biomass, Lake Beloye and the river part of the Sheksna Reservoir were classified as water bodies with the average and lake Kubenskoye - the poor food base. In all studied water bodies, copepods formed the basis of zooplankton number in late summer, while cladocerans - most biomass.
By zoobenthos abundance, lake Beloye and the river part of the Sheksna Reservoir can be characterized as water bodies with the average; lake Kubenskoye -above average, and lake Vozhe -with the poor food base. The dominant groups in all water bodies are chironomid larvae, oligochaetes and mollusks. A relatively high abundance of chironomids is typical for lakes Beloye and Vozhe, whereas of oligochaetes - for lake Kubenskoye.
References
Andronikova, I.N., 1985. Prognoz izmeneniy zooplanktona, otzenka produktsionnykh vozmozhnostey soobshchestva v izmenennykh ekologicheskikh usloviyakh v ozerakh Lacha i Vozhe pri perebroske vod iz vodohranilishcha "Onezhskaya guba" [Forecast of changes in zooplankton, assessment of the production potential of the community under changed environmental conditions in lakes Lacha and Vozhe during the transfer of water from the Onega Bay reservoir]. In: Mikhailov, Yu.D. (sup.), Prognoz gidrologicheskikh, gidrokhimicheskikh i gidrobiologicheskikh protsessov v ozerakh Lacha i Vozhe v svyazi s perebroskoj vod iz vodohranilishcha "Onezhskaya guba" za 1985 g. [Forecast of hydrological, hydrochemical and hydrobiological processes in lakes Lacha and Vozhe in the context of water transfer from the Onega Bay reservoir for 1985] Institute of Lake Science of the Academy of Sciences of the USSR, Leningrad, USSR, 132-147. (In Russian).
Antropogennoe vliyanie na krupnye ozera Severo-Zapada SSSR. Ch. 2. Gidrobiologiya i donnye otlozheniya ozera Belogo [Antropogenic load on large lakes of the Northwest of the USSR. Part 2. Hydrobiology and bottom sediments of lake Beloye], 1981. Aleksandrova, D.N. (ed.), Nauka, Leningrad, USSR, 254 p. (In Russian).
Arnold, I.N., 1925. Materialy po opisaniyu rybolovstva na Belom ozere [Materials to description of fisheries in lake Beloye]. Izvestiya otdela prikladnoj ihtiologii [Bulletin of Department for Applied Ichthyology] 3 (1), 5-21. (In Russian).
Balushkina, E.V., Vinberg, G.G., 1979. Zavisimost' mezhdu dlinoi i massoi tela planktonnykh rakoobraznykh [The relationship between the length and body weight of planktonic crustaceans].
In: Vinberg, G.G. (ed.), Eksperimental'nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozyor [Experimental and field research of biological basics of lake productivity]. Zoological Institute of the Academy of Sciences of the USSR, Leningrad, USSR, 58-72. (In Russian).
Borisov, M.Ya., 2006. Osobennosti funkcionirovaniya sistemy "vodosbor - ozero Vozhe" i eyo vliyanie na rybnoe naselenie [Peculiarities of functioning of the "catchment - Lake Vozhe" system and its impact on fish population]. Biological Sciences PhD thesis. Vologda, Russia, 242 p. (In Russian).
Doklad ob osobennostiakh klimata na territorii Rossiiskoi Federatsii za 2022 god [Report on climate features of the RF territory for 2022], 2023. Roshydromet, Moscow, Russian, 104 p. (In Russian).
Dumnich, N.V., 2000. Rakoobraznye (Crustacea) i kolovratki (Rotatoria) krupnykh ozer Vologodskoy oblasti [Crustaceans (Crustacea) and rotifers (Rotatoria) of large lakes of the Vologda Oblast]. Biological Sciences PhD thesis. Petrozavodsk, Russia, 167 p. (In Russian).
Dumnich, N.V., Bolotova, N.L., 1996. Izmenenie zooplanktona krupnykh ozer Vologodskoy oblasti za 20-letniy period [Zooplankton dynamics in large lakes of the Vologda Oblast for a 20-year period]. Materialy VII S'ezda Gidrobiologicheskogo obshchestva RAN. T. 2. [Proceedings of VII congress of Hydrobiological society of the Russian Academy of Sciences. Vol. 2], Kazan, Russia, 18-20. (In Russian).
Dumnich, N.V., Krylov, A.V., 2002. Zooplankton. In: Litvinov, A.S. (ed.), Sovremennoe sostoyanie ekosistemy Sheksninskogo vodohranilishcha [The current state of the Sheksna reservoir ecosystem]. Yaroslavl State Technological University Publishing House, Yaroslavl, Russia, 120-146. (In Russian).
Dumnich, N.V., Lobunicheva, E.V., 2016. Dinamika zooplanktona ozernoi chasti Sheksninskogo vodohranilishcha (Vologodskaya oblast') [Dynamics of zooplankton in the lake part of the Sheksna reservoir (Vologda Oblast)]. Materialy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem "Sovremennoe sostoyanie bioresursov vnutrennih vodoemov i puti ikh ratsional'nogo ispol'zo-vaniya" [Proceedings of All-Russian conference with international participation dedicated to the 85th anniversary of the Tatar branch of GosNIORKh "The Current State of Bioresources of Inland Waters and Ways of their Rational Use"], Kazan, October 24-29, 2016. Kazan, Russia, 338-349. (In Russian).
Dumnich, N.V., Lobunicheva, E.V., Litvin, A.I., Borisov, M.Ya., 2021. Struktura i dinamika zooplanktona ozera Vozhe Vologodskoj oblasti [Zooplankton structure and dynamics of lake Vozhe (Vologda Oblast)]. Trudy Karel'skogo nauchnogo centra RAN [Transactions of the Karelian Research Centre of the Russian Academy of Sciences] 5, 57-70. (In Russian). http://www.doi.org/10.17076/eco1321
Ershova, M.G., 1968. Vodnye massy Cherepovetskogo vodohranilishcha [Water masses of the Cherepovets reservoir]. Trudy Instituta biologii vnutrennih vod AN SSSR [Transactions of the Institute for Biology of Inland Waters of the Academy of Sciences of the USSR] 16 (19), 3-21. (In Russian).
Filonenko I.V., 2018. Otsenka kolichestvennykh pokazateley makrozoobentosa ozera Kubenskogo metodami GIS [Assessment of quantitative indicators of macrozoobenthos of Lake Kubenskoye by GIS methods]. Materialy II Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem "Rybohozyaystvennye vodoemy Rossii: fundamental'nye i prikladnye issledovaniya" [Proceedings of II All-Russian Scientific Conference with International Participation "Fishery Reservoirs of Russia: Fundamental and Applied Research", St. Peterburg, April 2-4, 2018. St.Petersburg, Russia, 379383. (In Russian).
