Научная статья на тему 'ВЗАИМОЗАВИСИМОСТЬ ЛЕПТИНА, ИНСУЛИНОВЫХ ГОРМОНОВ И ОЖИРЕНИЯ'

ВЗАИМОЗАВИСИМОСТЬ ЛЕПТИНА, ИНСУЛИНОВЫХ ГОРМОНОВ И ОЖИРЕНИЯ Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
267
52
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Re-health journal
Ключевые слова
ОЖИРЕНИЕ / ИНСУЛИН / ЛЕПТИН / ЛЕПТИНОРЕЗИСТЕНТНОСТЬ / ИНСУЛИНОРЕЗИСТЕНТНОСТЬ / МЕТАБОЛИЧЕСКАЯ ЭНДОТОКСЕМИЯ / OBESITY / INSULIN / LEPTIN / LEPTIN RESISTANCE / INSULIN RESISTANCE / METABOLIC ENDOTOXEMIA / SEMIZLIK / LEPTINGA REZISTENTLIK / INSULINGA REZISTENTLIK / METABOLIK ENDOTOKSEMIYA

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Ахмедов Шавкатбек, Вахобов Лутфулло, Абдурахимов Абдухалим, Нугманов Озодбек

Статья посвящена жизненно важной проблеме 1го века - ожирению. Оно может привести к серьезным патологиям. Это можно объяснить резистенцией к инсулину и лептину. Диабет и ожирение являются двумя метаболическими заболеваниями, характеризующимися резистентностью к инсулину и слабым воспалением.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Ахмедов Шавкатбек, Вахобов Лутфулло, Абдурахимов Абдухалим, Нугманов Озодбек

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INTERDEPENDENCE OF LEPTIN AND INSULINE HORMONES AND OBESITY

This article is focused on one of the vital problems of the 21st century- obesity. It can lead to very serious pathologies. This can also be explained by insulin and leptin resistance. Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation.

Текст научной работы на тему «ВЗАИМОЗАВИСИМОСТЬ ЛЕПТИНА, ИНСУЛИНОВЫХ ГОРМОНОВ И ОЖИРЕНИЯ»

ВЗАИМОЗАВИСИМОСТЬ ЛЕПТИНА, ИНСУЛИНОВЫХ ГОРМОНОВ И

ОЖИРЕНИЯ

Ахмедов Шавкатбек Вахобов Лутфулло Абдурахимов Абдухалим Нугманов Озодбек

Андижанский государственный медицинский институт

Андижан, Узбекистан

Статья посвящена жизненно важной проблеме 21го века - ожирению. Оно может привести к серьезным патологиям. Это можно объяснить резистенцией к инсулину и лептину. Диабет и ожирение являются двумя метаболическими заболеваниями, характеризующимися резистентностью к инсулину и слабым воспалением.

Ключевые слова: ожирение, инсулин, лептин, лептинорезистентность, инсулинорезистентность, метаболическая эндотоксемия.

LEPTIN VA INSULIN GORMONLARI HAMDA SEMIZLIKNING O'ZARO

BOG'LIQLIGI

Ushbu maqolada XXI asrning dolzarb mavzusi yuzasida so'z yuritilgan. Semizlik jiddiy kasalliklarni keltirib chiqaradi. Buni insulin va leptinga rezistentlik bilan tushuntirish mumkin. Diabet va semizlik insulin qarshiligi va past darajadagi yallig'lanish bilan tavsiflanadigan metabolik kasalliklardir.

Kalit so'zlar: semizlik, insulin, leptin, leptinga rezistentlik, insulinga rezistentlik, metabolik endotoksemiya.

INTERDEPENDENCE OF LEPTIN AND INSULINE HORMONES AND OBESITY

Abstract: this article is focused on one of the vital problems of the 21st century-obesity. It can lead to very serious pathologies. This can also be explained by insulin and leptin resistance. Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation.

Key words: obesity, insulin, leptin, leptin resistance, insulin resistance, metabolic endotoxemia.

DOI: 10.24411/2181-0443/2020-10100

Leptin hormone. Known to science [1-4] what leptin action and the concept of 'leptin resistance' Leptin, a polypeptide hormone that is produced by adipocytes in proportion to their triglyceride content, links changes in body energy (fat) stores to adaptive responses in the central control of energy balance. According to research [5-7] by binding to and activating the long form of its receptor (LEPR-B) in the brain, leptin decreases food intake while increasing energy expenditure. Evolutionary considerations, together with a large body of experimental data, indicate that a major physiologic role of leptin is to respond to and defend against reductions of body fat (and thus leptin) that might impair survival and reproductive fitness. Apart from the notable exception that their body fat mass is markedly increased, the phenotypes of humans and rodents lacking leptin or LEPR-B mirror the physiological response to starvation (e.g. hunger, decreased metabolic rate, infertility, immune dysfunction, insulin resistance). Thus, leptin is required for energy stores to be sensed in the central nervous system (CNS) and is thus essential for

