УДК 519.6;519.8
ЗАДАЧА УПРАВЛЕНИЯ ГИДРОЛОГИЧЕСКИМ РЕЖИМОМ В ЭКОЛОГО-ЭКОНОМИЧЕСКОЙ СИСТЕМЕ «ВОЛЖСКАЯ ГЭС - ВОЛГО-АХТУБИНСКАЯ ПОЙМА". Ч. 2. Синтез системы управления
A.A. Воронин, М.В. Елисеева, С.С. Храпов, A.B. Писарев, A.B. Хоперсков
На основе результатов гидродинамического моделирования динамики поверхностных вод и когнитивного анализа эколого-экономической системы «Волжская ГЭС — Вол-го-Ахтубинская пойма» построены оптимизационная модель ее паводкового гидрологического режима и теоретико-игровая модель управления экономическим агентом с механизмом платы за ущерб.
Ключевые слова: эколого-экономическая система, управление риском, многокритериальная оптимизация, иерархическая игра.
ВВЕДЕНИЕ
Современный гидрологический режим эколого-экономической системы (ЭЭС) «Волжская ГЭС — Волго-Ахтубинская пойма» (ВГЭС — ВАП), определяемый хозяйственно-экономическими приоритетами, ведет к прогрессирующему обезвоживанию Волго-Ахтубинской поймы [1]. Кардинально изменить негативную природную динамику ЭЭС невозможно без создания комплексной системы эколого-экономического управления, задача которого состоит в оптимальном распределении ее водного ресурса на непосредственное хозяйственно-экономическое и опосредованное — через природу — потребление в условиях конкуренции ее акторов в краткосрочной и общности их интересов в долгосрочной перспективе, неопределенности гидрологического режима волжского бассейна и природной динамики ВАП.
Результатом адаптации комплекса механизмов управления [2, 3] для системы ВГЭС — ВАП должна стать система эколого-экономического управления гидрологическим режимом ВАП, включающая в себя: в природной и технической системах — синтез и реализацию оптимального режима расхода воды через водосброс ГЭС (гидрографа), восстановление природной и создание искусственной гидросистемы ВАП (строительство паводковых дамб в руслах рек, расчистка естественных ериков, восстановление родников и озер, прокладка кана-
лов, шлюзов, коллекторов); в социально-экономической системе — механизмы управления экономическим агентом (ЭА) — руководством ВГЭС, юридическое разделение субъектов и объектов управления, экологическое законодательство. Системообразующей задачей этого комплекса является синтез механизмов управления гидрологическим риском, возникающим в результате весеннего попуска воды через ВГЭС. В настоящей работе представлена модель управления паводковым гидрологическим режимом ВАП (в пределах Волгоградской области), включающая в себя оптимизацию гидрографа через створ Волжской плотины и механизм управления ЭА с расчетом платы за ущерб на основе аналитической аппроксимации результатов гидродинамического моделирования затопления ВАП [3].
1. КОГНИТИВНЫЙ АНАЛИЗ ГИДРОЛОГИЧЕСКОЙ СИТУАЦИИ
Анализ основных страт эколого-экономичес-кой системы ВГЭС — ВАП позволяет построить иерархию ее гидрологических приоритетов — критериев управления гидрологическим режимом. Высшим гидрологическим приоритетом ЭЭС является безопасность ВГЭС, достигаемая поддержкой уровня Волгоградского водохранилища в заданном диапазоне. Это требование безопасности, заставляющее снижать его уровень перед весен-
ним снеготаянием и не опускать его ниже нормы в условиях переменного и не всегда верно прогнозируемого режима половодья, часто приводит к недостаточной суммарной емкости паводкового гидрографа Q(t). С другой стороны, этот же приоритет в условиях высокой воды может помешать реализации следующего приоритета — гидрологической безопасности жителей ВАП, определяемой безопасным режимом затопления (max Q(t) m Qmax)
и предельно допустимым значением ее затопляемой площади (maxS(t) = S^ m J. Экологичес-
x t x ' max пред7
кая безопасность в краткосрочной перспективе, определяющая минимально допустимый уровень паводкового затопления (а, значит, и минимальный гидрограф), определяется рыбохозяйствен-ным (рх) режимом — затоплением нерестилищ (площади Spx) в течение периода нереста Трх. (Значение Spx медленно, но неуклонно снижается, од-рх
нако в краткосрочной перспективе ее сохранение является экологическим приоритетом.) Долго -срочная экологическая безопасность ЭЭС — сохранение природной системы ВАП — реализуется в краткосрочной перспективе максимизацией паводкового затопления ее поверхности S^ ^ max.