Filonenko, I.V., Ivicheva, K.N., 2018. Izmeneniya kolichestvennykh pokazateley zoobentosa ozera Beloe za vremya sushchestvovaniya Sheksninskogo vodohranilishcha [Changes in quantitative indexes of zoobenthos of lake Beloye for the period of the Sheksna reservoir existence]. Sbornik
tezisov dokladov Vserossijskoj konferentsii"Volga i ee zhizn'" [Book of abstracts of the All-Russian conference "Volga and its life'], Borok, October 22-26, 2018]. Filigran', Yaroslavl, Russia, 139-140. (In Russian).
Filonenko, I.V., Komarova, A.S., 2015. Mnogoletnyaya dinamika ploshchadi zrastaniya pribrezhno-vodnoj rastitel'nost'yu oz. Vozhe [Long-term dynamics of the area overgrown by coastal aquatic vegetation in lake Vozhe]. Principy ekologii [Principles of Ecology] 4, 63-72. (In Russian). http://www. doi.org/10.15393/j1.art.2015.4622
Filonenko, I.V., Komarova, A.S., 2017. Stepen' razvitiya makrobentosa razlichnyh uchastkov akvatorii oz. Vozhe kak pokazatel' sostoyaniya kormovoy bazy ryb [Benthos development in different parts of lake Vozhe as an indicator of its food base]. Materialy I Vserossiyskoy nauchnoy konferentsii "Evolyutsionnye i ekologicheskie aspekty izucheniya zhivoy materii" [Proceedings of All-Russian Scientific Conference "Evolutionary and ecological aspects of studying living matter"],Cherepovets, February 8, 2017]. Cherepovets, Russia, 163-168. (In Russian).
Filonenko, I.V., Komarova, A.S., Ivicheva, K.N., 2021. Analiz faktorov, znachimykh dlya zoobentosa ozera Beloe Vologodskoy oblasti [Analysis of factors significant to zoobenthos of Lake Beloye, Vologda Oblast]. Principy ekologii [Principles of Ecology] 3, 74-86. (In Russian). http://www.doi. org/10.15393/j1.art.2021.11902
Gidrobiologiya ozer Vozhe i Lacha (v svyazi s prognozom kachestva vod perebrasyvaemykh na yug) [Hydrobiology of Lakes Vozhe and Lacha (in the context of forecasting the quality of waters transfer to south)], 1978. Raspopov, I.M. (ed.). Nauka, Leningrad, USSR, 276 p. (In Russian).
Guseva, G.A., 1959. Rol' Belogo ozera v formirovanii fitoplanktona Rybinskogo vodohranilishcha [Role of lake Beloye in phytoplankton formation in the Rybinsk reservoir]. Trudy instituta biologii vodohranilishch AN SSSR [Transactions of the Institute for Biology of Inland Waters of the Academy of Sciences of the USSR] 2 (5), 31-43. (In Russian).
Ivanter, E.V., Korosov, A.V., 2010. Elementarnaya biometriya: uchebnoe posobie [Elementary Biometrics: textbook]. Petrozavodsk State University Publishing House, Petrozavodsk, Russia, 104 p. (In Russian).
Ivicheva, K.N., Filonenko, I.V., 2015. Zoobentos ozera Vozhe [Species richness of benthic macroinvertebrates of lake Vozhe]. Izvestiya Samarskogo nauchnogo centra RAN [Izvestiya of Samara Scientific Center of the Russian Academy of Sciences] 17 (4), 705-711. (In Russian).
Ivicheva, K.N., Filonenko, I.V., 2018. Vidovoi sostav zoobentosa ozera Beloe (Vologodskaya oblast') v XXI veke [Species composition of zoobenthos of lake Beloye (Vologda Oblast) in XXI century]. Sbornik tezisov dokladov Vserossijskoj konferencii "Volga i ee zhizn'" [Book of abstracts of All-Russian conference "Volga and its life"], Borok, October 22-26, 2018. Filigran', Yaroslavl, Russia, 57. (In Russian).
Ivicheva, K.N., Filonenko, I.V., 2019. Gmelinoides fasciatus Steb. v vodoemakh Volgo-Baltiyskoy i Severo-Dvinskoy vodnykh system [Gmelinoides fasciatus Steb. in water objects of Volgo-Baltic and North-Dvinsk water systems]. Tezisy dokladov XII S'ezda Gidrobiologicheskogo obshchestva pri Rossiyskoi akademii nauk [Book of abstracts of XII Congress of Hydrobiological Society of the Russian Academy of Sciences], Petrozavodsk, September 16-20, 2019. Karelian Research Center RAS, Petrozavodsk, Russia, 185-186. (In Russian).
Ivicheva, K.N., Filonenko, I.V., 2023. First record of Branchiura sowerbyi Beddard, 1892 (Oligochaeta) in the Sheksna Reservoir (Upper Volga). Russian Journal of Biological Invasions 14 (2), 151-154. http://www.doi.org/10.1134/S2075111723020042
Ivicheva, K.N., Komarova, A.S., Ugryumova, E.V., Filonenko, I.V., 2021. Soobshchestva bespozvonochnykh zarosley makrofitov raznotipnykh vodnykh ob'ektov Vologodskoy oblasti [Macrophyte-associated macroinvertebrates of heterogeneous water bodies of the Vologda Oblast, Russia]. Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN [Transactions of the Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences] 94 (97), 94-104. (In Russian). http://www.doi.org/10.47021/0320-3557-2021-94-104
Kiseleva E.I., 1951. Kharakteristika planktona [Characteristics of plankton]. In: Titenkov, I.S. (sup.), Sostoyanie rybnyh zapasov i promysla Kubenskogo ozera [Fish stocks and fishery of Lake Kubenskoye]. All-Union Scientific Research Institute of Lake and River Fisheries, Leningrad, USSR, 29-33. (In Russian).
Komarek, J., 2013. Süßwasserflora von Mitteleuropa. Bd. 19 (3). Cyanoprokaryota 3. Teil: Heterocytous. Springer Spektrum, Berlin, Heidelberg, Germany, 1130 s.
Komarek, J., Anagnostidis, K., 1998. Süßwasserflora von Mitteleuropa. Bd. 19 (1). Cyanoprokaryota 1. Teil: Chroococcales. Spektrum, Akademischer Verlag, Heidelberg, Germany, 548 s.
Komarek, J., Anagnostidis, K., 2005. Süßwasserflora von Mitteleuropa. Bd. 19 (2). Cyanoprokaryota 2. Teil: Oscillatoriales. Elsevier Spektrum, Heidelberg, Germany, 759 s.
Komarek, J., Fott, B., 1983. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil 7 (1). Chlorophyceae (Grünalgen), Ordnung Chlorococcales. Schweizerbart, Stuttgart, Germany, 1043 s.
Korneva, L.G., 2015. Phytoplankton vodohranilishch basseina Volgi [Phytoplankton of reservoirs of the Volga basin]. Kostroma Publishing House, Kostroma, Russia, 284 p. (In Russian).
