100 150 200 250 300 Г,К 50 100 150 200
F, кВ/см
Рис. 4. Зависимости квантовой эффективности эмиссии от температуры (а) и напряженности поля в барьере (б). Сплошные кривые — теоретический расчет, точки — экспериментальные значения из фотоэлектрических спектров
и напряженности электрического поля с теоретическими. При расчетах теоретических значений квантовой эффективности эмиссии (сплошные кривые) в качестве подгоночного параметра использовалось рекомбинационное время жиз-
ни хг. Наилучшее согласие теории с экспериментом (-10%) получено при значении хг = 9* Ю-10 с, которое согласуется с литературными данными о времени жизни излучательной рекомбинации в КТ [4 ].
СПИСОК ЛИТЕРАТУРЫ
1. Nelson J., Paxman M., Barnham K.W.J, et al.
Steady-state carrier escape from single quantum wells // IEEE J. Quantum Electron. 1993. Vol. 29. № 6.
P. 1460-1468.
2. Fry P.W., Finley J.J., Wilson L.R. et al. Electric-field-dependent carrier capture and escape in self-
assembled InAs/GaAs quantum dots // Appl. Phys.
Lett. 2000. Vol. 77. P. 4344.
3. Tarasov G.G., Mazur Yu.I., Zhuchenko Z.Ya. et al.
Carrier transfer in self-assembled coupled InAs/GaAs quantum dots // J. Appl. Phys. 2000. Vol. 88. P. 7162.
4. Matsusue T., Sakaki H. Radiative recombination coefficient of free carriers in GaAs/AlGaAs//Appl. Phys. Lett. 1987. Vol. 50. P. 1429.
УДК 621.383.8:535.232.61:535.422
6./W. Емельянов, СЛ. Минтаиров, НА. Калюжный, 6./W. Лантратов
внешним квантовый выход фотоответа каскадных солнечных элементов
Прогресс в развитии фотоэлектрического метода преобразования солнечной энергии в последние годы был связан с появлением новых более эффективных солнечных элементов (СЭ) на основе полупроводниковых материалов. В первую очередь это относится к каскадным фотопреобразователям на основе материалов АШВУ. На сегодняшний день наивысшие значения эф-
фективности преобразования были достигнуты при использовании монолитных трехпереходных СЭ GaInP/Ga(In)As/Ge, полученных методом газофазной эпитаксии из металлоорганических соединений (МОСГФЭ). Они составили 40,7 % для наземного спектра AM1.5D и 31 % для внеатмосферного спектра AMO [1, 2]. На двухпере-ходных СЭ GalnP/GaAs, механически стыкован-
ных с нижним элементом из GaSb, были достигнуты значения эффективности преобразования соответственно в 40 % (AM1.5D) и 30,8 % (AMO) [3, 4].
Такие высокоэффективные многопереходные каскадные солнечные элементы (КСЭ) представляют собой многослойные гетероструктуры, выращиваемые эпитаксиальными методами на полупроводниковых подложках и содержащие какнаноразмерные (15—100 нм), так и объемные (1—5 мкм) полупроводниковые слои с различными оптическими параметрами. Это приводит к возникновению интерференции и многократному переотражению световых волн в структуре КСЭ, что оказывает значительное влияние на их характеристики, в первую очередь, на спектральную зависимость внешнего квантового выхода (ВКВ) от длины волны падающего света. Таким образом, моделирование спектральных характеристик КСЭ сталкивается с необходимостью учета сложного распространения электромагнитных волн в структурах таких СЭ.
Для случая однопереходных СЭ в пренебрежении интерференционными явлениями распространение световой волны описывается законом Бугера, когда ее интенсивность экспоненциально затухает от поверхности СЭ к подложке. При этом функция генерации, т. е. зависимость концентрации генерируемых носителей от координаты, будет также иметь простой экспоненциальный вид. Использование такого вида функции генерации в системе основных уравнений фотовольтаического эффекта дает возможность получения приближенного аналитического решения для ВКВ однопереходных СЭ, которое подробно описано в литературе [5]. В этом случае ВКВ определяется только показателем поглощения материала СЭ и транспортными свойствами слоев, составляющих активный р—/7-переход.