max Q( t)
Социальный гидрологический приоритет всех акторов ЭЭС в условиях безопасного затопления ВАП совпадает с экологическим. Экономический приоритет ЭЭС состоит из экономических приоритетов ее акторов, конкурирующих между собой и с природой ВАП за водный ресурс. Так, например, экономический приоритет ЭА — максимизация суммарного расхода воды через турбины ВГЭС — достигается минимизацией объема паводкового гидрографа, что противоречит реализации экономического приоритета жителей ВАП (также совпадающего с безопасным экологическим приоритетом). Таким образом, главная внутренняя проблема ЭЭС состоит в конфликте между экономическим приоритетом ЭА и ее экологическим приоритетом.
Система управления гидрологическим режимом ВГЭС является трехуровневой: Центр (межведомственная комиссия Министерства природных ресурсов с участием органов региональной власти) — ЭА — техническая система попуска ВГЭС). Гидрологическим приоритетом Центра служит баланс между гидроэнергетическим (F) и безопасным экологическим (U) критериями, качественная зависимость которых от затопляемой площади представлена на рис. 1. Парето-оптималь-ное множество планируемых Центром значений
оПЛ 1
затопляемой площади Smax представлено на рис. 1 отрезком ОВ.
Рис. 1. Качественный вид функции гидрологического ущерба и и гидроэнергетической полезности Г
Таким образом, синтез оптимального механизма управления гидрологическим режимом включает в себя решаемую Центром задачу многокритериальной оптимизации (решением которой является плановый гидрограф), решаемую ЭА задачу оптимизации рх-гидрографа с безопасным экономическим критерием (решением которой является его оптимальное действие в отсутствие механизма экологического управления) и задачу эколого-эко-номического управления в системе «Центр — ЭА» с платой за ущерб.
2. МОДЕЛЬ ГИДРОЛОГИЧЕСКОГО РИСКА
Наличие гидрологической модели [4] позволяет задавать гидрологический режим в виде кортежа ОЩ) = 0, £(*0), $(70)}, где *0 — время начала
попуска, ^0) — глубина оттаявшего грунта, О(^0) — состояние гидросистемы и рельефа ВАП (значения относительных высот и глубин на координатной сетке). Агрегированный гидрологический риск
рассчитывается по формуле 1Я = X ДСфЦСЛ),
ся
где Р — вероятность, и — интегральный гидрологический ущерб. Необходимая для синтеза управления структура 1Я [2] определяется возможностью оценки локальных рисков и идентификации их субъектов.
Фактический гидрологический режим является результатом действий нескольких агентов. Сначала
на основе данных метеопрогноза и мониторинга определяются плановые значения 1ra(t0) и $ra(t0), на основе которых региональная экологическая служба представляет Центру экологически оптимальный гидрограф Q3K(t0, t) = arg min(U3K(Q(t0, t))), где U3K — экологический ущерб. Центр, решая, например, задачу U - F ^ min (ее решению соот-
Q (t)
ветствует точка А на рис. 1) или применяя иной метод решения многокритериальной задачи [2] в условиях прогноза паводкового режима и оперативных данных о наполнении Волгоградского водохранилища, определяет плановый гидрограф Qra(t0, t). Экономический агент реализует фактический гидрограф Qф(t0, t), что соответствует гидрологическому режиму GR(Q^(t0, t), ^(t0), Sra(t0). Наконец, фактические природные условия и рельеф приводят к реализации гидрологического режима GR(Q^t0, t), ^(t0), ^(t0)). Отметим, что антропогенные изменения рельефа О могут играть как негативную, так и позитивную роль (в настоящей работе они используются как компенсирующие действия ЭА при Qф < Qra). Доля привносимого ЭА ущерба оценивается разностью
иЭА = ) W)) -
- U(GR(QПл(t0, t), 1^00), \Л))).
