Научная статья на тему 'Влияние многослойных нанотрубок на разрывную прочность'

Влияние многослойных нанотрубок на разрывную прочность Текст научной статьи по специальности «Нанотехнологии»

CC BY
130
74
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Наука и техника
Область наук
Ключевые слова
ВЛИЯНИЕ / МНОГОСЛОЙНАЯ НАНОТРУБКА / РАЗРЫВНАЯ ПРОЧНОСТЬ

Аннотация научной статьи по нанотехнологиям, автор научной работы — Хрусталев Б. М., Леонович С. Н., Эберхардштайнер Й., Яковлев Г. И., Первушин Г. Н.

Представлены результаты экспериментальных исследований коэффициентов интенсивности напряжений при нормальном отрыве К IC и поперечном сдвиге К IIC высокопрочного бетона. Проведены исследования изменения удельных энергозатрат на квазистатическое разрушение. Изучена структура бетона на основе портландцемента, модифицированного с помощью углеродных нанодисперсных систем. В качестве модификаторов используются углеродные нанотрубки Graphistrength фирмы Arkema, которые диспергировались в гидродинамической установке с раствором поверхностно-активного компонента «Полипласт СП-1». В ходе исследований наблюдалось увеличение прочности на изгиб мелкозернистого бетона до 45,1 %, прочности на сжатие - до 96,8 %. Увеличение прочности бетона связано с морфологическими изменениями, происходящими в новых образованиях кристаллогидратов, которые характеризуются менее дефектной структурой бетонной матрицы с высокой плотностью.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Хрусталев Б. М., Леонович С. Н., Эберхардштайнер Й., Яковлев Г. И., Первушин Г. Н.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INFLUENCE OF MULTILAYER NANOTUBES ON FRACTURE TOUGHNESS

Experimental research results of the stress intensity factor at normal separation, К IC, and crosssection shift, K IIC, respectively, of high-strength concrete are presented. Research on the specific power changing inputs on quasi-static destruction is carried out.The compact structure on the basis of the Portland cement modified with carbon nanodispersed systems has been studied. Carbon nanotubes Graphistrength by «Arkema» dispersed into the hydrodynamic plant in the solution of surface-active agent (SAA) Polyplast SP-1 are used as modifying additives. An increase of the cross-breaking strength of a fine grain concrete up to 45,1 % and of the compressing strength up to 96,8 % was observed. The increase of concrete strength is related to morphological changes of new crystalline hydrate formations providing a less defective structure of cement matrix with high density.

Текст научной работы на тему «Влияние многослойных нанотрубок на разрывную прочность»

7. Mukhtar, M. Interlayer Stress Absorbing Composite (ISAC) for Mitigating Reflection Cracking in Asphalt Concrete Overlays, Project IHR-533, Report No. UILU-ENG-96-2006, Illinois Cooperative Highway Research Program, Illinois Department of Transportation / M. Mukhtar, B. Dempsey. - 1996.

8. Алямовский, А. А. SolidWorks/COSMOSWorks: Инженерный анализ методом конечных элементов / А. А. Алямовский. - М.: ДМК Пресс, 2004. - 432 с.

9. Жолобов, А. А. Прогнозирование поведения технологических систем на стадии их проектирования / А. А. Жолобов, В. А. Попковский, Д. В. Попковский. - Могилев: МГТУ, 2000. - 150 с.

10. Руденский, А. В. Повышение трещиностойкости асфальтобетонных покрытий / А. В. Руденский, А. С. Рыль-ков // Дороги и мосты. - 2007. - № 18 (2). - С. 214-223.

11. Телтаев, Б. Б. Анализ расчетных значений модуля упругости асфальтобетонов / Б. Б. Телтаев // Дорожная техника. - 2010. - С. 130-137.

12. Богуславский, А. М. Асфальтобетонные покрытия / А. М. Богуславский, Л. Г. Ефремов. - М.: МАДИ, 1981. - 145 с.

13. Макаревич, А. А. Восстановление дорожных одежд улиц способом холодной регенерации на месте:

дис. ... канд. техн. наук: 05.23.11 / А. А. Макаревич. -Минск, 2010. - 181 с.