Korneva, L.G., Mitropolskaya, I.V., Makarenkova, N.N., Tsvetkov, A.I., 2021. Struktura i dinamika fitoplanktona bol'shikh melkovodnykh zarastayushchikh ozer (Vozhe i Lacha, Vologodskaya i Arhangel'skaya oblasti, Rossiya) [Structure and dynamics of phytoplankton of large shallow overgrowing lakes (Vozhe and Lacha, Vologda and Archangelsk Oblast, Russia]. Trudy Instituta biologii vnutrennikh vod im. I.D. Papanina RAN [Transactions of the Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences] 94 (97), 17-29. (In Russian). http://www.doi. org/10.47021/0320-3557-2021-17-29
Korovchinsky, N.M., Kotov, A.A., Sinev, A.Yu., Neretina, A.N., Garibyan, P.G., 2021. Vetvistousye rakoobraznye (Crustacea: Cladocera) Severnoy Evrazii. T. 2 [Cladocera of Northern Eurasia. Vol. 2]. KMK Scientific Press Ltd, Moscow, Russia, 544 p. (In Russian).
Krammer, K., Lange-Bertalot, H., 1986. Süßwasserflora von Mitteleuropa. Bd. 2 (1). Bacillariophyceae 1. Teil: Naviculaceae. Gustav Fischer Verlag, Jena, Germany, 860 s.
Krammer, K., Lange-Bertalot, H., 1988. Süßwasserflora von Mitteleuropa. Bd. 2 (2). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Jena, Germany, 596 s.
Krammer, K., Lange-Bertalot, H., 1991a. Süßwasserflora von Mitteleuropa. Bd. 2 (3). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Stuttgart - Jena, Germany, 576 s.
Krammer, K., Lange-Bertalot, H., 1991b. Süßwasserflora von Mitteleuropa. Bd. 2 (4). Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. Gustav Fischer Verlag, Stuttgart - Jena, Germany, 437 s.
Kutikova, L.A., 1970. Kolovratki fauny SSSR (Rotatoria). Podklass Eurotatoria (otryady Ploimida, Monimotrochida, Paedotrochida) [Rotifera fauna of the USSR (Rotatoria). Subclass Eurotatoria (class Ploimida, Monimotrochida, Paedotrochida)]. Nauka, Leningrad, USSR, 744 p. (In Russian).
Kuzmin, G.V., 1966a. Fitoplankton oz. Belogo i r. Sheksny [Phytoplankton of lake Beloye and river Sheksna]. Gidrobiologicheskij zhurnal [Hydrobiological Journal] 5, 73-76. (In Russian).
Kuzmin, G.V., 1966b. Fitoplankton Cherepovetskogo vodohranilishcha v pervyi god ego napolneniya [Phytoplankton of the Cherepovets reservoir in the first year of its filling]. Trudy instituta biologii vnutrennih vod [Transactions of the Institute for Biology of Inland Waters of the Academy of Sciences of the USSR] 11, 43-52. (In Russian).
Kuzmin, G.V., 1975. Fitoplankton. Vidovoi sostav i obilie [Phytoplankton. Species composition and abundance]. In: Mordukhai-Boltovskoi, F.D. (ed.), Metodika izucheniya biogeocenozov vnutrennih vodoemov [A method for studying biogeocenoses of inland reservoirs]. Nauka, Moscow, USSR, 7387. (In Russian).
Kuzmin, G.V., 1976. Vodorosli planktona Sheksninskogo i sopredel'noi akvatorii Rybinskogo vodohranilishch [Algae of phytoplankton in the Sheksna and adjacent Rybinsk reservoirs]. In: Kamshilov, M.M. (ed.), Biologiya, morfologiya i sistematika vodnyh organizmov [Biology, morphology and systematics of aquatic organisms]. Nauka, Leningrad, USSR, 3-60. (In Russian).
Lazareva, V.I., 2008. Distribution and special traits of naturalization of new and rare zooplankton species in waterbodies of the Upper Volga Basin. Inland Water Biology 1 (1), 76-83. http://www.doi. org/10.1134/S1995082908010124
Lazareva, V.I., 2010. Struktura i dinamika zooplanktona Rybinskogo vodokhranilishcha [Zooplankton structure and dynamics of the Rybinsk reservoir]. KMK Scientific Press Ltd, Moscow, Russia, 183 p. (In Russian).
Lazareva, V.I., 2022. Composition, structure, and peculiarities of the spatial distribution of zooplankton in the Sheksna Reservoir (Upper Volga, Russia). Inland Water Biology 15 (6), 813-826. http://www. doi.org/10.1134/S1995082922060116
Lazareva, V.I., Stolbunova, V.N., Mineeva, N.M., Zhdanova, S.M., 2013. Features of the structure and spatial distribution of plankton in the Sheksna Reservoir. Inland Water Biology 6 (3), 211-219. http:// www.doi.org/0.1134/S1995082913030097
Lazareva, V.I., Zhdanova, S.M., 2014. American rotifer Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in reservoirs of the Upper Volga basin. Inland Water Biology 7, 259-263. http://www.doi.org/10.1134/S1995082914030110
Letanskaya, G.I., Protopopova, E.V., 2012. The current state of phytoplankton in Lake Ladoga (20052009). Inland Water Biology 5 (4), 310-316. http://www.doi.org/10.1134/S1995082912040104
Linko, A.K., 1903. Kladocery Belozera i nekotorykh drugikh s nim sosednikh [Cladocera of Belozero and some adjacent lakes]. Izvestiya Nikol'skogo rybovodnogo zavoda [Transactions of Nikolsky fish hatcher] 7, 70-77. (In Russian).
Litvinov, A.S., 2002. Obshchie svedeniya o vodokhranilishche [General information about the reservoir]. In: Litvinov, A.S. (ed.), Sovremennoe sostoyanie ekosistemy Sheksninskogo vodohranilishcha [The current state of the Sheksna reservoir ecosystem]. Yaroslavl State Technological University Publishing House, Yaroslavl, Russia, 5-9. (In Russian).
Lobunicheva, E.V., Litvin, A.I., Dumnich, N.V., 2022a. Sezonnaya dinamika zooplanktona Sheksninskogo vodokhranilishcha (Vologodskaya oblast') [Seasonal dynamics of zooplankton of the Sheksna reservoir (Vologda Oblast)]. Trudy Instituta biologii vnutrennikh vod im. I.D. Papanina RAN [Transactions of the
Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences] 97 (100), 18-32. (In Russian). http://www.doi.org/10.47021/0320-3557-2022-18-32
Lobunicheva, E.V., Litvin, A.I., Zaitseva, V.L., Dumnich, N.V., 2022b. Distribution of the American rotifer Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in water bodies of Vologda Oblast. Russian Journal of Biological Invasions 13 (4), 480-486. http://www.doi.org/10.1134/ S2075111722040051
Luferova, L.A., 1966. Formirovanie zooplanktona Cherepovetskogo vodokhranilishcha [Zooplankton formation in the Cherepovets Reservoir]. In: Kuzin, B.S. (ed.), Plankton ibentos vnutrennikh vodoemov [Plankton and Benthos of Inland Water Bodies]. Trudy Instituta biologii vnutrennikh vod [Transactions of the Institute for Biology of Inland Waters of the Academy of Sciences of the USSR] 12 (15), 68-74. (In Russian).
