УДК 621
ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ УГЛОВОЙ ОРИЕНТАЦИИ ПО СИГНАЛАМ ОДНОЙ АНТЕННЫ СНС
А.В. Прохорцов
Предлагается способ определения параметров угловой ориентации, при котором достаточно информации поступающей с одной антенны аппаратуры спутниковой навигационной системы (СНС) и информации с БИНС. Это позволяет существенно уменьшить габариты инерциально-спутниковой навигационной системы.
Ключевые слова: параметры ориентации, вектор скорости, бесплатформен-ная инерциальная навигационная система, спутниковая навигационная система.
Рассматривается инерциально-спутниковая система навигации (ИССН) высокоманевренного летательного аппарата (ВЛА) с малым временем полета. Под ИССН понимается информационно-измерительная система, устанавливаемая на борту ВЛА и предназначенная для выработки параметров движения (ускорений и скоростей), координат и параметров ориентации ВЛА во время полета. ИССН содержит две независимые подсистемы - это БИНС и приемная аппаратура СНС ГЛОНАСС и/или GPS. Совместная обработка показаний данных подсистем в бортовой цифровой вычислительной машине обеспечивает уменьшение погрешностей каждой из подсистем, что и позволяет построить точную и, одновременно, относительно недорогую ИССН.
Особенностью традиционно применяемых ИССН является то, что в них используется позиционно-скоростная коррекция от СНС. Однако, как показали исследования авторов работы [6], (а также исследования ряда ведущих организаций России (ЦНИИ «Электроприбор)» и США (лаборатория Ч. Драйпера), наиболее эффективным является коррекция показаний БИНС по параметрам ориентации, определяемым по сигналам СНС [1], [2], [3]. Существующие методы определения параметров ориентации по сигналам СНС, обладают определенными недостатками, и для своей реализации требуют наличия трех разнесенных антенн [4, 5].
Однако, на ВЛА практически невозможно разместить несколько разнесенных антенн из-за малых размеров ВЛА и его высокой динамики.
Предлагается способ определения параметров угловой ориентации, при котором достаточно информации поступающей с одной антенны аппаратуры СНС и информации с БИНС. Это позволяет существенно уменьшить габариты инерциально-спутниковой навигационной системы.
Сущность предлагаемого способа заключается в следующем:
По сигналам СНС определяется вектор скорости гСНС , проекции которого в базовой системе координат (СК) определены:
ГУ СНСл
ух%
V,
СНС
СНС
Yg
СНС
По показаниям БИНС также определяется вектор скорости проекции которого в базовой системе координат определены:
(1)
БИНС
V
БИНС
g
ґтгБИНС^
VXg
^ БИНС
БИНС V 6 У
СНС
и V,
БИНС
(2)
. Расхождение по
Сравниваем между собой вектора Ус~ ^ г g
длине между этими векторами как показано в [6], определяется в основном погрешностями акселерометров, а расхождение по направлению определяется погрешностями определения параметров ориентации БИНС, которые в свою очередь в основном зависят от погрешностей ДУСов.
СНС
Найдем угол ^ между векторами Vg и Vg
БИНС
соб(^) =
V СНС *
БИНС
.2
СНС2 , мСНС2 , мСНС2 *
2
БИНС
2
гБИНС
2
БИНС
2
. (3)
^ ^ Ухй + ^ ^
Если угол ^ больше какого-то определенного значения, например
1 0
1 , то применяем метод, описанный ниже, если меньше, то считаем показания БИНС правильными.
БИНС
Найдем угол между вектором ^ и осями связанной с объектом СК (0ХУ7)
Положение СК 0ХУ7 относительно базовой СК определяется матрицей направляющих косинусов:
охя X Y Z
OYg 11 12 13
OZg 21 22 23
31 32 33
где сц = соб ¥ соб Ф; С21 = вій Ф; С31 =-бій ¥ соб Ф;
cj2 = sin g sin Y-cos g cos Y sin J; (4)
C22 = cos J cos g;
C32 = sin g cos Y + cos g sin Y sin J;
C31 = cos g sin y + sin g cos y sin J;
C32 =- cos Jsin g;
C33 = cos g cos y- sin g sin y sin J,
где y, J, g - углы курса, тангажа и крена, определенные БИНС.
БИНС
Угол a¡ между Vg и OX определяется по формуле:
с *V БИНС + с * V БИНС + с *V БИНС cosCa,) =-----C11 ^ +C21 ^ +С31 ^ . (5)
CTWW * J V™HC 2 + VYfHC 2 + V™HC 2
БИНС
Угол a 2 между Vg и ^определяется по формуле:
ÍC
C12 * vzh^ + C22 * VYgIHC + C32 * v™h
cos(a 2) = i----------------------------2---------2----------= - (6)
VC122 + с222 + C322 * JV#^ 2 + V^^2 + VzfHC2
БИНС
Угол a 3 между Vg и ^определяется по формуле:
БИНС
относительно вектора скорости Vg определенного по показаниям
С13 * УхИ + С23 * Vjg^ + С33 *
cos(a3) = . 2 2 2 . (7)
л/сі32 + С232 + С332 * JVXf^2 + ^ИНС2 + ^ИНС2 Формулы 5-7 определяют положение связанной системы координат
г
БИНС.
