Научная статья на тему 'Влияние движения судна на величину периода незатухающих колебаний гирокомпаса с непосредственным управлением и связанные с ним величины'

Влияние движения судна на величину периода незатухающих колебаний гирокомпаса с непосредственным управлением и связанные с ним величины Текст научной статьи по специальности «Физика»

CC BY
416
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГИРОКОМПАС С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ / НЕЗАТУХАЮЩИЕ КОЛЕБАНИЯ / UNDAMPED OSCILLATIONS / ИНЕРЦИОННАЯ ДЕВИАЦИЯ / РАСЧЁТНАЯ ШИРОТА / ADJUSTED LATITUDE / ПОГРЕШНОСТИ / PENDULUM GYROCOMPASS / BALLISTIC DEFLECTION ERRORS

Аннотация научной статьи по физике, автор научной работы — Ермаков Сергей Владимирович

В статье проведены количественная оценка и анализ погрешностей при определении периода незатухающих колебаний, инерционной девиации первого рода и расчётной широты гирокомпаса с непосредственным управлением, которые могут возникнуть вследствие отсутствия в схеме гирокомпаса учёта движения судна. Определены граничные условия (сочетания широты и скорости), при которых максимальное значение погрешности инерционной девиации будет превышать заданное значение.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INFLUENCE OF THE VESSEL MOVEMENT ON THE VALUE OF THE PENDULUM GYROCOMPASS UNDAMPED OSCILLATIONS PERIOD AND THE RELATED CHARACTERISTICS

The quantitative estimation and analysis of errors in the determination of the period of undamped oscillations, ballistic deflection errors and the adjusted latitude of a pendulum gyrocompass, which can arise from the lack of accounting for the movement of the vessel, are made in the article. Boundary conditions (combinations of latitude and speed), at which the maximum value of the ballistic deflection error will exceed set value, are defined.

Текст научной работы на тему «Влияние движения судна на величину периода незатухающих колебаний гирокомпаса с непосредственным управлением и связанные с ним величины»

УДК 627.8

ВЛИЯНИЕ ДВИЖЕНИЯ СУДНА НА ВЕЛИЧИНУ ПЕРИОДА НЕЗАТУХАЮЩИХ КОЛЕБАНИЙ ГИРОКОМПАСА С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ И

СВЯЗАННЫЕ С НИМ ВЕЛИЧИНЫ

С.В. Ермаков

INFLUENCE OF THE VESSEL MOVEMENT ON THE VALUE OF THE PENDULUM GYROCOMPASS UNDAMPED OSCILLATIONS PERIOD AND THE RELATED

CHARACTERISTICS

S.V. Ermakov

Аннотация. В статье проведены количественная оценка и анализ погрешностей при определении периода незатухающих колебаний, инерционной девиации первого рода и расчётной широты гирокомпаса с непосредственным управлением, которые могут возникнуть вследствие отсутствия в схеме гирокомпаса учёта движения судна. Определены граничные условия (сочетания широты и скорости), при которых максимальное значение погрешности инерционной девиации будет превышать заданное значение.

Ключевые слова: гирокомпас с непосредственным управлением; незатухающие колебания; инерционная девиация; расчётная широта; погрешности.

Abstract: The quantitative estimation and analysis of errors in the determination of the period of undamped oscillations, ballistic deflection errors and the adjusted latitude of a pendulum gyrocompass, which can arise from the lack of accounting for the movement of the vessel, are made in the article. Boundary conditions (combinations of latitude and speed), at which the maximum value of the ballistic deflection error will exceed set value, are defined.

Key words: pendulum gyrocompass; undamped oscillations; ballistic deflection errors; adjusted latitude.

Введение

Обеспечение навигационной безопасности в любых условиях плавания была и остается одной из важнейших задач судовождения. В современном судовождении особая роль в обеспечении навигационной безопасности отводится техническим средствам судовождения (ТСС), с помощью которых судоводители получают различную навигационную информацию о положении судна относительно земных координатных плоскостей, направлении и скорости движения относительно воды и морского дна, угловой скорости поворота и т.д. Большинство из этих средств являются конвенционным оборудованием, установка которых на судах является обязательным в соответствии с требованиями главы V Международной конвенции по охране человеческой жизни на море 1974 года (Конвенции СОЛАС) [1]. При этом основными навигационными приборами являются курсоуказатели, к числу которых относятся и гирокомпасы с непосредственным управлением. При выходе из строя курсоуказателя судно теряет ориентировку в море и лишается возможности продолжать дальнейшее движение, которое становится не только опасным, но и бессмысленным [2]. Именно в отношении магнитных компасов и гирокомпасов Международная конвенция о подготовке и дипломировании моряков и несении вахты 1978 года с поправками (Конвенция ПДНВ) [3] требует от вахтенных помощников капитанов знания и понимания не только эксплуатационных процедур, но и принципов работы.

