УДК 631.5.04:631.33.024.001
ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ИНТЕРВАЛОВ МЕЖДУ СЕМЕНАМИ И РАСТЕНИЯМИ В РЯДКЕ ПУНКТИРНОГО ПОСЕВА ПРИ ОБЩЕМ СЛУЧАЕ ДОЗИРОВАНИЯ
© 2009 г. к. т. н., доценты Ю.М. Черемисин, В.И. Хижняк, А.Ю. Несмиян
Азово-Черноморская государственная Azov-Blacksea State Agroengineering
агроинженерная академия, г. Зерноград Academy, Zernograd
Проведен теоретический анализ известной закономерности распределения интервалов между семенами в рядке идеального пунктирного посева для частного случая дозирования по одному семени при наличии пропусков семян. Получена теоретическая закономерность распределения интервалов между семенами и растениями для общего случая дозирования семян по 0, 1, 2... n штук дозирующими элементами пунктирной сеялки при идеальном посеве.
It is carried out a theoretical analysis of known interval distribution appropriateness among seeds and plants in a dotted drilling row for a private dosing case of one seed and having seed omission. It is received a theoretical interval distribution appropriateness among seeds and plants in a dotted drilling row for a common dosing case of 0, 1, 2. n pieces with the help of dosing elements of dotted drill seeder at an ideal drilling.
Дозирующие элементы высевающих аппаратов пропашных сеялок для пунктирного посева в общем случае осуществляют подачу семян по 1, 2....п штук, а также имеют место пропуски семян (нулевая подача).
Примем следующие условные обозначения:
ро - вероятность нулевой подачи семян дозирующим элементом;
Р] - вероятность ]-штучной подачи семян дозирующим элементом. Причем ] - целое число, принадлежащее некоторому множеству от 1 до п, где п -максимально возможное количество семян, подаваемых дозирующим элементом.
Известны закономерности [1], описывающие распределение интервалов между семенами в рядке идеального пунктирного посева:
Pli = Pi ' Ро
7-1
(1)
где Р1г - вероятность появления в рядке г- шагового расстояния.
Под идеальным посевом понимается посев, при котором размещение семян в
рядке однозначно определяется только работой дозирующего устройства, т.е. отсутствует трансформирующее
(преобразующее) рассеивание семян.
При общем случае дозирования любая ненулевая подача семян pj приводит к появлению в рядке идеального посева интервала кратного шагу высева (ненулевому интервалу) и одновременно создает (j-1) нулевых интервалов -интервалов, значительно меньших шага посева.
Под вероятностью Pli понимается частость появления i-шаговых интервалов в рядке, т.е.
PL
Nl
N z
(2)
где N - количество /-шаговых интервалов
в рядке;
£
N - общее количество интервалов в рядке.
Общее число интервалов между семенами в рядке равно количеству высеянных семян минус единица. Для
больших массивов данных этой единицей можно пренебречь и принять
N Е = N = М ■ N (3)
' ' семян я •> У-*/
где М - средняя подача семян дозирующим элементом;
Nя - количество подач дозирующих элементов (количество ячей).
Такое событие, как появление интервала между семенами, является следствием первичных событий (событий первого уровня) - подач семян дозирующими элементами (с вероятностью (1-ро)) и пропусков подач дозирующими элементами (с вероятностью р0). Следовательно, количество /-шаговых интервалов в рядке (событий второго уровня) определяется количеством событий первого уровня и вероятностью их комбинации, обеспечивающей создание такого /-шагового интервала:
N. = Рг N, (4)
где Р. - вероятность комбинации подач, создающих /-шаговый интервал.
р1 =(1 -Ро)х ро х ро...х ро х (1 -ро) = =(1-ро)2 ■ р0-1. (5)
После подстановки уравнений (5), (4) и (3) в выражение (2) получим
Р1 =
(1 - ро)2 ■ ро/-1
М
(6)
В случае идеального пунктирного посева с дозированием по одному семени и пропусками семян: (1-р0)=р1 и М=р1, соответственно выражение (6)
преобразуется в выражение (1), достоверность которого подтверждена многочисленными экспериментальными данными.
Вероятность появления в рядке нулевых интервалов:
N
Р =■
N1
(7)
где N0 - количество нулевых интервалов в рядке.
Аналогично (4) запишем:
N0 = Р о N , (8)
где Р0 - вероятность подачи семян дозирующим элементом, создающей нулевой интервал.
Ро = Х У -1)Р . (9)
После подстановок получим
Ро =
X (, -1) р.,
М
(10)
При этом справедливо выражение
Ро +Х Р = 1. (11)
Таким образом, для идеального высева семян при общем случае дозирования, распределение интервалов между семенами описывается системой уравнений:
Р0 =
Р1 =
X (, -1) р1
М
(1 -ро)2 ■ ро" М
(12)
В системе уравнений (12) через параметры работы дозирующих элементов выражены следующие параметры рядка идеального посева:
(1 - р0) - вероятность появления на шаговом отрезке рядка хотя бы одного семени;
р0 - вероятность непоявления семени на шаговом отрезке рядка;
М - среднее количество интервалов между семенами на шаговом отрезке рядка.