functions such as normal energy homeostasis and reproduction. Leptin replacement effectively reverses the altered physiology associated with low leptin states, including genetic leptin deficiency (e.g. Lepob/ob mice and the rare humans with loss of function mutations in the leptin gene), lipodystrophic syndromes (in which the lack of adipose tissue results in a corresponding diminution of circulating leptin [8,9]) and otherwise normal humans who have undergone weight reduction and whose circulating leptin is therefore decreased as a result of the diminished fat mass [10-12]. Moreover, exogenous leptin acutely decreases feeding and body weight in normal animals and is a powerful determinant of energy expenditure in fasted animals [5,13,14]. These observations establish leptin deficiency as a key regulator of metabolic and neuroendocrine responses to states that are characterized by negative energy balance and weight loss. Although leptin administration reduces food intake in normal animals, food intake ultimately returns toward normal during prolonged leptin administration, once body fat stores have been substantially depleted [5]. Moreover, treatment with leptin alone (even at very high doses) is ineffective as a means to decrease food intake and body weight in obese animals and humans, although congenital leptin-deficiency states represent an exception to this rule [15]. Indeed, the subset of overweight and obese human subjects who demonstrate the strongest catabolic response to leptin are those at the lower end of the obese body mass index (BMI) range and those with relatively low leptin levels for any given BMI or adiposity level [16,17]. Together with the aforementioned finding of elevated circulating leptin levels in obese subjects (commensurate with their adipose mass) [18,19], these observations have inspired the notion of 'leptin resistance' in common forms of obesity [2 0], analogous to the insulin resistance that contributes to type 2 diabetes and that often coexists with 'leptin resistance' in obese individuals. Indeed, similar cellular mechanisms might attenuate the action of both hormones, as detailed below.

Interdependence obesity and leptin resistance. In addition [21,22] obesity and the notion of 'selective' leptin resistance It has been proposed that the maintenance of reproductive function, energy expenditure, sympathetic outflow and other leptin-regulated processes in the setting of DIO indicates impaired leptin action in obesity, restricted to the control of feeding. Note that although the effect of genetic lesions that impair specific leptin-regulated pathways might produce selective leptin resistance, these represent a different case from that of DIO. Several lines of evidence argue against a meaningful selectivity in leptin resistance in DIO. First, a variety of data suggests that leptin acts on both energy expenditure and feeding via overlapping sites and mechanisms and the nature of a process that might interfere with feeding but not energy expenditure is thus unclear. Indeed, although the ARC represents a major site of cellular leptin resistance in DIO, ARC leptin action modulates energy expenditure, glucose homeostasis and other aspects of leptin action in addition to participating in food intake. In addition, endogenous leptin clearly plays a role in limiting appetite in DIO, as food intake rapidly restabilizes after the initial increase of feeding on highly palatable, energy-dense chow. Indeed, increasing the palatability of food promotes increased food intake despite the integrity of cellular leptin action, although food intake returns toward normal as adiposity increases (with the attendant increase of leptin levels and action. The decrease of feeding and body weight upon the reinstatement of a normal chow diet suggests that the initial increase of food intake and subsequent adiposity represents a predictable response to the hedonic characteristics of the novel diet, rather than a response to diminution of leptin action. Thus, the transient increase and subsequent return of energy intake toward baseline during DIO support a model in which elevated leptin levels in obesity contribute to the control of hunger as well as energy expenditure. Furthermore, the response of obese humans to weight loss (which causes responses such as increased hunger, cold intolerance, and decreased thyroid and sympathetic tone) is fundamentally intact, suggesting that the 'extra'

leptin in obese individuals exerts biologically relevant effects on parameters additional to those involved in the control of feeding. If it can be postulated that the effect of weight loss from the obese state is to increase hunger and that this reflects ongoing leptin resistance, the same must also be true for the other factors (diminished thyroid tone, cold intolerance and so on) that also accompany weight loss. Thus, a variety of data argues against a meaningful selectivity (i.e. control of feeding only) in the attenuation of leptin action in DIO and common human obesity [21,22].