Makarenkova, N.N., 2012. Izmenenie fitoplanktona ozera Vozhe kak pokazatel' ego evtrofirovaniya [Phytoplankton dynamics in lake Vozhe as an indicator of eutophication]. MaterialyXIX Vserossiiskoy molodezhnoy nauchnoy konferentsii "Aktual'nye problemy biologii i ekologii" [Proceedings of XIX Russian youth scientific conference "Actual problems of biology and ecology"]. Syktyvkar, Russia, 153-155. (In Russian).
Makarenkova, N.N., 2013. Diatomovye vodorosli v krupnykh ozyorakh Vologodskoy oblasti [Diatom algae in large lakes of the Vologda Oblast]. Materialy XIII Mezhdunarodnoy nauchnoy konferentsii al'gologov "Diatomovye vodorosli: sovremennoe sostoyanie i perspektivy issledovanij" [Proceedings of XIII international conference "Diatom algae: current state and prospects for research"]. Kostroma, Russia, 128-129. (In Russian).
Makarenkova, N.N., 2015. Sostav i dinamika dominiruyushchikh grupp vodorosley v fitoplanktone krupnykh ozyor Vologodskoy oblasti v 2009-2014 gg. [Structure and dynamics of dominant groups of algae in phytoplankton of large lakes (Vologda Oblast) in 2009-2014]. Materialy XXII Vserossyiskoy molodezhnoy nauchnoy konferentsii "Aktual'nye problemy biologii i ekologii" [Proceedings of XXII Russian youth scientific conference "Actual problems of biology and ecology"]. Syktyvkar, Russia, 31-35. (In Russian).
Makarenkova, N.N., 2018. "Tsvetenie" vody kak pokazatel' sovremennogo sostoyaniya fitoplanktona ozera Belogo Vologodskoy oblasti [Water "bloom" as indicator of current state of phytoplankton of lake Beloye in the Vologda Oblast]. Materialy II Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem "Rybokhozyaistvennye vodoyomy Rossii: fundamental'nye i prikladnye issledovaniya" [Proceedings of II Russian scientific conference with international participation «Fisheries water objects of Russia: applied and fundamental research»]. Saint Petersburg, Russia, 252-256. (In Russian).
Metodicheskie rekomendatsii po sboru i obrabotke materialov pri gidrobiologicheskikh issledovaniyakh na presnovodnykh vodoemakh. Zooplankton i ego produkciya [Methodological recommendations for collection and processing of materials in hydrobiological research on freshwater reservoirs. Zooplankton and its products], 1982. Vinberg, G.G., Lavrentyeva, G.M. (eds.). State Research Institute of Lake and River Fisheries, Leningrad, USSR, 33 p. (In Russian).
Mordukhay-Boltovskoy, F.D., 1978. O bentose Belogo ozera v 1973-1975 gg. [About benthos of lake Beloye in 1973-1975]. Biologiya vnutrennikh vod: Informatsionnyy byulleten' [Inland Water Biology: Information Bulletin] 38, 44-48. (In Russian).
Mordukhay-Boltovskoy, F.D., Mitropolskiy, V.I., 1959. Bentos Belogo ozera [Benthos of lake Beloye]. Trudy instituta biologii vodohranilishch AN SSSR [Transactions of the Institute for Biology of Water Reservoirs of the Academy of Sciences of the USSR] 2 (5), 85-101. (In Russian).
Motyl Chironomus plumosus L. Sistematika, morfologiya, ekologiya, produkciya [Chironomus plumosus L. Systematics, morphology, ecology, production], 1983. Nauka, Moscow, USSR, 309 p. (In Russian).
Nikolaev, I.I., 1977. O nekotorykh tipakh ozernykh ekosistem po ikh troficheskoy strukture (na primere bol'shikh ozyor Severo-Zapada SSSR) [On some types of aquatic ecosystems in terms of trophical structure (by the example of large lakes in the Northwest of the USSR)]. Vodnye resursy [Water Resourses] 3, 83-95. (In Russian).
Opredelitel' zooplanktona i zoobentosa presnykh vod Evropeyskoy Rossii. T. 1. Zooplankton [Key to zooplankton and zoobenthos of freshwater bodies of European Russia. Vol. 1. Zooplankton], 2010. Alekseev, V.R. (ed.). KMK Scientific Press Ltd, KMK, Moscow, Russia, 495 p. (In Russian).
Opredelitel' zooplanktona i zoobentosa presnykh vod Evropeyskoy Rossii. T. 2. Zoobenthos [Key to zooplankton and zoobenthos of freshwater bodies of European Russia. Vol. 2. Zoobenthos], 2016. Tsalolikhin, S.Ya. (ed.). KMK Scientific Press Ltd, Moscow, Russia, 457 p. (In Russian).Opredelitel' presnovodnykh bespozvonochnykh Evropeyskoy chasti SSSR (plankton i benthos) [Key to freshwater invertebrates of European part of USSR (plankton and benthos)], 1977. Kutikova, L.A., Starobogatov, Ya.I. (ed.). Nauka, Leningrad, USSR, 510 p. (In Russian).
Opredelitel' presnovodnykh bespozvonochnykh Rossii i sopredelnykh territoriy. T. 4. Dvukrylye [Key to freshwater invertebrates of Russia and adjacent lands. Vol. 4. Diptera], 1999. Tsalolikhin, S.Ya. (ed.). Nauka, St. Petersburg, Russia, 1000 p. (In Russian).
Opredelitel' presnovodnykh bespozvonochnykh Rossii i sopredelnykh territoriy. T. 5. Vysshie nasekomye [Key to freshwater invertebrates of Russia and adjacent lands. Vol. 5. Higher insects], 2001. Tsalolikhin, S.Ya. (ed.). Nauka, St. Petersburg, Russia, 838 p. (In Russian).
Opredelitel' presnovodnykh vodorosley SSSR: v 14 vyp. [Key to freshwater algae of the USSR: in 14 issues.], 1951-1983. Gollerbakh, M.M., Polyansky, V.I., Savich, V.P. (eds.). Sovetskaya nauka -Nauka - Publishing House of the AS USSR, Moscow - Leningrad, USSR. (In Russian).
Otchenash, N.G, Makedonskaya, I.Yu., Medvedeva, E.V., Levitskiy, A.L., Studyonov, I.I., 2021. Sovremennoe sostoyanie planktonnykh soobshchestv ozera Lacha [The current state of plankton communities of Lake Lacha]. Materialy XII Natsional'noy (vserossiyskoy) nauchno-prakticheskoy konferentsii "Prirodnye resursy, ikh sovremennoe sostoyanie, okhrana, promyslovoe i tekhnicheskoe ispol'zovanie" [Proceedings of XII National (All-Russian) scientific and practical conference "Natural resources, their current state, protection, commercial and technical use"]. Petropavlovsk-Kamchatsky, Russia, 61-65. (In Russian).
Ozero Kubenskoe. Chast' II. Gidrokhimiya, donnye otlozheniya, rastitel'nye soobshchestva [Lake Kubenskoye. Part II. Hydrochemistry, bottom sediments, plant communities], 1977a. Raspopopov, I.M. (ed.). Nauka, Leningrad, USSR, 220 p. (In Russian).