В случае КСЭ этот метод нельзя применять непосредственно, потому что представление функции генерации для всего элемента в простом экспоненциальном виде либо оказывается невозможным, либо неверным. Однако в пределах слоя или слоев с одинаковыми оптическими параметрами функция генерации будет сохранять экспоненциальную форму. При этом для гетеро-структур необходимо еще учесть распространение света не только в прямом, но и обратном направлениях, что связано с возможностью от-
ражения световой волны от гетерограниц структуры. Таким образом, если оптические параметры материала не изменяются в пределах слоев, образующих фотоактивные р—п-переходы КСЭ, то можно получить приближенное аналитическое решение для ВКВ каждого субэлемента; для этого надо произвести расчет поля в структуре СЭ и определить потоки фотонов на границах субэлемента.
Существует несколько подходов, позволяющих это осуществить:
метод бегущих волн (основан на геометрическом представлении о распространении световой волны в структуре);
численное решение системы уравнений Максвелла;
аналитическое решение системы уравнений Максвелла с использованием методов матриц Абелеса [6] или матриц переноса [7].
Метод матриц Абелеса, который также применялся авторами [8] для расчета поля в структуре СЭ, наиболее полно соответствует нашей задаче, дает возможность аналитически выразить амплитуду электромагнитной волны в любой точке структуры через ее значения для падающего света. Это позволяет свести задачу нахождения ВКВ КСЭ к задаче моделирования ВКВ однопереходного гомоструктурного СЭ, на который свет падает с двух сторон.
Данная работа посвящена рассмотрению такого аналитического подхода к расчету спектральных характеристик СЭ с многослойной структурой как однопереходных на основе германия, так и каскадных на основе структур СаШР/СаАя и Оа1пР/ОаА<5/Ое (далее КСЭ-1 и КСЭ-2 соответственно). Этот подход был применен для определения значений длин диффузии в слоях СЭ путем сравнения расчетных и экспериментальных кривых. При этом для лучшего их согласования в расчетах был проведен учет возможной инжекции носителей в фотоактивные р—«-переходы из слоев, граничащих с ними.
Теория
Основные уравнения фотовольтаического эффекта. На рис. 1 представлена схема структуры Л^-переходного солнечного элемента с нижним субэлементом, созданным в подложке за счет диффузии атомов примеси. Каждый субэлемент включает в себя гомо-/?—/7-переход, ограниченный слоями широкозонных "окон" и тыльных
1 5
Падающий свет 80 .
(((
г;
Просветляющее покрытие
л
■рИ
' Шнрокозонное 1 окно
8?
Активный переход
я;
«Г
^ 'с
ТПБ
1-й
субэлемент
|п++/р++ туннельный диод!
Р
П
я;
Активный переход
81
8:
^ ^
ТПБ
2-й субэлемент
ц*
8
(
х Широкозонное V окно
д+ь
Активный переход
,<Ьл-
Подложка
\/////////////////////////А
Л'-й субэлемент
Рис. 1. Схема УУ-переходного КСЭ с нижним субэлементом, сформированным в подложке посредством диффузии примеси
потенциальных барьеров (ТПБ) (за исключением нижнего перехода). Субэлементы в такой монолитной структуре коммутируются за счет использования встречно включенных туннельных диодов. Носители, рожденные при поглощении фотонов в к-м субэлементе , разделяются полем р-н-перехода, что приводит к генерации тока . Если обозначить падающую световую волну через поток фотонов , то внешний квантовый выход А;-го субэлемента будет выражаться как
о
(1)
(У) в случае падения на его поверхность световой волны g*j возможно посредством решения
системы основных уравнений фотовольтаиче-ского эффекта, включающей два уравнения баланса дырок и электронов, в которых функция генерации имела бы экспоненциальный вид и была бы однозначно связана с потоком фотонов, падающих на поверхность КСЭ, и уравнение Пуассона:
с!гк
'■к
■к У
Ф(гк)
аг, 1 р и аг,
+ г(п,р) = С(гк1 + г(п,р) = С(гк1 (2)
к У
7Т" + п(хк)),
агк е
где — подвижности электронов и дырок; п(гк), р(гк) — их концентрации; /)„, — их коэффициенты диффузии; г{п, р), (И,гк) — функции рекомбинации и генерации; Е(гк) — напряженность электрического поля; -Л^.^.), Л^^д.) — концентрации доноров и акцепторов; гк — локальная координата, связанная с субэлементом.