Расчет ущерба U по методике [2, 5] предполагает его предварительную реструктуризацию по видам (социальный, экологический, экономический, безопасность), акторам ЭЭС, времени действия и территории ВАП. Приоритетность видов территориально локализованных ущербов можно определить с учетом типа биосферных зон ВАП [6] (рис. 2). Отметим, однако, что реализация этого подхода в полном объеме в ближайшей перспективе затруднительна. Алгоритмически ясны расчеты и агрегирование территориально локализованных краткосрочных ущербов переходной зоны ВАП, главную часть которых составляет падение оценок прямой стоимости сельхозугодий и стоимости проживания, затраты на восстановление древесных насаждений и т. п. Оценка же и агрегирование (в особенности средне- и долгосрочного) экологического ущерба U3K представляет трудность, в первую очередь, в методическом отношении. Сложность оценивания даже территориально локализованного ущерба U3K обусловлена относительной природной неустойчивостью и слабой изученностью геобиоценоза ВАП, трудностью разделения действующих факторов наряду со скудностью статистических данных и нелинейным накопительным характером природных изменений. Экспертно-эмпирической базой этой оценки в будущем могут стать временные ряды полей коэф-
Рис. 2. Границы биосферных зон cеверной части ВАП (символом ▼ отмечено положение гидрологического поста в поселке Средняя Ахтуба)
фициентов биологической целостности и экологической значимости микрозон ВАП, к расчету которых приступили совсем недавно [1].
В настоящее время отсутствует общепринятая методика расчетов средне- и долгосрочных экологических ущербов. Можно лишь говорить об экспоненциальном виде верхней оценки определяющей ущерб зависимости сложности большого биоценоза (как системы биоценозов различной сложности и территориальной локализации) от площади компактно занимаемого им биотопа и об аддитивном агрегировании его сложности по изолированным биотопам. Поэтому при не слишком большом отклонении плановой площади затопления ВАП от фактической функция ущерба слабо отличается от линейной (иэА(Л£) = kAS,
AS = Smax — Smax, к l к0 > 0). Действительно, с
одной стороны, плановый ущерб не равен нулю (к0 > 0), с другой, — расположение «внеплановых» сухих зон при значительном затоплении носит анклавный характер. В настоящей работе рассматривается функция ущерба общего вида с положительной первой производной при всех значениях аргумента.
3. МОДЕЛЬ ЗАТОПЛЕНИЯ ВОЛГО-АХТУБИНСКОЙ ПОЙМЫ
Для моделирования аналитической зависимости S3aT(h) = maxS(h(Q(t0, t))) на основе визуального
анализа картографических данных и результатов гидродинамического моделирования [4] были созданы двухзонная модель рельефа северной части ВАП (низменности и холмы с удельными весами площадей зон соответственно ^ = 0,7 и ц2 = 0,3 и высотой холмов H = 4 м) и двухуровневая модель ее гидросистемы (магистральная — крупные проточные русла и локальные — ветвящиеся ерики,
моделируемые бинарными деревьями со средним числом ветвлений g = 2,25, длиной каждого русла 6 км и уклоном дна а = 0,0006. Предполагалось, что русла перекрыты природными дамбами с функцией равномерного распределения относительных высот f(к, V) = 8(у0 + V) + (1 — 8(у0 + у))к/к0, где у0 и V — затраты на расчистку дамб соответственно прошлых лет и текущего года, 8 — коэффициент эффективности затрат, к0 — максимальная высота дамб, к — высота превышения уровня паводковых вод над меженным в магистральной
о 2
гидросистеме, и что ^зат(0, 0) = 2,1-10 м — площадь ериков и озер, N = 32 — число локальных гидросистем, I = 1000 м — максимальная дальность разлива вод из каждого ерика. В рамках этих моделей функцию площади территории, затопляемой из русел локальной гидросистемы, можно записать в виде легко вычисляемой квадратуры:
к / а
^(к, V) = ^(0, 0) + | ф(х, к < V
Рис. 4. Зависимость Н(ф по данным гидропоста в поселке Средняя Ахтуба (2010 г.) и их линейная аппроксимация
(h - h о) / а
S^h, v) = S3JO, 0) + J 0(x)dx + (1)
0
h / а
+ J ф(х, v)dx, h > h0,
(h - h 0) / а
где ф(х, v) = f(h - ax, v)0(x), 0(x) = Меух(| + |2(h -— ax)/H, у = 0,001gln2. Техническая система по-
Рис. 3. Зависимости (1); точками обозначены результаты гидродинамических расчетов
пуска ограничивает гидрограф Q(t0, t) суперпозицией линейных (рост, падение) и постоянных функций, но фактически варьируемыми параметрами служат величины и времена действия стационарных составляющих Q(t0, t) = Q = const [4].