Interdependence of insuline hormone and obesity. According to a study by Chinese scientists [23] obesity can augment insulin resistance (IR), leading to increased risk of diabetes and heart disease. Leptin, ghrelin, and various fatty acids present in the cell membrane may modulate IR. One group sciencists in this study aimed to investigate the impact of weight loss on IR, serum leptin/ghrelin levels, and erythrocyte fatty acids, and studied the associations between changes in these variables. A total of 35 obese (body mass index > 2 7) adults participated in a weight loss program for 3 months. IR was assessed using homeostasis model assessment for insulin resistance (HOMA-IR). The obese participants had a mean weight loss of 5.6 ± 3.8 kg followed by a 16.7% and 23.3% reduction in HOMA-IR and leptin (p < 0.001) levels, and an 11.3% increase in ghrelin levels (p = 0.005). The level of erythrocyte saturates decreased by 2.8%, while the level of n-3 polyunsaturates increased by 16.8% (all p < 0.05). The changes in leptin levels (-5.63 vs. -1.57 ng/mL) were significantly different (p = 0.004) in those with improved IR (changes in HOMA-IR < 0) than those without improvement (changes in HOMA-IR > 0), though there were no differences in the changes of ghrelin (p = 0.120) and erythrocyte fatty acids (all p > 0.05) levels. After adjusting for age, gender, changes in ghrelin, and body fat, they found a significant correlation between decreases in leptin and less risk of no improvement in HOMA-IR levels [odds ratio (OR) = 0.69, p = 0.039]. In conclusion, a moderate weight reduction in obese participants over a short period significantly improved IR. This weight reduction concomitantly decreased serum leptin, increased ghrelin, and elevated some erythrocyte unsaturates. Only leptin correlated independently with IR improvement upon multivariable logistic regression analysis, which indicates that leptin may play a role in the modulation of IR following weight loss.

Conclusion: The article expressed hormonal changes in obesity and obesity. Mechanisms of action of leptin and insulin hormones and there is an organic link between insulin resistance and leptin resistance and obesity. A number of scientific studies have been conducted and proven to this effect. Obesity can lead to very serious pathologies. This can also be explained by insulin and leptin resistance.

References:

1. Myers, M.G., Jr, Munzberg, H., Leinninger, G.M. and Leshan, R.L. et al. (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab. 9, 117-123

2. Schwartz, M.W., Woods, S.C., Porte, D., Jr, Seeley, R.J. and Baskin, D.G. et al. (2000) Central nervous system control of food intake. Nature 404, 661-671

3. Rosenbaum, M. and Leibel, R.L. et al. (1999) The role of leptin in human physiology. N. Engl. J. Med. 341, 913-915

4. Ahima, R.S., Saper, C.B., Flier, J.S. and Elmquist, J.K. et al. (2000) Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 21, 263-307

5. Halaas, J.L., Gajiwala, K.S. and Maffei, M. et al. (1995) Weightreducing effects of the plasma protein encoded by the obese gene. Science 269, 543-546

6. Chehab, F.F., Lim, M.E. and Lu, R. et al. (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genetics 12, 318-320

7. Farooqi, I.S., Jebb, S.A. and Langmack, G. et al. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency.N. Engl. J. Med. 341, 879-884

8. Oral, E.A., Simha, V. and Ruiz, E. et al. (2002) Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570-578

9. Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S. and Goldstein, J.L. et al. (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy]. Nature 401, 73-76

10. Chan, J.L., Heist, K., Depaoli, A.M., Veldhuis, J.D. and Mantzoros, C.S. et al. (2003) The role of falling leptin levels in the neuroendocrine Review Trends in Endocrinology and Metabolism Vol.21 No.11 649 and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409-1421

11. Welt, C.K., Chan, J.L. and Bullen, J. et al. (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987-997

12. Rosenbaum, M., Murphy, E.M., Heymsfield, S.B., Matthews, D.E. and Leibel, R.L. et al. (2002) Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab. 87, 2391-2394

13. Ahima, R.S., Prabakaran, D. and Mantzoros, C. et al. (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382, 250-252

14. Kaiyala, K.J., Morton, G.J., Leroux, B.G., Ogimoto, K., Wisse, B. and Schwartz, M.W. et al. (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59, 1657-1666

15. Bluher, S. and Mantzoros, C.S. et al. (2009) Leptin in humans: lessons from translational research. Am. J. Clin. Nutr. 89, 991S-997S

16. Ravussin, E., Smith, S.R. and Mitchell, J.A. et al. (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17, 1736-1743

17. Oral, E.A. and Chan, J.L. et al. (2010) Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr. Pract. 16, 324-333

18. Considine, R.V., Sinha, M.K. and Heiman, M.L. et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292-295

19. Rosenbaum, M., Nicolson, M. and Hirsch, J. et al. (1996) Effects of gender, body composition, and menopause on plasma concentrations of leptin. J. Clin. Endocrinol. Metab. 81, 3424-3427

20. Frederich, R.C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B.B. and Flier, J.S. et al. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311-1314

21. Myers, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology & Metabolism, 21(11), 643-651.doi:10.1016/j.tem.2010.08.002

22. Gong, Y., Ishida-Takahashi, R., Villanueva, E.C., Fingar, D.C., Munzberg, H. and Myers, M.G., Jr et al. (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J. Biol. Chem. 282, 31019-31027

23. Wang, T.-N., Chang, W.-T., Chiu, Y.-W., Lee, C.-Y., Lin, K.-D., Cheng, Y.Y, Huang, M.-C. (2013). Relationships between changes in leptin and insulin resistance levels in obese individuals following weight loss. The Kaohsiung Journal of Medical Sciences, 29(8), 436443. doi:10.1016/j.kjms.2012.08.041

i Надоели баннеры? Вы всегда можете отключить рекламу.