Представление функции генерации в таком виде возможно, если для описания распространения света в каждом субэлементе структуры ввести два потока фотонов монохроматического
излучения (см. рис. 1): gki'cell> — для прямой волны, распространяющейся от границы с широкозонным "окном", и ¿~ксе11) — для обратной волны, распространяющейся от границы с ТПБ. В этом случае с учетом закона Бугера функция генерации А;-го субэлемента в пределах области с р—п-переходом может быть записана в следующей аналитической форме:
С(гк) = а^(се/°ехр( - акгк) + + а£-(сей) ехр(-а^ -хк)\
(3)
где д — заряд электрона, X — длина световой волны.
Нахождение приближенного аналитического решения для тока А;-го субэлемента КСЭ
где ак — коэффициент поглощения материала А;-госубэлемента, Ик —толщинаслоев,составляющих фотоактивный р—я-переход субэлемента. Первое слагаемое в выражении (3) описывает прямую волну, распространяющуюся от границы "окно"/эмиттер, а второе — обратную, распространяющуюся от границы база/ТПБ.
Уравнения системы (2) содержат три неизвестных величины: п(гк),р(гк) и Они могут быть разрешены при подстановке в систему функций генерации и рекомбинации и ее дополнении граничными условиями. Необходимо отметить, что носители, рожденные при поглощении фотонов в слоях широкозонных "окон" и ТПБ, могут также давать вклад в фототок, генерируемый субэлементами КСЭ, в случае, когда эти носители инжектируются в эмиттер и базу соответственно.
Граничные условия для концентраций Ап неосновных неравновесных носителей на краях объемного пространственного заряда (ОПЗ) в режиме короткого замыкания имеют вид:
Ап, р = 0. (4)
Для гетерограницы "окно"/эмиттер граничное условие будет записываться в следующей форме:
у аг
(5)
Ввиду того, что слои широкозонного "окна" и ТПБ, как правило, создают гетерограницы
с эмиттером и базой, расчет и для
учета возможного вклада инжекции носителей из "окна" и ТПБ должен проводиться отдельно. Это связано с тем, что электромагнитная волна претерпевает изменения на гетерограницах и функция генерации вида (3) не будет применима для всего субэлемента, а останется вер-нойтолько в области слоев эмиттера и базы, создающих фотоактивный гомопереход.
Количество носителей, рождаемых в слоях широкозонных "окон" и ТПБ, может быть найдено посредством введения для них потоков фо-
тонов прямой и обратной волн: и gk
для "окна" и и для ТПБ (см. рис. 1)
и подстановку их в функцию генерации вида (3). При этом в случае, когда толщина слоя широкозонного "окна" или ТПБ достаточно мала, ин-жекция носителей из них будет носить вероятностный характер и токи уС"™) или у,й577> могут быть найдены как произведения количества генерированных носителей на вероятностный коэффициент. В случае, когда толщина "окна" или ТП Б достаточно велика и распространение носителей в них носит диффузионный характер,
для расчета тока или у,й577> необходимо
отдельно решить систему уравнений (2) для этих слоев с функцией генерации вида (3).
При рассмотрении диффузионных процессов в слоях широкозонных "окон" и ТПБ в наших расчетах не учитывались электрические поля, которые могут возникать за счет изгиба зон на гетеропереходах; а это позволило получить также аналитические выражения для токов
Метод матриц Абелеса. Решение системы (2) с учетом граничных условий (4)—(6) и функции генерации вида (3) позволяет рассчитать спектральную характеристику А;-го субэлемента КСЭ,
если известны потоки фотонов Ерсе11\ Е—се"\
Можно показать, что потоки фотонов в каждой точке однозначно связаны с соответствующими значениями амплитуд прямой и обратной
-(мчи)
где — скорость поверхностной рекомбинации на интерфейсе "окно"/эмиттер; — коэффициент диффузии неосновных носителей в эмиттере, — поток неосновных носителей, инжектируемых из окна.
Граничное условие для границы база/ТПБ аналогично предыдущему и отличается знаком при производной из-за противоположного направления диффузионного потока:
-П^^^А п,р-/^\ (6) аг
где »5}, — скорость поверхностной рекомбинации на интерфейсе база/ТПБ; — коэффициент диффузии неосновных носителей в базе, _ поток неосновных носителей, инжектируемых из ТПБ.