На рис. 3 представлены кривые (1) при h0 = 2 м, S(v0 + v) = [1; 0,5; 0] (кривые 1, 2 и 3), h(Q) =
= (Q — Q0)/d, Q0 = 12 тыс. м /с (начало затопления
территории ВАП), d = 4200 (с/м ) (отвечает наилучшей аппроксимации функцией h(Q) = (Q — Q0)/d данных замеров превышения уровня р. Ахтуба над меженным на гидропосту п. Средняя Ахтуба в 2010 г., рис. 4). Для сравнения на рис. 3 точками отмечены значения Smax, полученные прямым гидродинамическим моделированием затопления ВАП при стационарных гидрографах для f = 1.
4. МОДЕЛЬ ОПТИМАЛЬНОГО ГИДРОГРАФА
С учетом изложенного в § 1 задачу максимизации экономического критерия ЭА на множестве безопасных рх-гидрографов можно записать в виде:
J =
J Q(t)dt ^ mm, Т = ti — t0 + Т^
max Q(t) m Q,
, S m s (l < t < l + T),
ma^ max предv 0 0 ''
min(S(t)) > Spx(ti m t m ti + Tpx),
' S(ti) = S(t0 + T) = Spx.
(2)
0
t0 + T
0
Решение этой задачи прямым гидродинамическим моделированием чрезвычайно трудоемко. Поэтому на основе формулы (1) была построена аналитическая аппроксимация полученных в работе [4] расчетных кривых ¿(^ <0(0) затопления ВАП двухкаскадным стационарным гидрографом <0(0 = < (0 < t т т — фаза подъема воды) и <0(0 = <02 (т т t < t0 + Т — фаза спуска воды):
S(t, Q ) = S3aT( h( Q!) , v) ( t/ b( Q!) )
n (Q i)
1 + (t/ b (Q!))
n (Q1)
n(Qi) = 0,1 VQ^QO, b(Qx) =
S(t) = Smax; S(t, Q2, Smax) =
_c _ S3aT(h( Q), V)((t - T)/b( Q))
2 • 10 5 Q i - Q о
(3)
n (Q)
1 + ((t - t) / b (Q))n (Q 4
0 = л-1( (^тах)) - 02 + 60-
Здесь Н~1 и ^з-1 — обратные функции. Для Трх = 45, ¿рх/^ВАП = 0,1 на рис. 5 приведены три расчетные кривые ¿(^ <0(0) [4] (сплошные линии) и их аналитические аппроксимации
Рис. 5. Зависимость от времени площади затопленной территории ВАП для двухкаскадного гидрографа (по результатам гидродинамических расчетов [4] и их аппроксимаций (3))
т, сут
зо
25 -
20 _
15 _
10 _
5 _
Q, тыс. м /с 1-20
-18
-16
-14
12
-Г I I I I I I I I I г
0,08 0,12 0,16 0,2 0,24 Sm/S вап
Рис. 6. Зависимости Q (Smax) и t(Smax) для рх-гидрографа при
Qmax = 28 ТЫС. М3/с
(штриховые линии). Величины 01 и <02 для этих кривых соответственно равны: кривая 1: 35 и 14,05; кривая 2: 34 и 13,38; кривая 3: 33 и 13,26. Найденное путем элементарных выкладок решение задачи (2), (3) для фазы затопления с па-
раметр°м ¿тах имеет вид: <1 = 0та^ т(^тах) =
b(Qmax)
Smax S3aT ( h ( Qmax)' V
max 1/n ( Q max )
. Значение
Q2 = Q2 (Smax) находилось численно из краевого
условия S(ti -x Грх, Q2' Smax) = Spx. Для Tpx = 45,
3
Spx/SBAn = 0,1 и Qmax = 28 тыс. м /с найденные значения T(Smax) и Q2 (Smax) приведены на рис. 6. Соответствующие этим функциям зависимости
J(Qmax^ T(Smax), Q2 (Smax), построенные численно
при Sрх/SBAП = {0,05; 0,1; 0,15}, приведены на рис. 7. Из последних зависимостей численно находилась
величина Smax = arg min(J(Qmax), T(Smax), Q2 (Smax)),
S max
которая и дает окончательное решение задачи (2), (3) — оптимальный рх-гидрограф Q* = {Qmax,
t( Smax ), Q2 ( Smax )}.