14. Reflective and Thermal Cracking Modeling of Asphalt Concrete Overlays / E. V. Dave [et al.] // International Conference of Advanced Characterization of Pavement and Soil Engineering Materials. - 2007. - Vol. 1. - P. 1241-1252.

15. Бонченко, Г. А. Асфальтобетон: сдвигоустойчи-вость и технология модифицирования полимером / Г. А. Бонченко. - М.: Машиностроение, 1994. - 176 с.

16. Ковалев, Я. Н. К вопросу определения зимней расчетной температуры асфальтобетонных покрытий / Я. Н. Ковалев, В. Д. Акельев // Известия вузов. Сер. Строительство и архитектура. - 1966. - № 5. - С. 145-147.

17. Ковалев, Я. Н. Активационно-технологическая механика дорожного асфальтобетона / Я. Н. Ковалев. -Минск: Вышэйш. шк., 1990. - 180 с.

18. Кравченко, С. Е. Низкотемпературные напряжения как критерий влияния компонентов асфальтобетонной смеси на трещиностойкость асфальтобетонных покрытий / С. Е. Кравченко, Д. Л. Сериков // Автомобильные дороги и мосты. - 2010. - № 2 (6). - С. 70-77.

Поступила 29.12.2011

УДК 621.762; 691.002 (032)

ВЛИЯНИЕ МНОГОСЛОЙНЫХ НАНОТРУБОК НА РАЗРЫВНУЮ ПРОЧНОСТЬ

Акад. НАН Беларуси, докт. техн. наук, проф. ХРУСТАЛЕВ Б. М.11, докт. техн. наук, проф. ЛЕОНОВИЧ С. Н..1), докт. наук, проф. ЭБЕРХАРДШТАЙНЕРЙ.2), доктора техн. наук, профессора ЯКОВЛЕВ Г. И.3), ПЕРВУШИН Г. Н.3)

1 Белорусский национальный технический университет, Минск, Беларусь, 2) Институт механики материалов и конструкций, Венский технический университет, Вена, Австрия, 3) Ижевский технический университет, Ижевск, Россия

INFLUENCE OF MULTILAYER NANOTUBES ON FRACTURE TOUGHNESS

NASB Acad., Dr. Sc. (Engineering), Prof. KHROUSTALEVB.1), Dr. Sc. (Engineering), Prof. LEONOVICHS.1), Dr. Sc., Prof. EBERHARDSTEINER J.2), Dr. Sc. (Engineering), Prof. YAKOVLEV G.3), Dr. Sc. (Engineering), Prof. PERVUSHIN G.3)

1Belarusian National Technical University, Minsk, Belarus,

2Institute for Mechanics of Materials and Structures, Vienna University оf Technology, Vienna, Austria,

3Izhevsk State Technical University, Izhevsk, Russia

1. Introduction

Problems of carbon nanotubes dispersion during modification of cement pastes

When developing cement pastes with improved mechanical characteristics, application of carbon nanodispersed systems [1, 2] are very efficient. The introduction of carbon nanosystems into mineral binding matrix composition is established

[3-5] in order to result in micro-structures with forming new crystalline hydrate formations of higher density and strength.

The main purpose of this work is to establish an opportunity of dense cement concrete structure modification by means of multilayer carbon nano-

■■ Наука итехника, № 4, 2012

tubes Graphistrength by «Arkema» as a nanodis-persed additive and to evaluate their influence on the modified cement matrix structure.

According to the technical literature [6, 7], the modification with carbon nanotubes results in an improvement of 15-20 % of the mechanical characteristics of cement concretes. At the same time the mineral matrices are able to increase their strength up to 2-3 times [8] after introduction of carbon nanosystems into the composition of the binder in the amount of 0,0024 % of the binder mass, as it is shown by several investigations. According to [9, 10] carbon nanotubes are able to change the matrix microstructure «due to increased content of calcium hydrosilicates of high density and decreased nanoporosity».

The main reason for contradictions of results obtained by different investigators is an insufficient extent of carbon nanotubes dispergation because they originally become granules due to su-peractivity during their synthesis. In this context the proper use of suitable equipment in ethanol medium for carbon nanotubes dispergation, as mentioned in [11] is of great importance. Li et al. [12] implemented ultrasonic treatment of multimural carbon nanotubes in the solution of sulfuric and nitric to provide better bond between cement matrix. In [13] polyacrilic acids and ultrasound was used to achieve homogeneous dispersion of multimural carbon nanotubes in water solution. In general, the open literature reports on an (insignificant) increase of the mechanical strength of cement matrix modified with carbon nanotubes.