Все параметры, входящие в выражения (2), (4)—(6), отражают свойства материала субэлемента. Функция рекомбинации также выражается через эти параметры и значения концентраций носителей. Решение системы (2) в общем случае может быть получено лишь численно. Однако выделение в активном переходе трех характерных зон — эмиттера, ОПЗ и базы, а также запись функции генерации в виде (3) позволяют получить приближенное аналитическое решение с помощью метода малого параметра [5].
волн электрического поля. Для активного перехода эта связь может быть выражена при помощи следующих соотношений:
0ЧсеЧ) Ьк n(ce„)^E+k(ce„)^
So (о2
„-(се!!) Ьк 4ell)(E^11 >)2
So (о2
(7)
~E+(z2) - SZ| ^Z2 ~E+(z{)
_E~(z2)_ _E~(zi)_
F+ m
где nfell) — показатель преломления материала
активного слоя А;-го субэлемента, E^cdl),
Е—е11) — амплитуды электрических полей прямой и обратной волн в этом слое вблизи границ с "окном" и ТПБ соответственно; — амплитуда электрического поля прямой волны в падающем свете. Соотношения, аналогичные (7),
могут быть записаны и для потоков
-(win) MBSF) -(BSF) Sк - S к и 6 к
Таким образом, нахождение данных потоков возможно, если определить амплитуды электрического поля в соответствующих точках. Для этого необходимо решить системы уравнений Максвелла для многослойной структуры в формализации решения методом матриц Абелеса.
Указанный метод позволяет связать амплитуды электрического поля в двух произвольных точках структуры с координатами zx и z2 при помощи матрицы переноса SZ'^Z2:
(8)
Матрица переноса находится путем перемножения слоевых (Ь) и интерфейсных (I) матриц 2x2, соответствующих слоям и интерфейсам, лежащим на отрезке [г^ г2]. Слоевые отражают поглощение и изменение фазы волны в слое и получаются из уравнения распространения плоской волны, интерфейсные — ее преобразование на интерфейсе, они рассчитываются из граничных условий к уравнениям Максвелла на данном интерфейсе.
Если обозначить через Е^ и Е1 амплитуды электрических полей прямой и обратной волн в /-м слое вблизи его границы с (/ + 1 )-м, а через
Е* и Е" амплитуды электрического поля в т-м слое вблизи его границы с (т + 1 )-м, то формула (8) для данных точек может быть видоизменена следующим образом:
(8а)
где Б1^"1 — матрица переноса из конца I-го слоя в конец т-го, которая рассчитывается по формуле
= 1/+1 -Ь/+1 -I¡+2 - ...■1т-Ьт. (9) Здесь Ь,- — слоевая матрица для /-го слоя, I,.— интерфейсная матрица для гетерограницы между (/ — 1 )-м и /-м слоями.
Если ввести Ё+ и как величины амплитуд электрических полей в т-м слое вблизи его границы с (т — 1)-м, то их также можно связать
с Е^ и Е~ посредством формулы, аналогичной (8):
' F +' _ g/—m
a.
(Ю)
где Б — матрица переноса из конца 1-го слоя
в начало т-го, отличающаяся от Б1^"1 лишь отсутствием последней слоевой матрицы. Она имеет вид:
о/_т т т т т
а -^ГЧ+Г^+г'■•■ «1-1 ' т'
(11)
Таким образом, если известны значения амплитуд электромагнитного поля прямой и обратной волн в некоторой точке структуры, амплитуды поля в любой другой точке можно определить при помощи формул (8) и (10) путем составления матриц переноса (9) или (11) между этими точками.
Нахождение матриц переноса не представляет сложности в случае, когда известны параметры многослойной структуры (толщины слоев, показатели преломления и поглощения). Обычно бывает также известной амплитуда электрического поля падающей электромагнитной
волны .Таким образом, для определения ам-
плитуды прямой или обратной волн в любой точке структуры необходимо знать амплитуду поля
обратной волны = Я, т. е. волны, отраженной от поверхности структуры. С учетом того, что свет падает на структуру лишь с одной стороны, величину Я можно найти посредством решения следующей системы уравнений:
'т' _Qtotal ' '
_0_ Я _ V я _
где — матрица, характеризующая всю структуру, Т— амплитуда волны, прошедшей через структуру.