Далее мы считаем, что правильным является вектор скорости
СНС
Vg , определенный по СНС. И поэтому «доворачиваем» связанную сис-
БИНС
тему координат таким образом, чтобы вектор Vg совпал с вектором
СНС СНС
Vg , при этом углы между вектором Vg и осями связанной СК
БИНС
должны совпадать с углами, которые были между вектором Vg и ося-
ми связанной СК определенными по формулам 5-7.
СНС
Углы между вектором Vg и осями скорректированной связан-
ной СК определяются по формулам:
СНС
Угол bi между Vg и OX определяется по формуле:
где
* *VСНС + * *VСНС + * *VСНС
cos(bi) = , 2 11 X 2 *1 Yg 2 31 f 2 . (5*)
с* i + c2i + с*1 ^ VСНС + VСНС + VСНС
СНС
Угол Р2 между Vg и ^определяется по формуле:
* 3VСНС + * 3VСНС + * 3VСНС b \ С12 VXg + с22 VYg + с32 VZg
cos(b 2) = , . . .-------------1 ■ ■ ■ • (63)
с*2 + с22 + с332 3^ V^ + VYgНС + VСНС
СНС
Угол Ьз между Vg и ^определяется по формуле:
* 3VСНС + * 3VСНС + * 3VСНС cos(b3) = , С13 Vxg +С23, VYg +С33 Vzg • (73)
С13з2 + с2з2 + сз3з2 ЧVХНС2 + VСНС2 + V^2
Сц = cos Y 3cOS J 3;
3
С21 = sin J 3;
3
С31 =-sin Y 3 COS J 3;
*
С21 = sin g 3sin Y 3 - cos g 3cos Y 3sin J 3; (43)
3
С22 = cos J 3cos g 3;
3
С32 = sin g 3cos Y 3 + cos g 3sin Y 3sin J 3;
3
С31 = cos g 3sin y 3 + sin g 3cos y 3sin J 3;
3
С32 =- cos J 3sin g 3;
3
С33 = cos g 3cos y 3 - sin g 3sin y 3sin J 3;
* * *
где y , J , g - Скорректированные углы курса.
Приравняем правые части выражений (5) и (53), (6) и (63), (7) и (73) с учетом (4) и (43).
Добавим полученные формулы, условие масштаба и перпендикулярности, решим полученную систему методом наименьших квадратов и
3 3 3
найдем y , J , g . При решении методом наименьших квадратов за на-
3 3 3
чальные значения y , J , g примем y, J, g
Для оценки работоспособности предложенного метода проведено моделирование в среде Mat работы ИССН для условий, характерных для ВЛА.
Результаты моделирования показаны на рис. 1.
погрешность определения угла курса, рад
погрешность определения угла тангажа, рад
погрешность определения угла крена, рад
Время, с
Рис. 1. Погрешность определения углов курса, тангажа, крена без использования (1) и с использованием (2) предлагаемого способа
Проведенное моделирование показало работоспособность и эффективность предложенного способа коррекции.
Работа выполнена при финансовой поддержке РФФИ (грант № 12-08-00694-а).
Список литературы
1. Богданов М.Б., Прохорцов А.В., Савельев В.В. Об эффективности различных типов коррекции показаний БИНС по сигналам СНС. Сборник
78
материалов XIII Санкт-Петербургской международной конференции по интегрированным навигационным системам, 2006. С.142-144.
2. Пешехонов В .Г. Проблемы и перспективы современной гироскопии// Изв.вузов. Приботростроение. 2000. Т.43. №1-2. C. 48-55.
3. Цикл лекций 232 по теме «Достижения в области навигационных датчиков и методов комплексирования» (SET-064), 2004.
4. Прохорцов А.В. Способы определения угловой ориентации объекта по информации от спутниковых навигационных систем. Региональная научно-техническая конференцияТехника XXI века глазами молодых ученых. Тула: ТулГУ, 2003. С. 209-216.
5. Прохорцов А.В. Принципы построения спутниковых навигационных систем. Учебное пособие. Тула: Изд-во ТулГУ, 2011. 99с.
6. Богданов М.Б., Прохорцов А.В.Савельев В.В., Мясоедов Д.С. Погрешности интегрированной инерциально-спутниковой системы ориентации и навигации подвижного объекта. Оборонная техника. 2005. №6-7. С. 90-95.
Прохорцов Алексей Вячеславович, канд. техн. наук, доц., [email protected], Россия, Тула, Тульский государственный университет
CORRECTION OF THE POSSIBILITY OF SINS IN TESTIMONY ORIENTATION PARAMETERS ON SIGNALS OF ONE ANTENNA SNA
AV Prohortsev
Provided a method for compensating readings of strapdown inertial navigation system ( SINS ) Specify the orientation in which it suffices to information received from one antenna of satellite navigation system ( SNS) and the information from the SINS . This can significantly reduce the size of INS-GPS navigation system. Experimental studies have shown the effectiveness and efficiency of the proposed method of correction.
Key words: orientation parameters , velocity vector, besplatfor mennaya - inertial navigation system , satellite navigation system
Prohortsev Alexei Vjacheslavovich, candidate of technical sciences, docent, [email protected], Russia, Tula, Tula State University