The main reason of insufficient influence of nanosystems on the structure and properties of modified cement matrix is incomplete dispergation of nanotubes. During synthesis they generate bells or granules up to a size of 400-900 ^m with high surface energy. At the same time nanoparticles hardly disperse into single nanostructures in water dispersive media and they require special technologies for their dispergation. The main goal when working with carbon nanotubes is to disintegrate bundles and large agglomerates arising during synthesis and to provide their stabilization in water suspension and steadiness of these nanotubes suspensions in storage.

To stabilize suspensions with nanostructures different surface-active agents (surfactants) [14] are used. Their molecules are adsorbed on the sol-

id-liquid phase boundary surrounding separate nanotubes and their bundles [15, 16].

There are two ways of the process of synthesized nanoparticles dispergation i. e. obtaining particles with synthesized or ligand particles for material. In the first case there is an opportunity of surface modification of nanoparticles, e. g. substitution of ligands. And in the second case operations are performed with nanomaterial where collective properties of nanoparticles are of special importance. Hydrodynamic cavitation is the most optimal way of carbon nanotubes dispergation. Hyd-rodynamic cavitation has been used for about 50 years in industry. Although ultrasonic cavitation is widely used for intensification of technological processes, it requires higher energy expenditure in ultrasonic transmitters than in hydrodynamic cavi-tation devices. Due to this fact hydrodynamic devices are more prospective to be used for liquid medium cavitational treatment where interacting liquid flows produce cavitation. In general, the energy expenditure of hydrodynamic cavitation is 10-15 times less compared to ultrasonic cavitation.

Multilayer carbon nanotubes Graphistrength by «Arkema» consisting of layers of nanotubes with an outer diameter of 10 to 15 ^m and an average density of 50-150 kg/m3 were dispersed.

After the dispergation of the carbon nanosys-tems in the hydrodynamic device, carbon nanosys-tems with an effective diameter of 168,3 nm and with the a minimum diameter of 73,3 nm were obtained.

Sedimentation processes in suspensions are unavoidable due to the different densities of dispersion medium and discontinuous phase. In course of time, solid phase particles aggregate and precipitate. After 30 days storage the effective diameter of the nanosystems was 403,7 nm due to coagulation. However, sedimentation is a reversible process and the suspension can be dispergated again. The investigation of carbon nanotubes microstructure dispersions conformed polydispersity of carbon nanostruc-tures in surfactant Polyplast SP-1 medium.

Coagulation of nanostructures with formation of large agglomerates takes place after one month storage of the dispersions. At the same time separate nanotubes were observed.

2. Materials and research methods

Samples for mechanical tests were produced in compliance with standard technique. Properties of

Наука итехника, № 4, 2012

the fine cement concrete on the Portland cement «П400-Д0» (CEM II/A-S 32.5R) and on the glass sand with fineness modulus M = 3,08 were investigated.

Carboxymethyl cellulose in combination with superplasticizing admixture Polyplast SP-1 was used as surfactants for carbon nanotubes disperga-tion. Sodium carboxymathyl cellulose is an anionic polymer i. e. the product of cellulose and mono-chloracetic acid interaction. Super plasticizing admixture Polyplast SP-1 is a mixture of sodium salts of polymethilennaphthalenesulfuric acids.

The microstructure and microanalysis of the concrete cement matrix were studied on bitmapped electronic microscopes FEI Quanta 200, XL 30 ESEM-FEG by «PHILIPS» and JSM JC 25S by «JEOL».

The analysis of nanosystem sizes in suspensions was performed on BI-MAS/plus 90 device. Total heat generation and rate of heat generation change were studied in thermos calorimeter.

Carbon nanotubes dispersion results in cement matrix structures with formation of a compact defect-free cover on the solid phase surfaces including cement and aggregate particles. This cover provides better bond with surfaces of these particles. Spatial skeleton cells in the structure of the modified cement matrix are formed due to contact interactions of the structured boundary layers. Spot contacts provide ultimately filled system where collective transition to the bond in short range order causes harsh strengthening due to spatial packing formation.