Матричное уравнение (12) содержит две неизвестных величины — Я и Г, и искомую амплитуду можно найти с помощью формулы:
(13)
Найденное значение Е^ позволяет по формулам (8) и (10) рассчитать амплитуды прямой и обратной волн для любой точки структуры при известной амплитуде падающей волны (ее можно приравнять единице).
Таким образом, задавая поток фотонов и принимая амплитуду падающей электромагнитной волны за единицу, можно найти потоки
g¡ci-cell) и g~ki-cell) для каждого субэлемента КСЭ, а также для слоев широкозонных "окон" и ТПБ. Подстановка этих потоков в функцию генерации вида (3) позволяет определить ток генерации субэлемента путем решения системы уравнений (2) с граничными условиями (4)—(6) и определить ВКВ через выражение (1). При этом для расчета используются следующие входные параметры: спектральная плотность распределения фотонов
падающего спектра gQ (У), толщины слоев структуры, их показатели преломления и поглощения, коэффициенты диффузии неосновных носителей заряда, их диффузионные длины, входящие в функцию рекомбинации, а также скорости поверхностной рекомбинации на интерфейсах, входящие в граничные условия (5) и (6).
Экспериментальные и расчетные результаты
Спектральные характеристики КСЭ. Описанные в предыдущем разделе подходы позволяют рассчитывать внешний квантовый выход гете-
роструктурных СЭ с учетом интерференционных эффектов. Для проверки качества получаемых результатов данные подходы были применены для определения спектральных характеристик двухпереходного (КСЭ-1) и трехпереходного (КСЭ-2) СЭ. Полученные расчетные кривые были сравнены с экспериментально измеренными зависимостями.
Структуры исследованных фотопреобразователей были получены методом МОСГФЭ. Элементы имели полярность п—р, т. е. были созданы на подложках проводимости /ьтипа. Выбор такой полярности естествен для большинства современных КСЭ, выращиваемых методом МОСГФЭ, что в первую очередь связано со сложностью создания эффективного верхнего перехода р—/7-полярности на основе GalnP [9]. Нижний р—п переход КСЭ на основе германия формировался диффузионным путем за счет атомов пятой группы из нуклеационного слоя, который выращивался непосредственно на подложке. Для экспериментов использовались/j-Ge-подложки
J "7 _т
с уровнем легирования примерно 5 10 см \ Элементы были изготовлены с оптимизированными двухслойными просветляющими покрытиями Ti02/Si02 и имели размер 3x8 мм. На лицевой стороне структуры формировалась контактная сетка с использованием метода фотолитографии, а на тыльную сторону наносился сплошной металлический контакт.
Расчетные зависимости ВКВ от длины волны падающего света для двух исследованных КСЭ в сравнении с экспериментальными зависимостями представлены на рис. 2.
Ввиду малой толщины слоев широкозонных окон для субэлементов GalnP и GaAs исследованных структур, учет инжекции носителей из них проводился по вероятностной модели, а поглощение фотонов в нуклеационном слое /7-GaInP, выполнявшего роль "окна" для нижнего перехода КСЭ-2 отсутствовало. Глубина залегания р-п-перехода в Ge-субэлементе КСЭ-2 составляла примерно 700 нм при среднем уровне легирования эмиттера 5'10i8cm_"\
Таким образом, разработанная теоретическая модель позволяет достигать достаточно хорошего согласования расчетных и экспериментальных спектральных характеристик для КСЭ (см. рис. 2) вплоть до повторения волнистой формы вершины характеристики GaAs-субэле-ментов.
а)
1,0
5 0,8
0,6
0,4
и да
0,2
0,0
г *
400
500
600
700
800
900
б)
«
и о
К
я 3
и
я т
I 11Я'Л',/ п- □ ' V*
400 600
800 1000 1200 1400 1600 1800 Длина волны, нм
соответствие между расчетными и измеренными величинами ВКВ, а также коэффициенты диффузии и скорости рекомбинации на интерфейсах, использованные в расчетах, приведены в табл. 1.