Ozero Kubenskoe. Chast' III. Zoologiya [Lake Kubenskoye. Part III. Zoology], 1977b. Raspopopov, I.M. (ed.). Nauka, Leningrad, USSR, 168 p. (In Russian).
Perova, S.N., Pryanichnikova, E.G., Zhgareva, N.N., Zubishina, A.A., 2018. Taksonomicheskiy sostav i obilie makrozoobentosa volzhskikh vodokhranilishch [Taxonomic structure and abundance of Volga reservoirs]. Trudy Instituta biologii vnutrennikh vod im. I.D. Papanina RAN [Transactions of the Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences] 82 (85), 52-66. (In Russian). http://www.doi.org/10.24411/0320-3557-2018-1-0012
Pidgaiko, M.L., 1969. Zooplankton Belogo ozera v svyazi s rybokhozyaistvennym znacheniem vodoema [Zooplankton of Lake Beloye in terms of fishery significance of the reservoir]. Izvestiya GosNIORH [Billutin of State Research Institute of Lake and River Fisheries] 65, 111-120. (In Russian).
Pidgaiko, M.L., 1984. Zooplankton vodoemov Evropeiskoy chasti SSSR [Zooplankton of reservoirs of the European part of the USSR]. Nauka, Moscow, USSR, 207 p. (In Russian).
Pidgaiko, M.L., Aleksandrov, B.M., Ioffe, Ts.I., Maksimova, L.P., Petrov, V.V., Savateeva, E.B., Salazkin, A.A., 1968. Kratkaya biologo-produktsionnaya kharakteristika vodoemov Severo-Zapada SSSR [Brief biological and production characteristics of reservoirs in the Northwest of the USSR]. Izvestia GosNIORH [Bulletin of State Research Institute of Lake and River Fisheries] 67, 205-228. (In Russian).
Pikhtova, T.S., 1981. Kolichestvennaya otsenka troficheskikh svyazey mezhdu zooplanktonom i rybami-planktofagami v ozere Belom (Vologodskaya oblast') [Quantitative assessment of trophic relationships between zooplankton and plankton-eating fish in Lake Beloye (Vologda Oblast)]. In: Vinberg, G.G. (ed.), Osnovy izucheniya presnovodnykh ekosistem [Fundamentals of studying freshwater ecosystems]. Publishing house of the Zoological Institute of the Academy of Sciences of the USSR, Leningrad, USSR, 35-38. (In Russian).
Poddubnaya, T.L., 1966. O donnoy faune Cherepovetskogo vodokhranilishcha v pervye dva goda ego sushchestvovaniya [The bottom fauna of the Cherepovets reservoir in the first two years of its operation]. Trudy instituta biologii vodokhranilishch AN SSSR [Transactions of the Institute for Biology of Water Reservoirs of the Academy of Sciences of the USSR] 12 (15), 21-33. (In Russian).
Polyakov, M.M., 2002. Problemy upravleniya vodopol'zovaniem [Water management issues. Vologda Scientific Coordination Center of the Central Economics and Mathematics Institute of the Russian Academy of Sciences, Vologda, Russia, 236 p. (In Russian).
Pryanichnikova, E.G., Tyutin, A.V., Shcherbina, G.K., 2011. Comparative analysis of the structure and fauna of endosymbionts of communities of two dreissenid species (Mollusca, Dreissenidae) in the Upper Volga reservoirs. Inland Water Biology 4 (2), 203-210. http://www.doi.org/10.1134/ S1995082911020179
Rastopchinova, E.S., 2004. Fitoplankton kak pokazatel' sostoyaniya raznotipnykh vodoemov Vologodskoy oblasti [Phytoplankton as an indicator of different-type water objects in the Vologda Oblast]. Materialy mezhdunarodnoy konferentsii "Ekologicheskie problemy severnykh regionov i puti ikh resheniya" [Proceedings of international conference "Ecological problems of north regions and ways of their solution"]. Apatity, Russia, 207-208. (In Russian).
Rodionov, V.I., Cimdin', P.A., Liepa, R.A., Rudzroga, A.I., Druvietis, I.U., Parele, E.A., Melberga, D.G., 1987. Sravnitel'naya kharakteristika gidrokhimicheskogo i gidrobiologicheskogo sostoyaniya ozera Kubenskogo [Comparative characteristics of hydrochemical and hydrobiological conditions of lake Kubenskoye]. Izvestiya Akademii nauk Latviiskoy SSR [Bulletin of Latvian Academy of Sciences] 7 (480), 108-119. (In Russian).
Ruttner-Kolisko, A., 1977. Suggestion for biomass calculation of planktonic rotifers. Archiv fur Hydrobiologie. Ergebnisse der Limnologie 8, 71-78.
Shcherbina, G.Kh., Buckler, D.R., 2006. Distribution and ecology of Dreissena polymorpha (Pallas) and Dreissena bugensis (Andrusov) in the Upper Volga basin. Journal of ASTM international 3 (4), 426-436.
Shilova, A.I., 1976. Khironomidy Rybinskogo vodokhranilishcha [Chironomids of the Rybinsk reservoir]. Nauka, Leningrad, USSR, 251 p. (In Russian).
Sostoyanie rybnykh zapasov i promysla Belogo ozera (Vologodskoy oblasti) [Fish stocks and fishery of Lake Beloye (Vologda Oblast)], 1951. Morozova, P.N. (sup.). All-Union Research Institute of Lake and River Fisheries, Leningrad, USSR, 287 p. (In Russian).
Sovremennoe sostoyanie ekosistemy Sheksninskogo vodokhranilishcha [Modern state of the Sheksna Reservoir ecosystem], 2002. Litvinov, A.S. (ed.). Yaroslavl State Technological University Publishing House, Yaroslavl, Russia, 368 p. (In Russian).
Strugach, M.V., 1951. Kharakteristika bentosa [Characteristics of benthos]. In: Titenkov, I.V. (sup.), Sostoyanie rybnykh zapasov i promysla Kubenskogo ozera [Fish stocks and fishery of Lake Kubenskoye]. All-Union Research Institute of Lake and River Fisheries, Leningrad, USSR, 34-38. (In Russian).
Tatarinova, T.A., 1979. Urovennyy rezhim [Level regime]. In: Malinina, T.I. (ed.), Gidrologiya ozer Vozhe i Lacha [Hydrology of lakes Vozhe and Lacha]. Nauka, Leningrad, USSR, 61-70. (In Russian).
Trifonova, I.S., 1990. Ekologiya i sukcessiya ozernogo fitoplanktona [Ecology and succession of lake phytoplankton]. Nauka, Leningrad, USSR, 184 p. (In Russian).
Список литературы
Андроникова, И.Н., 1985. Прогноз изменений зоопланктона, оценка продукционных возможностей сообщества в измененных экологических условиях в озерах Лача и Воже при переброске вод из водохранилища «Онежская губа». В: Михайлов, Ю.Д. (рук.), Прогноз гидрологических, гидрохимических и гидробиологических процессов в озерах Лача и Воже в связи с переброской вод из водохранилища «Онежская губа» за 1985 г. Институт озероведения АН СССР, Ленинград, СССР, 132-147.