3. Testing specimens

The testing specimens were made of concrete mix from local raw materials (cement, crushed stone, sand). The size of specimens was 100x100x100 mm.

Two types of specimens where applied to investigate the stress intensity factor on normal separation and cross-section shift (fig. 1). Initiators of the crack were made after cooling to ambient temperatures by means of a saw after full preheating.

д- 50 - 50 .,¡>5

s s 1 1 к)

■ — s s in

100 i 100 i "7c_lffl_j i. 50 j

Type 'a' Type 'b'

Fig. 1. Testing specimens

54

4. The definition method of stress intensity factor on normal separation and cross-section shift

Regularity of crack resistance is investigated by fracture mechanical methods. In this work the so-called nonequilibrium test is accepted as the basic method to experimentally determine crack resistance and toughness of destruction [17-22].

The nonequilibrium test is characterized by loosing the deformation stability of the specimen at the localization moment of deformation up to maximum loading with dynamic activating of crack.

The crack resistance characteristics are applied to:

• compare different concrete mixes, and the technological process of manufacturing and concrete quality control;

• assessments of concretes enabling a reasonable selection for construction;

• structural calculations with taking into account defects and application conditions;

• cause studies of structure destructions.

Type 'a' specimen cubes with two initial cracks were used for determining Kic. The tests were performed under the scheme of central compression on a press by means of two supports made of metal bars (fig. 2a, b). The cube destruction occurs unstably within a plane of a moving crack between the two oppositely cuts.

Fig. 2b. Specimens before and after Kic tests

итехника, № 4, 2012

The value of Kic was determined according to the following equation

Kic —-

P

Bd1/2

18,3| -Г -430(-f + 3445ia

d I I d I I d

5/2

-110761 -

7/2

129671 -

9/2

(1)

where P - the load, destroying the specimen, in MN; B - the thickness of the specimen; d - height or width of the specimen; a - depth of a cut (all dimensions in meter).

The crack resistance on cross-section shift was determined in tests with type 'b' specimens by means of a loaded plate between the two parallel cuttings (fig. 3a, b). The big advantage of this test is that the type 'b' specimen can be gained from the already tested type 'a' specimen (the same cube). Thus, the factor of normal separation Kic and cross-section shift Kiic were defined on one and the same concrete fragment.

Fig. 3a. Scheme of test specimens of type 'b'

Fig. 3b. Specimens before and after Kiic tests 5. Experimental data Kic, Kiic, E, Gic

Table 1

Experimental data of concrete cube tests on fracture toughness. Determination of stress intensity factor at normal separation Kic

Samples Date of fabrication Date of test Mass of sample, g Size of ample, cm Ultimate load P, kN Average value of load P, kN ktc , TCcp MN-m-3'2 Specific energy of quasi-static destruction qc = kic /e , N/m

К-2 2390 10х10хх10 9,87

К-3 2410 10x10x10 9,70 10,64 0,623 11,25

К-4 2406 10x10,1x10 12,34

В-2 2402 10x10x10 8,49

В-3 08.08.2011 06.09.2011 2386 10x10x10 9,18 10,08 0,59 10,09

В-4 2384 10x10x10 12,56

2F-2 2388 10x10x10,1 6,47

2F-3 2396 10x10,1x10 11,74 8,99 0,526 8,02

2F-4 2402 10x10,1x10 8,76

K-1 2422 10x10,1x10,1 11,16

K-3 2410 10x10x10 6,73 10,52 0,616 10,99

K-4 2418 10x10,1x10 13,67

O-1 2414 10x10x10 10,17

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

O-3 09.08.2011 06.09.2011 2416 10x10x10,1 8,85 9,54 0,558 9,03

O-4 2406 10x10x10 9,61

Ю-1 2398 10x10x10 11,67

Ю-2 2396 10x10,1x10 10,38 11,20 0,656 12,47

Ю-3 2423 10x10x10 11,54

Наука итехника, № 4, 2012

The stress intensity factor on cross-section shift was determined according to the following equation

P

Ending mable 2

kiic =

2aB

JY (l, b),

(2)

where P - the load, destroying the specimen, in MH; Y(l, b) - correction index = 0,97; B - width of the specimen; a - depth of a cut (all dimensions in meter).