Таблица 1
Использованные расчетные параметры ВКВ
для двух исследованных каскадных солнечных элементов — Оа1пР/ОаА8(КСЭ-1) и Оа1пР/ОаА8/Ое(КСЭ-2)
Значение параметра
Слой и и вр Вп
мкм СШ2'С~1
КСЭ-1, КСЭ-2
п-Сз1пР 0,2 - 5 -
р-СаЫР - 2 - 50
п-СаАБ 0,3 - 7 -
р-СаАБ КСЭ-1
- 10 - 65
КСЭ-2
р-СаАБ - 7 - 65
п-Се 0,6 - 30 -
р-Се - 20 - 80
Рис. 2. Спектральные зависимости внешнего квантового выхода двух исследованных КСЭ: Оа1пР/ОаА8 (а) и Оа1пР/ОаА8/Ое (б); символы и линии — экспериментальные и расчетные данные. Представлены субэлементы:
1 - Оа1пР, 2 - СаМ, 3 - Ое
Определение значений диффузионных длин в слоях СЭ. Если известны параметры структуры и оптические свойства составляющих ее материалов, то результирующая кривая ВКВ оказывается функцией лишь диффузионных длин неосновных носителей в фотоактивных слоях и скоростей поверхностной рекомбинации. Поскольку они были априорно неизвестны, то при расчете ВКВ двух- и трехпереходных СЭ проводилась вариация значений диффузионных длин в их слоях для обеспечения согласования между теоретическими и экспериментальными спектральными характеристиками. При этом скорости поверхностной рекомбинации полагались равными своим наиболее вероятным значениям для соответствующих интерфейсов. Значения диффузионных длин, обеспечившие наилучшее
Скорости рекомбинации на интерфейсах и для пи /»-слоев (эмиттерных и базовых соответственно) считались не превышающими 104 см-с-1.
Видно, что они практически идентичны для двух представленных элементов. Таким образом, предложенные подходы позволяют не только рассчитывать ВКВ КСЭ, но и решать достаточно важную задачу определения диффузионных длин и времен жизни неосновных носителей в слоях полупроводниковых приборов. Если данный метод в итоге дает значительное сходство между экспериментальной и расчетной спектральными характеристиками, то значения длин диффузии, соответствующие наиболее полному их согласованию, и могут быть приняты за искомые величины.
Для демонстрации возможностей данного метода были исследованы спектральные характеристики нескольких германиевых фотопреобразователей, полученных методом МОСГФЭ на /ьСе-подложках с разным уровнем легирования. Фотоактивный р—п переход в подложке создавался за счет диффузии атомов фосфора из нук-леационного слоя я-Са1пР толщиной 100 нм, со-
гласованного по параметру решетки с германием; на последний осаждался контактный слой /7+-ОаАз.
На лицевой стороне структуры с помощью метода фотолитографии формировалась контактная сетка, а на тыльную сторону наносился сплошной металлический контакт. Затем контактный слой удалялся в местах, не закрытых контактной сеткой. Элементы были выполнены в конфигурации 2,5 х 2,5 мм с затенением контактной сеткой примерно 12 %. Для минимизации влияния интерференционных явлений на спектральные характеристики СЭ на их поверхность не наносилось просветляющее покрытие.
Сопоставление экспериментально измеренных спектральных зависимостей ВКВ для трех элементов с результатами моделирования представлены на рис. 3. Для расчета использовались следующие исходные параметры: коэффициенты диффузии Вр и О,, для дырок в эмиттере п-Ое и электронов в базе^-Ое составляли 30 и 80см2 с_| соответственно, скорость поверхностной рекомбинации на гетерогранице подложка —нуклеа-ционный слой — 104см'с-1.
1.0 г
Длина кочны нм
Рис. 3. Спектральные характеристики СЭ п-р-ве при различных уровнях легирования базы Ма, 1018 см 1 1 - 0,3; 2-5; 3-10
Отличия в спектральных характеристиках элементов, созданных в подложках германия с разной степенью легирования (см. рис. 3), в основном, касаются их длинноволновой части. Это связано со снижением диффузионной длины электронов в /?-Се-подложках, выполняющих роль базы германиевых элементов при увеличении уровня легирования последней. При расчете элементов учитывалась инжекция носителей из
"окна" /7-Оа1пР в эмиттер п-Се. При этом расчет проводился с использованием диффузионной модели транспорта носителей в слое "окна".