Как показывает рис. 7, при Spx « (0,1 — 0,15)S1
ВАП
величина S* достигает экологически оптималь-
(0,27 - 0,33)SBAn. Однако в
ных значений Sm* настоящее время Spx « (0,05 — 0,07)SBAn, что соот-
ветствует значению Sm*
(0,2 — 0,22) SBAn — зна
max
построенный численно с учетом выражения (1). Пусть 8v0 < 1. Обозначим
U = min( uy |v = 0), U2 = min| UV (y, v)|, . 1 - 5 v0
Ут
5 b
5 = 2 h пл Ф 2 ( h пл) min (b - vo)фj(hпл),
o öy
= 5v0hплФl(hпл) + 2hпл Ф2(hпл),
y = 0
q = ¥j(0, ^ = 5hплФl(hпл),
l
r = T1
= Чш(ф1^пл) + Ф1 (hпл)),
y = 0
D = {(y, v, X, 5): 0 m y m ymax, v = v0(y, 5, V0), X > Xmin, 5 > 5m,n}.
Рис. 7. Зависимость суммарной емкости паводкового рх-гидро-графа от максимальной площади затопленной территории ВАП
При X l Xmin = max(b Uf1, U21) выполнены условия сильного штрафа [2] и fv' > 0, поэтому при
y > 0 для ЭА оптимально значение v = v0(y). При (y, v, 5, X) е D имеем U = 0, f(y, v, X) l 0. Оптимальное для ЭА решение задачи (4) в области D чительно ниже значения STax = argmm(U - F) имеет вид y*(5, v0) = arg maxf(y, v0(y, 5, v0)) (см.
(точка А на рис. 1), что говорит об актуальности механизма эколого-экономического управления.
5. СИНТЕЗ ОПТИМАЛЬНОГО МЕХАНИЗМА УПРАВЛЕНИЯ ГИДРОЛОГИЧЕСКИМ РИСКОМ
рис. 8). Заметим, что с ростом у0 область Б сужается и повышается порог эффективности восстановительных работ 80.
Решение задачи (4) в линейном приближении
Обозначим у = (кпё - ^У^ кпё = к( ¿тах X
кф = к( ^тах), и(у, V) = (иэА(Д^(у, V)). Ввиду слабой
зависимости затрат ЭА от объема выработки электроэнергии функция дополнительной прибыли ЭА может быть записана в виде У0 = Ьу, где Ь — некоторое число.
Рассмотрим задачу управления в системе «Центр — ЭА» с механизмом платы за ущерб [2]:
Фц(у, V, X) = и((у(Х), у(Х))) ^ ш|п, Ду(Х), ЦХ)) = Ьу - V - Хи(у(Х), ЦХ)) ^ шах (4)
(У, V)
с ценой ущерба Х. Для решения задачи (4) выражение (1) и функцию А^ удобно записать в виде соответственно ¿Зат(к, V) = ¿Зат(0, 0) + к8(у0 + у)фх(к) +
+ к2ф2(к), ф(п) (0) > 0, / = 1, 2, п = 0, 1, ... и А^ = у0(у) — V ух(у). (Производные функций у0 и положительны при всех значениях аргумента).
имеет вид: v0(y, 5, v0) = py , y 0 0 q - ry
v0(y*) = p£/r, f(y*, v0(y*)) = ps2/r, 8 = VbqTP - 1.
2
* = q 8
r( 1 + 8) :
Рис. 8. Функции дохода f = by, затрат v = v (y) и прибыли
При v = v (y) = Шп/wi имеем AS = 0 и, соответст- - , о, ч
v/ Y^Yl ' f = by — v (y) экономического агента в режиме полной компен-
венно, U = 0. На рис. 8 изображен график v = v (y),
сации ущерба
Значение у = #/г отмечено на рис. 8 вертикальной штриховой линией. Если вместо труд-нооцениваемой функции экологического ущерба использовать его измеримый индикатор Л^, то ^шп = Ь/Р и, таким образом, все параметры механизма управления становятся определенными.
ЗАКЛЮЧЕНИЕ
Среди задач, решение которых необходимо для практической реализации построенного механизма управления и возможно на основе представленных в работе моделей и результатов, отметим количественную оценку и уточнение параметров построенного механизма управления на основе реальных данных; моделирование гидрологических последствий фактических антропогенных изменений гидросистемы и рельефа Волго-Ахтубинской поймы; расширение перечня и оценку эффективности компенсирующих действий экономического агента (строительство каналов и гидросооружений, предназначенных для экологической оптимизации гидрологического режима Волго-Ахтубинской поймы) синтез экологически оптимального гидрологического режима волжского гидрокаскада и не-манипулируемых механизмов управления всеми участниками процесса синтеза гидрографа.