The stiffness properties of the investigated concrete were determined using ultrasonic measurements. Knowing the path length, the measured travel time (t) can be used to calculate the complex modulus of elasticity (E) as follows

С =

1

E(l -V)

p(l + v)(l - 2v)'

(3)

where ci - ultrasonic pulse velocity; v - Poisson's ratio; E - complex modulus of elasticity; p - density of concrete specimens.

Fig. 4. Ultrasonic pulse velocity method

Consideration of the elastic deformation of concrete enables to define the specific energy of quasi-static destruction (Gi) through the quasi-static stress intensity factor

K =4&Дъ.

(4)

Table 2

Experimental data of concrete cube tests

on fracture toughness. Determination of stress intensity factor at cross-section shift Kiic

Samples Date of fabrication Date of tests Ultimate load Р, kN Average value of load Р, kN KIICCp j MN-m-3'2

1 2 3 4 5 6

К-2(1) 73,92

К-2(2) 72,11

К-3(1) 08.08.2011 07.09.2011 55,23 75,48 4,7

К-4(1) 77,81

К-4(2) 78,06

1 2 3 4 5 6

В-2(1) 85,32

В-2(2) 96,32

В-3(1) 100,90 92,45 5,75

В-3(2) 83,55

В-4(1) 87,25

2F-2(1) 08.08.2011 07.09.2011 76,12

2F-2(2) 86,51

2F-3(1) 83,99 83,93 5,22

2F-3(2) 83,44

2F-4(1) 89,61

2F-4(2) 64,65

K-1(1) 87,40

K-1(2) 87,44

K-3(1) 95,36 88,83 5,532

K-3(2) 75,94

K-4(1) 93,60

K-4(2) 08.08.2011 07.09.2011 80,37

O-1(1) 85,21

O-1(2) 97,60

O-3(1) 93,36 93,94 5,851

O-3(2) 82,83

0-4(1) 98,58

O-4(2) 94,95

Ю-1(1) 102,2

Ю-2(1) 100,7

Ю-2(2) 08.08.2011 07.09.2011 92,58 98,55 6,1377

Ю-3(1) 98,72

Ю-3(2) 88,73

Table 3

Experimental data of concrete cube tests on fracture toughness. Determination of Kic and Kiic

Samples Ultimate load (scheme 1), kN Kic , ICcp MN-m-3'2 Ultimate load (scheme 2), kN KiiCcp, MN-m-3'2

К-1 9,13 0,534 29,0 45,38 2,826

К-2 6,89 0,403 - -

К-3 5,93 0,347 44,51 41,70 2,772 2,597

К-4 7,53 0,441 43,40 49,36 2,702 3,075

О-2 7,55 0,442 57,39 53,89 3,574 3,356

О-3 5,70 0,334 48,45 48,08 3,017 2,994

О-4 7,44 0,435 57,59 59,36 3,586 3,697

О-2* 0 - 43,20 40,35 2,69 2,513

6. Conclusions

The presented results allow to conclude, that the method of nonequilibrium tests of cubes with initiated cuts delivers a quite adequate picture of

■■ Наука итехника, № 4, 2012

the crack resistance and toughness of destruction of usual and high-strength concrete.

From non-destructive stiffness tests using ultrasonic pulse velocity measurements, the value of the complex modulus of elasticity was determined.

The experimental results of the stress intensity factors Kic and Kiic allow to analyze cracking and concrete destruction, and to develop new high strength materials and to perfect designing.

Based on own experimental results the energy of quasi-static destruction Gi were measured in addition.

Cement concretes modified with multilayer carbon nanotubes change its morphology of crystalline hydrates with formation of the contact zones of increased density of the aggregate surface according to microstructural analysis of new formations. Such structures increase the strength resistance of the concrete, which is proved by results of physical and mechanical tests of the concrete modified with carbon nanotubes.

R E F E R E N C E S

1. Staroverov, V. D. Structure and properties of nano-modified cement brick. Author's abstract. Act. PhD in Technical Science. SPb., 2009. - P. 19.