Значения диффузионных длин неосновных носителей в слоях эмиттера я-Ое и базы р-Се, при которых обеспечивалось наилучшее согласование экспериментальных и расчетных характеристик, представлены в табл. 2. Видно, что диффузионные длины в эмиттере практически одинаковы для всех трех элементов, в то время как в базе наблюдается очевидная обратно пропорциональная зависимость от уровня легирования, что соответствует ожидаемым результатам.
Таблица 2
Расчетные параметры ВКВ для германиевых элементов при различных уровнях легирования базы Мв
1018 см-3 Значение параметра, мкм
I,, и
0,3 0,5 100
5 0,4 10
10 0,4 3
См. рис. 3.
Определение значений диффузионных длин, необходимых для обеспечения максимального внешнего квантового выхода СЭ. Увеличение диффузионной длины неосновных носителей заряда в слоях СЭ приводит к возрастанию доли фотогенерированных носителей, собирающихся (разделяющихся) фотоактивным р-п-переходом, что выражается в росте величины ВКВ. При этом очевидно, что для некоторых значений диффузионных длин будет обеспечиваться полное собирание носителей и дальнейшее их увеличение не будет приводить к росту ВКВ.
Описания характеристик интегрального собирания носителей, генерируемых падающим светом известного спектра в слое, можно произвести посредством введения коэффициента, отражающего отношение собираемого из этого
слоя фототока к числу пар носителей, генерируемых в нем :
(14)
Хотя в общем случае фототок является функцией достаточно большого числа независи-
мых переменных, при условии качественных интерфейсов в структуре наиболее сильную зависимость он обнаруживает от диффузионной длины неосновных носителей в данном слое.
Наличие потенциальных барьеров широкозонное "окно"/эмиттер и база/ТПБ позволяет исключить потери, связанные с диффузией фо-тогенерированных носителей за границы фотоактивных р—«-переходов. При качественных же интерфейсах, характеризующихся низкой скоростью поверхностной рекомбинации, вероятность собирания носителей, т. е. их попадания в ОПЗ, оказывается пропорциональной отношению диффузионной длины к толщине слоя. Вид таких расчетных зависимостей для трех эмиттеров, а также баз GalnP и GaAs-субэлементов КСЭ-2 при спектре падающего света AMO представлен на рис. 4,а.
б)
Рис. 4. Зависимость собирания фототока для спектра AMO из различных слоев КСЭ-2 (а) и /bGe-базы его германиевого субэлемента (б)
от приведенной {а) и неприведенной (б) диффузионных длин неосновных носителей (/ — толщина слоя): 1, 2— базы p-GaAs и p-GalnP, 3—5— эмиттеры я-GaInP, я-Ge, я-GaAs
Видно, что кривые укладываются в две группы, соответствующие базам и эмиттерам субэлементов. Для всех трех типов эмиттеров собирание в 95 % достигается при трехкратном превышении диффузионной длины над толщиной слоя. При этом незначительные отклонения в форме кривых определяются, в первую очередь, спектральным составом света, поглощаемого в данном субэлементе.
Лучшее собирание носителей из баз элементов объясняется тем, что в слоях эмиттеров основная доля неравновесных носителей генерируется на максимальном удалении от перехода, в то время как в базе — в максимальной близости от него. Поэтому собирание в 95 % для баз субэлементов СаАБ и Са1пР достигается уже при двухкратном превышении значений диффузионной длины над толщиной слоя.
Если в случае ограниченности базового слоя ТПБ неограниченное увеличение диффузионной длины неосновных носителей в нем приводит к 100 % собиранию фототока, то для полубесконечной базы в р-Се подобное увеличение не позволяет достичь полного собирания, достигая отметки в 92,4 % при длине в 100 мкм и практически не меняясь впоследствии (рис. 4,6). Это объясняется тем, что для носителей, диффундировавших в глубину подложки, оказывается существенной вероятность достижения тыльного контакта и рекомбинации на его поверхностных состояниях.
Таким образом, можно заключить, что достаточные значения диффузионных длин в КСЭ-2 равны утроенным толщинам слоев для эмиттеров и удвоенным для баз двух верхних субэлементов. В базе германиевого субэлемента диффузионная длина должна составлять, по меньшей мере, 100 мкм для обеспечения максимально возможного собирания фототока из нее.