Антропогенное влияние на крупные озера Северо-Запада СССР. Ч. 2. Гидробиология и донные отложения озера Белого, 1981. Александрова, Д.Н. (ред.). Наука, Ленинград, СССР, 254 с.
Арнольд, И.Н., 1925. Материалы по описанию рыболовства на Белом озере. Известия отдела прикладной ихтиологии 3 (1), 5-21.
Балушкина, Е.В., Винберг, Г.Г., 1979. Зависимость между длиной и массой тела планктонных ракообразных. В: Винберг, Г.Г. (ред.), Экспериментальные и полевые исследования биологических основ продуктивности озер. Зоологический институт АН СССР, Ленинград, СССР, 58-72.
Борисов, М.Я., 2006. Особенности функционирования системы «водосбор - озеро Воже» и ее влияние на рыбное население. Диссертация на соискание ученой степени кандидата биологических наук. Вологда, Россия, 242 с.
Гидробиология озер Воже и Лача (в связи с прогнозом качества вод, перебрасываемых на юг), 1978. Распопопов, И.М. (ред.). Наука, Ленинград, СССР, 276 с.
Гусева, Г.А., 1959. Роль Белого озера в формировании фитопланктона Рыбинского водохранилища. Труды института биологии водохранилищ АН СССР 2 (5), 31-43.
Доклад об особенностях климата на территории Российской Федерации за 2022 год, 2023. Росгидромет, Москва, Россия, 104 с.
Думнич, Н.В., 2000. Ракообразные (Crustacea) и коловратки (Rotatoria) крупных озер Вологодской области. Диссертация на соискание ученой степени кандидата биологических наук. Петрозаводск, Россия, 167 с.
Думнич, Н.В., Болотова, Н.Л., 1996. Изменение зоопланктона крупных озер Вологодской области за 20-летний период. Материалы VII съезда Гидробиологического общества РАН. Т. 2. Казань, Россия, 18-20.
Думнич, Н.В., Крылов, А.В., 2002 Зоопланктон. В: Литвинов, А.С. (ред.), Современное состояние экосистемы Шекснинского водохранилища. Издательство ЯГТУ, Ярославль, Россия, 120-146
Думнич, Н.В., Лобуничева, Е.В., 2016. Динамика зоопланктона озерной части Шекснинского водохранилища (Вологодская область). Материалы докладов Всероссийской конференции с международным участием, посвященной 85-летию Татарского отделения ГосНИОРХ «Современное состояние биоресурсов внутренних водоемов и пути их рационального использования», Казань, 24-29 октября 2016 г. Казань, Россия, 338-349.
Думнич, Н.В., Лобуничева, Е.В., Литвин, А.И., Борисов, М.Я., 2021. Структура и динамика зоопланктона озера Воже Вологодской области. Труды Карельского научного центра РАН 5, 57-70. http://www.doi.org/10.17076/eco1321
Ершова, М.Г., 1968. Водные массы Череповецкого водохранилища. Труды института биологии внутренних вод АН СССР 16 (19), 3-21.
Ивантер, Э.В., Коросов, А.В., 2010. Элементарная биометрия: учебное пособие. Издательство ПетрГУ, Петрозаводск, Россия, 104 с.
Ивичева, К.Н., Филоненко, И.В., 2018. Видовой состав зообентоса озера Белое (Вологодская область) в XXI веке. Сборник тезисов докладов Всероссийской конференции «Волга и ее жизнь», Борок, 22-26 октября 2018 г. Филигрань, Ярославль, Россия, 57.
Ивичева, К.Н., Филоненко, И.В., 2015. Зообентос озера Воже. Известия Самарского научного центра РАН 17 (4), 705-711.
Ивичева, К.Н., Филоненко, И.В., 2019. Gmelinoides fasciatus Steb. в водоемах Волго-Балтийской и Северо-Двинской водных систем. Тезисы докладов XII съезда Гидробиологического общества при Российской академии наук, Петрозаводск, 16-20 сентября 2019 г. КарНЦ РАН, Петрозаводск, Россия, 185-186.
Ивичева, К.Н., Филоненко, И.В., 2023. Первая находка Branchiura sowerbyi Beddard, 1892 (Oligochaeta) в Шекснинском водохранилище (Верхняя Волга). Российский журнал биологических инвазий 1, 42-46. http://www.doi.org/10.35885/1996-1499-16-1-42-46
Ивичева, К.Н., Комарова, А.С., Угрюмова, Е.В., Филоненко, И.В., 2021. Сообщества беспозвоночных зарослей макрофитов разнотипных водных объектов Вологодской области. Труды Института биологии внутренних вод им. И.Д. Папанина РАН 94 (97), 94-104. http:// www.doi.org/10.47021/0320-3557-2021-94-104
Киселева, Е.И., 1951. Характеристика планктона. В: Титенков, И.С. (рук.), Состояние рыбных запасов и промысла Кубенского озера. ВНИОРХ, Ленинград, СССР, 29-33.
Корнева, Л.Г., 2015. Фитопланктон водохранилищ бассейна Волги. Костромской печатный дом, Кострома, Россия, 284 с.
Корнева, Л.Г., Митропольская, И.В., Макарёнкова, Н.Н., Цветков, А.И., 2021. Структура и динамика фитопланктона больших мелководных зарастающих озер (Воже и Лача, Вологодская и Архангельская области, Россия). Труды Института биологии внутренних вод им. И.Д. Папанина РАН 94 (97), 17-29. http://www.doi.org/10.47021/0320-3557-2021-17-29
Коровчинский, Н.М., Котов, А.А., Синёв, А.Ю., Неретина, А.Н., Гарибян, П.Г., 2021. Ветвистоусые ракообразные (Crustacea: Cladocera) Северной Евразии. Т. II. Товарищество научных изданий КМК, Москва, Россия, 544 с.
Кузьмин, Г.В., 1966a. Фитопланктон оз. Белого и р. Шексны. Гидробиологический журнал 5, 73-76.
Кузьмин, Г.В., 1966b. Фитопланктон Череповецкого водохранилища в первый год его наполнения. Труды Института биологии внутренних вод АН СССР 11, 43-52.
Кузьмин, Г.В., 1975. Фитопланктон. Видовой состав и обилие. В: Мордухай-Болтовской, Ф.Д. (ред.), Методика изучения биогеоценозов внутренних водоемов. Наука, Москва, СССР, 73-87.
Кузьмин, Г.В., 1976. Водоросли планктона Шекснинского и сопредельной акватории Рыбинского водохранилищ. В: Камшилов, М.М. (ред.), Биология, морфология и систематика водных организмов. Наука, Ленинград, СССР, 3-60.
Кутикова, Л.А., 1970. Коловратки фауны СССР (Rotatoria). Подкласс Eurotatoria (отряды Ploimida, Monimotrochida, Paedotrochida). Наука, Ленинград, СССР, 744 с.