Аналогично (6) можно записать и для распределения интервалов, кратных шагу высева, между растениями в рядке пунктирного посева:
01, =
(1 -Чо)2 ■ Чо/-1
(13)
М ■ V
где 01/ - статистическая вероятность появления в рядке /-шагового расстояния между растениями;
Ч0 - вероятность непоявления растений на шаговом отрезке рядка;
V - всхожесть семян. Непоявление растений на шаговом отрезке рядка - сложное событие,
являющееся результатом непоявления ни одного семени или появления 1 невсхожих семян. Тогда вероятность этого события определится суммой:
4о = ро + р1(1 - v) + р2(1 - V)2 +
+ ...+ рп (1 - v) п = ро +Х Р] (1 - V)-1
а выражение (13) примет вид
еь =
(1 - (Ро +1Р] (1 - V)1 ))2 • (Ро +1Р] (1 - V)1)1-1
М • V
(15)
Нулевые интервалы между растениями в рядке посева создаются группой из ] семян, из которых к всхожих семян. При этом ] и к равно или больше двух, а к не может быть больше ]. При этом данная группа семян образует (к-1)
нулевых интервалов между растениями. Появление на шаговом отрезке рядка нулевого интервала также является сложным событием, и вероятность этого события будет складываться следующим образом:
п 1
00 = 422 + 4з2 + 2433 + ..+ (П - 1)4пп = ЕЕ(к - ,
1=2 к=2
(16)
где Цк - вероятность появления на шаговом отрезке рядка (вероятность подачи дозирующим элементом) группы из ] семян, из которых к являются всхожими.
Описанные [2] вероятности появления гнезд с растениями в рядке гнездового посева также справедливы и для пунктирного посева с учетом вероятности подачи семян
дозирующими элементами.
С учетом вышеизложенного и принятых в данной статье условных обозначениях запишем:
..к /л ,.у-к Г<к
= Р1 • ^ • А - V)1-к • С,
(17)
где Ск - число сочетаний из п и к.
Тогда выражение (16) примет вид:
п 1
00 = ЕЕ(к-1)• с) • Р] • / • (1 -V)1-к. (18)
1=2 к=2
Аналогично выражению (10), вероятность появления нулевых интервалов между растениями в рядке посева
ео =
ЕЕ (к -1) • с) • Р1 • ^ • (1 - V)1-к
1=2 к=2
М • V
(19)
Таким образом, для идеального пунктирного посева, при общем случае дозирования семян высевающим
аппаратом, распределение интервалов между растениями в рядке описывается системой уравнений:
п 1
ео =
ЕЕ (к -1) • С • Р} • vk • (1 - V)
1=2 к=2
М • V
1 -к
еь =
(1 - (Ро +Е Р1 (1 - V)1 ))2 • (Ро+Е Р1 (1 - V)1)
М • V
А г -1
(2о)
Полученные выражения растениями (20) в рядке идеального
устанавливают зависимость распределения пунктирного посева для общего случая интервалов между семенами (12) и дозирования семян высевающим аппаратом
(характерного для современных
пропашных сеялок) от параметров дозирования и всхожести семян.
С учетом допущений об идеальности посева или с учетом трансформации интервалов в реальном посеве, данные
зависимости могут использоваться для прогнозирования распределения семян и растений, а также для решения обратной задачи - установления параметров дозирования по полученным всходам.
ЛИТЕРАТУРА
1. Лобачевский, П.Я. Закономерности распределения семян и растений в рядках точного пунктирного посева [Текст] / П.Я. Лобачевский //Труды АЧИМСХ. - Ростов н/Д: Ростовское книжное изд-во, 1970. - Вып. 21.
2. Лобачевский, П.Я. Закономерности распределения растений при квадратно-гнездовом и гнездовом посеве [Текст] / П.Я. Лобачевский // Труды АЧИМСХ.- М.: Россельхозиздат, 1961. - Вып. 18.
Выводы
1. Разработанная модель позволяет определить приводные характеристики многоскоростных электроприводов в различных режимах без применения сложных аналитических методов и физических экспериментов.
2. Данная модель может быть преобразована для исследования асинхронных электроприводов с различными ступенями частот вращения и характером нагрузки.
ЛИТЕРАТУРА
1. Регулируемые асинхронные электродвигатели в сельскохозяйственном производстве [Текст] / В.Н. Андрианов и др.; под ред. Д.Н. Быстрицкого. - М.: Энергия, 1975. - 400 с.
2. Схемы статорных обмоток асинхронных двигателей и генераторов: учебно-методическое пособие для самостоятельной работы [Текст] / Н.И. Богатырев, В.Н. Ванурин, О.В. Вронский и др. - Краснодар.: КубГАУ, 2003. - 132 с.
3. Основы автоматизированного электропривода [Текст]: учеб. пособие для вузов / М.Г. Чиликин, М.М. Соколов, В.М. Терехов, А.В. Шинянский. - М.: Энергия, 1974. - 568 с.
4. Структурное моделирование технических систем [Текст] / Б.А. Карташов и др.; под ред. Б.А. Карташова. - Зерноград: ФГОУ ВПО АЧГАА, 2007. - 237 с.