Итак, полученные в работе результаты свидетельствуют о том, что использованный подход позволяет без применения численных методов проводить моделирование спектральных зависимостей внешнего квантового выхода гетеро-структурных КСЭ и на их основе проводить анализ потерь в солнечных элементах, определять ряд их параметров, рассчитывать фототоки с высокой точностью, а также оптимизировать структуры элементов.
Авторы выражают признательность С.И. Трошкову за полезные обсуждения, М.З. Шварцу и Н.Х. Тимошиной за проведение измерений характеристик СЭ.
Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты №08-00916-а, М>09-08-00879-а, №09-08-00954-а).
СПИСОК ЛИТЕРАТУРЫ
1. Meusel M., Baur C., Guter W. et al. Development status of European multi-junction space solar cells with high radiation hardness // Proc. of the 20ltl EPSEC (Barcelona), 2005. P. 20-25.
2. King R.R., Law D.C., Edmondson K.M. et al. 40 % efficient metamorphic GalnP/GalnAs/Ge multi-junction solar cells // Appl. Phys. Lett. 2007 Vol. 90, № 18. P. 183516.
3. Fraas L.M., Avery J.E., Huang H.X. et al. Toward 40 % and higher solar cells in a new cassegrainian PV module 11 Proc. of the 31ltl PVSC (Florida). 2005. P. 751-753.
4. Shvarts M.Z., Gazaryan P.Y., Kaluzhniy N A et al. InGaP/GaAs-GaSb and InGaP/GaAs/Ge-lnGaAsSb hybrid monolithic/stacked tandem concentrator solar cells // Proc. of the 21s1 EPSEC (Dresden). 2006. P. 133-136.
5. Васильев A.M., Ландсман А.П. Полупроводниковые фотопреобразователи. M.: Советское Радио, 1971. 243 с.
6. Abeles F. Recherches sur la propagation des ondes electromagnetiques sinusoïdales dans les milieux stratifies. Application aux couches minces // Annales de Physique. 1950. Vol. 5. P. 596-640.
7. Бори M., Вольф Э. Основы оптики. M.: Наука, 1973. 721 с.
8. Letay G., Breselge M., Bett A.W. Calculating the generation function of 111—V solar cells // Proc. of the 3rd WCPEC (Osaka). 2003. P. 741-744.
9. Gudovskikh A.S., Kaluzhniy N. A., LantratovV.M. et al. Numerical modelling of GalnP solar cells with AllnP and AlGaAs windows // Thin Solid Films. 2008. Vol. 516. № 20. P. 6739-6743.
УДК 621.31 5.592.
И.Б. Захарова, Е.И. Супрун, В.И. Ильин композитные тонкие пленки с60сс15 для фотоэлектроники
В связи с быстрым ростом рынка солнечных элементов особое внимание стало уделяться созданию и исследованию новых материалов для фотоприемников. Ведутся активные исследования по применению органических материалов и полимеров в фотоэлементах [1], так как они обеспечивают дешевое преобразование солнечной энергии благодаря высокому внутреннему квантовому выходу, низкой цене, легкому весу и совместимости с гибкими подложками. За прошлое десятилетие эффективная мощность преобразования энергии органическими фотоприемниками значительно увеличилась и достигла 7 %, хотя для коммерческого развития необходимы дальнейшие усовершенствования эффективности и стабильности.
В органических материалах поглощение света ведет к формированию экситонов (связанных электронно-дырочных пар). Распад экситона происходит под действием сильного электриче-
ского поля или в донорно-акцепторном гетеропереходе, где различия в электронном сродстве и потенциалах ионизации контактирующих материалов достаточно велики для преодоления энергии связи экситона. Указанный механизм использован для создания органических донор-но-акце игорных пл анарных гетеропереходов [2]. Эффективность преобразования мощности в таких переходах мала потому, что диффузионная длина экситона {Ьъ< 10 нм) намного меньше, чем характерная длина оптического поглощения (ЬА = 100 нм). Уникальная электронная структура фуллерена С60 [3] определяет его сильные акцепторные свойства, благодаря которым можно конструировать донорно-акцепторные молекулярные наносистемы (молекулярные гетеропереходы). Использование фуллерена С60 {Ь0— 40 нм) как акцепторного материала ведет к значительному улучшению эффективной мощности преобразования энергии [4].