Лазарева, В.И., 2008. Распространение и особенности натурализации новых и редких видов зоопланктона в водоемах Верхней Волги в начале XXI века. Биология внутренних вод 1, 81-88.
Лазарева, В.И., 2010. Структура и динамика зоопланктона Рыбинского водохранилища. Товарищество научных изданий КМК, Москва, Россия, 183 с.
Лазарева, В.И., 2022. Состав, структура и особенности пространственного распредления зоопланктона в Шекснинском водохранилище (Верхняя Волга, Россия). Биология внутренних вод 6, 711-724. http://www.doi.org/10.31857/S0320965222060122
Лазарева, В.И., Жданова, С.М., 2014. Американская коловратка Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) в водохранилищах Верхней Волги. Биология внутренних вод 3, 63-68. http://www.doi.org/10.1134/S1995082914030110
Лазарева, В.И., Столбунова, В.Н., Минеева, Н.М., Жданова, С.М., 2013. Особенности структуры и пространственное распределение планктона в Шекснинском водохранилище. Биология внутренних вод 3, 46-55. http://www.doi.org/10.7868/S0320965213030091
Летанская, Г.И., Протопопова, Е.В., 2012. Современное состояние фитопланктона Ладожского озера (2005-2009 гг.). Биология внутренних вод 4, 17-24.
Линко, А.К., 1903. Кладоцеры Белозера и некоторых других с ним соседних. Известия Никольского рыбоводного завода 7, 70-77.
Литвинов, А.С., 2002. Общие сведения о водохранилище. В: Литвинов, А.С. (ред.), Современное состояние экосистемы Шекснинского водохранилища. Издательство ЯГТУ, Ярославль, Россия, 5-9.
Лобуничева, Е.В., Литвин, А.И., Думнич, Н.В., 2022a. Сезонная динамика зоопланктона Шекснинского водохранилища (Вологодская область). Труды Института биологии внутренних вод им. ИД. Папанина РАН 97 (100), 18-32. http://www.doi.org/10.47021/0320-3557-2022-18-32
Лобуничева, Е.В., Литвин, А.И., Зайцева, В.Л., Думнич, Н.В., 2022b. Распространение американской коловратки Kellicottia bostoniensis (Rousselet, 1908) (Rotifera, Brachionidae) в водоемах Вологодской области. Российский журнал биологических инвазий 3, 99-107. http:// www.doi.org/10.35885/1996-1499-15-3-99-107
Луферова, Л.А., 1966. Формирование зоопланктона Череповецкого водохранилища. В: Кузин, Б.С. (гл. ред.), Планктон и бентос внутренних водоемов. Труды Института биологии внутренних вод АН СССР 12 (15), 68-74.
Макарёнкова, Н.Н., 2012. Изменение фитопланктона озера Воже как показатель его эвтрофирования. Материалы XIX Всероссийской молодежной научной конференции «Актуальные проблемы биологии и экологии». Сыктывкар, Россия, 153-155.
Макарёнкова, Н.Н., 2013. Диатомовые водоросли в крупных озерах Вологодской области. Материалы XIII Международной научной конференции альгологов «Диатомовые водоросли: современное состояние и перспективы исследований». Кострома, Россия, 128-129.
Макарёнкова, Н.Н., 2015. Состав и динамика доминирующих групп водорослей в фитопланктоне крупных озер Вологодской области в 2009-2014 гг. Материалы докладов XXII Всероссийской молодежной научной конференции «Актуальные проблемы биологии и экологии». Сыктывкар, Россия, 31-35.
Макарёнкова, Н.Н., 2018. «Цветение» воды как показатель современного состояния фитопланктона озера Белого Вологодской области. Материалы II Всероссийской научной конференции с международным участием «Рыбохозяйственные водоемы России: фундаментальные и прикладные исследования». Санкт-Петербург, Россия, 252-256.
Методические рекомендации по сбору и обработке материалов при гидробиологических исследованиях на пресноводных водоемах. Зоопланктон и его продукция, 1982. Винберг, Г.Г., Лаврентьева, Г.М. (ред.). ГосНИОРХ, Ленинград, СССР, 33 с.
Мордухай-Болтовской, Ф.Д., 1978. О бентосе Белого озера в 1973-1975 гг. Биология внутренних вод: Информационный бюллетень 38, 44-48.
Мордухай-Болтовской, Ф.Д., Митропольский, В.И., 1959. Бентос Белого озера. Труды Института биологии водохранилищ АН СССР 2 (5), 85-101.
Мотыль Chironomus plumosus L. Систематика, морфология, экология, продукция, 1983. Соколова, Н.Ю. (ред.). Наука, Москва, СССР, 309 с.
Николаев, И.И., 1977. О некоторых типах озерных экосистем по их трофической структуре (на примере больших озер Северо-Запада СССР). Водные ресурсы 3, 83-95.
Озеро Кубенское. Часть II. Гидрохимия, донные отложения, растительные сообщества, 1977a. Распопопов, И.М. (ред.). Наука, Ленинград, СССР, 220 с.
Озеро Кубенское. Часть III. Зоология, 1977b. Распопопов, И.М. (ред.). Наука, Ленинград, СССР, 168 с.
Определитель зоопланктона и зообентоса пресных вод Европейской России. Т. 1. Зоопланктон, 2010. Алексеев, В.Р. (ред.). Товарищество научных изданий КМК, Москва, Россия, 495 с.
Определитель зоопланктона и зообентоса пресных вод Европейской России. Т. 2. Зообентос, 2016. Цалолихин, С.Я. (ред.). Товарищество научных изданий КМК, Москва, Россия, 457 с.
Определитель пресноводных беспозвоночных Европейской части СССР (планктон и бентос), 1977. Кутикова, Л.А., Старобогатов, Я.И. (ред.). Наука, Ленинград, СССР, 510 с.
Определитель пресноводных беспозвоночных России и сопредельных территорий. Т. 4. Двукрылые, 1999. Цалолихин, С.Я. (ред.). Наука, Санкт-Петербург, Россия, 1000 с.
Определитель пресноводных беспозвоночных России и сопредельных территорий. Т. 5. Высшие насекомые, 2001. Цалолихин, С.Я. (ред.). Наука, Санкт-Петербург, Россия, 838 с.
Определитель пресноводных водорослей СССР: в 14 вып., 1951-1983. Голлербах, М.М., Полянский, В.И., Савич, В.П. (ред.). Советская наука - Наука - Издательство АН СССР, Москва - Ленинград, СССР.
Отченаш, Н.Г, Македонская, И.Ю., Медведева, Е.В., Левицкий, А.Л., Студёнов, И.И., 2021. Современное состояние планктонных сообществ озера Лача. Материалы XII Национальной (всероссийской) научно-практической конференции «Природные ресурсы, их современное состояние, охрана, промысловое и техническое использование». Петропавловск-Камчатский, Россия, 61-65.