В 2011 г. принято решение о выделении средств Федерального бюджета на восстановление гидросистемы Волго-Ахтубинской поймы. Как показано в настоящей работе, внедрение механизма эко-лого-экономического управления экономическим агентом могло бы существенно повысить эффективность их использования.
Работа выполнена при финансовой поддержке РФФИ (грант 11-07-97025), ФЦП «Научные и научно-педагогические кадры инновационной России 2009—2013 гг.» (проект № 14.В37.21.028), Минобр-науки (тема «Системы мониторинга, диагностики и управления в экологии и медицине на основе инфор-
мационных технологий и компьютерного моделирования»).
Авторы благодарны НИВЦ МГУ им. М.В. Ломоносова за предоставленную возможность воспользоваться суперкомпьютером «Ломоносов».
ЛИТЕРАТУРА
1. Анализ экологических последствий эксплуатации Волгоградского водохранилища для сохранения биоразнообразия основных водно-болотных территорий Нижней Волги // Отчет о НИР ФГУ «ГОИН» / И.В. Землянов, О.В. Горе-лиц, А.Е. Павловский и др. — М., 2010. — 675 с.
2. Бурков В.Н., Новиков Д.А., Щепкин А.В. Механизмы управления эколого-экономическими системами / под ред. акад. С.Н. Васильева. — М.: Физ.-мат. лит., 2008. — 244 с.
3. Угольницкий Г.А., Усов А.Б. Математическая формализация методов иерархического управления эколого-эконо-мическими системами // Проблемы управления. — 2007. — № 4. — С. 64—69.
4. Хоперсков А.В., Храпов С.С., Писарев А.В. и др. Задача управления гидрологическим режимом в эколого-экономи-ческой системе «Волжская ГЭС — Волго-Ахтубинская пойма». Ч. 1. Моделирование динамики поверхностных вод в период весеннего паводка // Проблемы управления. — 2012. — № 5. — С. 18—25.
5. Губко М.В. Механизмы оценки безопасности заповедника // Управление большими системами. — 2008. — № 21. — С. 131—144.
Статья представлена к публикации членом редколлегии чл.-корр. РАНД.А. Новиковым.
Воронин Александр Александрович — д-р физ.-мат. наук, профессор, S (8442) 46-02-61, И voronin@volsu.ru,
Елисеева Мария Владимировна — магистрант, S (8442) 46-02-61,
Храпов Сергей Сергеевич — канд. физ.-мат. наук, доцент, ® (8442) 46-48-94,
Писарев Андрей Владимирович — аспирант, S (8442) 46-48-94, И andrew_pisarev@mail.ru,
Хоперсков Александр Валентинович — д-р физ.-мат. наук, профессор, S (8442) 46-48-94, И khoperskov@rambler.ru,
Волгоградский государственный университет, кафедра информационных систем и компьютерного моделирования.
Не
овал книга
Новиков Д.А., Чхартишвили А.Г. Рефлексия и управление: математические модели. — М.: Изд-во физ.-мат. литературы, 2013. — 412 с., ISBN 978-5-94052-226-3.
Монография посвящена обсуждению современных подходов к математическому моделированию рефлексивных процессов в управлении. Рассмотрены рефлексивные игры, описывающие взаимодействие субъектов (агентов), принимающих решения на основании иерархии представлений, во-первых, о существенных параметрах (информационная рефлексия), во-вторых — о принципах принятия решений оппонентами (стратегическая рефлексия), а также представлений о представлениях и т. д.
Анализ поведения фантомных агентов, существующих в представлениях других реальных или фантомных агентов, и свойств информационной (и рефлексивной) структур, отражающих взаимную информированность реальных и фантомных агентов, позволяет предложить в качестве решения игры информационное (соответственно, рефлексивное) равновесие, которые являются обобщением ряда известных концепций равновесия в некооперативных играх и в моделях коллективного поведения.
Модели информационной и стратегической рефлексии дают возможность:
— описывать и изучать поведение рефлексирующих субъектов;
— исследовать зависимость выигрышей агентов от рангов их рефлексии;
— ставить и решать задачи информационного и рефлексивного управления в организационных, экономических, социальных и других системах, в военном деле и др. (в книге рассмотрено около 30-ти примеров прикладных задач из перечисленных областей);
— единообразно описывать многие явления, связанные с рефлексией: скрытое управление, информационное управление через СМИ, рефлексию в психологии, художественных произведениях и др.
Для специалистов в области принятия решений и управления системами междисциплинарной природы, а также для студентов вузов и аспирантов.