2. Production of carbon metal containing nanostructures for constructions modification / A. M. Lipanov [et al.] // Alternative energetic and ecology. - 2008. - No. 8 (64). - P. 82-85.

3. Nanobewehrung von Schaumbeton. In: Beton- und Stahlbetonbau / G. Yakovlev [et al.]. - 2007. - Vol. 102, Is. 2. -P. 120-124.

4. Aeroconcrete on the basis of fluoranhydrite modified carbon nanotubes / G. I. Yakovlev [et al.] // Construction materials. - 2008. - No. 3. - P. 70-72.

5. Modification of porous cement matrixes with carbon nanotubes / G. I. Yakovlev [et al.] // Construction materials. -2009. - No. 3. - P. 99-102.

6. Konsta-Gdoutos, M. S. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials / M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah // Cement and Concrete Research. - 2010. - Vol. 40 (7). - P. 1052-1059.

7. Li, G. Y. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes / G. Y. Li, P. M. Wang, X. Zhao // Carbon. -2005. - Vol. 43. - P. 1239-1245.

8. Structuring of anhydrite matrices with nanodisperse modifying additive / I. S. Maeva [et al.] // Construction materials. -2009. - No. 6. - P. 4-5.

9. Nanoscale Modification of Cementitious Materials / S. P. Shah // Proceedings of the Third International Symposium on Nanotechnology on construction. - Springer, 2009. -P. 125-130.

10. Konsta-Gdoutos, M. S. Nanoimaging of highly dispersed carbon nanotube reinforced cement based materials / M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah // Seventh International RILEM Symposium on Fibre Reinforced Concrete: Design and Applications. - Chennai, India, 2008. -P. 125-131.

11. Makar, J. M. Carbon nanotubes and their applications in the construction industry / J. M. Makar, J. J. Beaudoin // Proceeding of the 1st International Symposium on Nanotechnolo-gy in Construction. - 2004. - Р. 331-341.

12. Li, G. Y. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites / G. Y. Li, P. M. Wang, X. Zhao // Cement and Concrete Research. -2007. - Vol. 29 (5). - P. 377-382.

13. Cwirzen, A. Surface decoration of carbon nanotubes and mexhanical properties of cement/carbon nanotube composites / A. Cwirzen, K. Hamermehl-Chirzen, V. Penttala // Adv. Cem. Res. - 2008. - Vol. 20. - P. 65-73.

14. Surface - active agents and polymers in full solute-ons / K. Holmberg [et al.] // Translation from English. - M.: BINOM. Knowledge laboratory, 2009. - P. 528.

15. Tadros, T. F. Applied surfactants: principles and applications. Weinheim: Wiley-VCH Verlag GmbH & Co / T. F. Tadros. - 2005. - 654 p.

16. Rasaiah, J. C. Statistical mechanics of strongly interacting systems: liquids and solids / J. C. Rasaiah, I. H. Moore; N. D. Spenser, Eds. Encyclopedia of chemical physics and physical chemistry. - Vol. 1: fundamentals, Bristol: Institute of Physics, 2001. - Р. 379-476.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

17. Bazant, Z. P. Concrete at high temperatures / Z. P. Bazant, M. F. Kaplan // Longman Group, Harlow, England, 1996.

18. Principles and justification, determination methods of fire resistance of structures: ISO/TO 10158:1991 /Е/. - M.: NIKI Energy, 1991. - 52 p.

19. Riley, M. A. Assessing fire-damaged concrete / M. A. Riley // Concr. Int.: Desw. and Constr. - 1991. -Vol. 13, № 6. - P. 60-63.

20. Zhukov, V. V. Fire resistance of reinforced-concrete structures / V. V. Zhukov. - Kiev: Builder, 1991. - 218 p.

21. Snezhkov, D. Y. Non-destructive concrete control in monolith building: Monograph / D. Y. Snezhkov, S. N. Leonovich. - Minsk: BNTU, 2006. - 220 p.

22. The Concrete Centre: Concrete and Fire, The Concrete Centre, Surrey, U. K., 2004.

Поступила 26.04.2012

Наука итехника, № 4, 2012

i Надоели баннеры? Вы всегда можете отключить рекламу.