Перова, С.Н., Пряничникова, Е.Г., Жгарева, Н.Н., Зубишина, А.А., 2018. Таксономический состав и обилие макрозообентоса волжских водохранилищ. Труды Института биологии внутренних вод РАН 82 (85), 52-66. http://www.doi.org/10.24411/0320-3557-2018-1-0012
Пидгайко, М.Л., 1969. Зоопланктон Белого озера в связи с рыбохозяйственным значением водоема. Известия ГосНИОРХ65, 111-120.
Пидгайко, М.Л., 1984. Зоопланктон водоемов Европейской части СССР. Наука, Москва, СССР, 207 с.
Пидгайко, М.Л., Александров, Б.М., Иоффе, Ц.И., Максимова, Л.П., Петров, В.В., Саватеева, Е.Б., Салазкин, А.А., 1968. Краткая биолого-продукционная характеристика водоемов Северо-Запада СССР. Известия ГосНИОРХ67, 205-228.
Пихтова, Т.С., 1981. Количественная оценка трофических связей между зоопланктоном и рыбами-планктофагами в озере Белом (Вологодская область). В: Винберг, Г.Г. (ред.), Основы изучения пресноводных экосистем. Издательство ЗИН АН СССР, Ленинград, СССР, 35-38.
Поддубная, Т.Л., 1966. О донной фауне Череповецкого водохранилища в первые два года его существования. Труды Института биологии внутренних вод АН СССР 12 (15), 21-33.
Поляков, М.М., 2002. Проблемы управления водопользованием. ВНКЦ ЦЭМИ РАН, Вологда, Россия, 236 с.
Пряничникова, Е.Г., Тютин, А.В., Щербина, Г.Х., 2011. Сравнительный анализ структуры поселения двух видов дрейсенид (Mollusca, Dreissenidae) и фауны их эндосимбионтов в верхневолжских водохранилищах. Биология внутренних вод 2, 57-64.
Растопчинова, Е.С., 2004. Фитопланктон как показатель состояния разнотипных водоемов Вологодской области. Материалы международной конференции «Экологические проблемы северных регионов и пути их решения». Апатиты, Россия, 207-208.
Родионов, В.И., Цимдинь, П.А., Лиепа, Р.А., Рудзрога, А.И., Друвиетис, И.Ю., Пареле, Э.А., Мелберга, Д.Г., 1987. Сравнительная характеристика гидрохимического и гидробиологического состояния озера Кубенского. Известия Академии наук Латвийской ССР 7 (480), 108-119.
Современное состояние экосистемы Шекснинского водохранилища, 2002. Литвинов, А.С. (ред.). Издательство ЯГТУ, Ярославль, Россия, 368 с.
Состояние рыбных запасов и промысла Белого озера (Вологодской области), 1951. Морозова, П.Н. (рук.). ВНИОРХ., Ленинград, СССР, 287 с.
Стругач, М.В., 1951. Характеристика бентоса. В: Титенков, И.В. (рук.), Состояние рыбных запасов и промысла Кубенского озера. ВНИОРХ, Ленинград, СССР, 34-38.
Татаринова, Т.А., 1979. Уровенный режим. В: Малинина, Т.И. (ред.), Гидрология озер Воже и Лача. Наука, Ленинград, СССР, 61-70.
Трифонова, И.С., 1990. Экология и сукцессия озерного фитопланктона. Наука, Ленинград, СССР, 184 с.
Филоненко, И.В., 2018. Оценка количественных показателей макрозообентоса озера Кубенского методами ГИС. Материалы II Всероссийской научной конференции с международным участием «Рыбохозяйственнве водоемы России: фундаментальные и прикладные исследования», Санкт-Петербург, 2-4 апреля 2018 г. Санкт-Петербург, Россия, 379-383.
Филоненко, И.В., Ивичева, К.Н., 2018. Изменения количественных показателей зообентоса озера Белое за время существования Шекснинского водохранилища. Сборник тезисов докладов Всероссийской конференции «Волга и ее жизнь», Борок, 22-26 октября 2018 г. Филигрань, Ярославль, Россия, 139-140.
Филоненко, И.В., Комарова, А.С., 2015. Многолетняя динамика площади зарастания прибрежно-водной растительностью оз. Воже. Принципы экологии 4, 63-72. http://www.doi.org/10.15393/ j1.art.2015.4622
Филоненко, И.В., Комарова, А.С., 2017. Степень развития макробентоса различных участков акватории оз. Воже как показатель состояния кормовой базы рыб. Материалы I Всероссийской научной конференции «Эволюционные и экологические аспекты изучения живой материи», Череповец, 8-9 февраля 2017 г. Череповец, Россия, 163-168.
Филоненко, И.В., Комарова, А.С., Ивичева, К.Н., 2021. Анализ факторов, значимых для зообентоса озера Белое Вологодской области. Принципы экологии 3, 74-86. http://www.doi.org/10.15393/ j1.art.2021.11902
Шилова, А.И., 1976. Хирономиды Рыбинского водохранилища. Наука, Ленинград, СССР, 251 с.
Komarek, J., 2013. Süßwasserflora von Mitteleuropa. Bd. 19 (3). Cyanoprokaryota 3. Teil: Heterocytous. Springer Spektrum, Berlin, Heidelberg, Germany, 1130 s.
Komarek, J., Anagnostidis, K., 1998. Süßwasserflora von Mitteleuropa. Bd. 19 (1). Cyanoprokaryota 1. Teil: Chroococcales. Spektrum, Akademischer Verlag, Heidelberg, Germany, 548 s.
Komarek, J., Anagnostidis, K., 2005. Süßwasserflora von Mitteleuropa. Bd. 19 (2). Cyanoprokaryota 2. Teil: Oscillatoriales. Elsevier Spektrum, Heidelberg, Germany, 759 s.
Komarek, J., Fott, B., 1983. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil 7 (1). Chlorophyceae (Grünalgen), Ordnung Chlorococcales. Schweizerbart, Stuttgart, Germany, 1043 s.
Krammer, K., Lange-Bertalot, H., 1986. Süßwasserflora von Mitteleuropa. Bd. 2 (1). Bacillariophyceae 1. Teil: Naviculaceae. Gustav Fischer Verlag, Jena, Germany, 860 s.
Krammer, K., Lange-Bertalot, H., 1988. Süßwasserflora von Mitteleuropa. Bd. 2 (2). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Jena, Germany, 596 s.
Krammer, K., Lange-Bertalot, H., 1991a. Süßwasserflora von Mitteleuropa. Bd. 2 (3). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Stuttgart - Jena, Germany, 576 s.
Krammer, K., Lange-Bertalot, H., 1991b. Süßwasserflora von Mitteleuropa. Bd. 2 (4). Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. Gustav Fischer Verlag, Stuttgart - Jena, Germany, 437 s.
Ruttner-Kolisko, A., 1977. Suggestion for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie. Ergebnisse der Limnologie 8, 71-78.
Shcherbina, G.Kh., Buckler, D.R., 2006. Distribution and ecology of Dreissena polymorpha (Pallas) and Dreissena bugensis (Andrusov) in the Upper Volga basin. Journal of ASTM international 3 (4), 426-436.