В числе характеристик гирокомпасов с непосредственным управлением всегда указывается величина периода незатухающих колебаний, а если гирокомпас является неапериодическим - также и расчётная широта, в которой имеет место быть этот период. Знание величины периода необходимо для контроля работоспособности гирокомпаса, а также для оцен-

http://vestnik-nauki.ru

ISSN 2413-9858

ки точности гирокомпаса при маневрировании, т.е. для вычисления инерционной девиации первого рода на момент окончания манёвра.

Однако при прочих равных условиях указанный период для неподвижного гирокомпаса, и гирокомпаса, установленного на движущемся судне, имеют различные значения, определяемые по разным формулам. В первом случае:

где Н - кинетический момент чувствительного элемента (гиросферы), В = Mga - модуль маятникового момента гиросферы, М - масса гиросферы, g - ускорение свободного падения, а - метацентрическая высота гиросферы, а>зем - угловая скорость суточного вращения Земли, р - широта плавания судна.

В случае если судно движется скоростью V и компасным курсом КК, то (1) принимает вид:

где Я - радиус Земли.

Вместе с тем, во многих источниках, как, например, в [4], даже в случае наличия движения судна предлагается использовать более простую формулу для неподвижного гирокомпаса. При этом указывается, что подобная замена допустима для невысоких широт и для небольших скоростей судна, без количественной оценки таких ограничений. Более того, никаких оценок возникающих при замене формул погрешностей в определении инерционной девиации первого рода, а также смещения расчётной широты, в литературе не приводится. Таким образом, видится достаточно актуальным исследование влияния движения судна на величину периода незатухающих колебаний гирокомпаса с непосредственным управлением и связанные с ним величины, задача которого - получение количественных оценок возможных погрешностей.

Оценка погрешности периода для различных сочетаний курса, скорости и широты плавания судна

Абсолютная погрешность в определении периода незатухающих колебаний гирокомпаса с непосредственным управлением, установленного на движущемся судне, которая обусловлена использованием для расчёта вместо выражения (2) формулы (1), определяется разностью между результатами вычислений по этим формулам для конкретных значений курса, скорости и широты плавания судна.

Для оценки величины погрешности для гирокомпаса «Курс-4» были проведены вычисления, при которых скорость судна варьировалась от 0 до 30 узлов с дискретностью 5 узлов, курс судна от 0° до 360° с дискретностью 10°, широта от 0° до 70° с дискретностью 10° . В результате были получены восемь графиков (по числу значений широты) зависимости погрешности периода от курса судна, на каждом из которых изображены шесть кривых для различных скоростей судна. Один из графиков (для широты 70°) представлен на рис. 1. «Скоростные» кривые на этом графике не обозначены - значения скорости убывают сверху вниз (верхней кривой соответствует скорость 30 уз, следующей - 25 узлов и т.д.)

В результате анализа всех восьми графиков были сделаны выводы, представленные в табличном виде (табл. 1) в виде граничных соотношений курса, скорости и широты плавания судна, при которых значение погрешности периода незатухающих колебаний превышает заданное значение (1 и 2 минуты).

T0 = 2п/H/Ba3eM cos ф.,

(1)

ТО = 2пНВ>/(ем cos ф + V sin KK/R)2 + ( V cos KK/R)

2

(2)

-300

Курс судна, градусы

Рисунок 1 - Погрешность периода незатухающих колебаний в зависимости курса и скорости судна для широты 70°

Таблица 2 - Граничные соотношения курса, скорости и широты

о р, Погр., мин более Скорость

10 15 20 25 30

Курсы, °

0° 1 - - - - 265°-275°

10° 1 - - - - 260°-280°

20° 1 - - - - 235°-305° 70°-110°

30° 1 - - - 260°-280° 230°-310° 55°-125°

40° 1 - - - 230°-310° 55°-125° 220° - 320° 45° -135°

50° 1 - - 230°-310° 55° -125° 220° - 320° 40°-140° 210°-330° 30°-150°

60° 1 - 225°-315° 45° -135° 215°-325° 30°-150° 205°-335° 25° -155° 220° - 340° 20°-160°

2 - - - 235°-305° 60°-120° 225°-315° 45° -135°

70° 1 220° - 320° 40°-140° 205°-335° 25° -155° 200°-340° 15°-165° 195°-345° 30°-150° 195°-345° 10°-170°

2 - 235°-305° 55°-125° 215°-325° 35° -145° 210°-330° 30°-150° 205°-335° 25° -155°

Оценка максимальной погрешности периода для различных сочетаний скорости и широты плавания судна

Максимальные значения погрешностей определения периода незатухающих колебаний при любом сочетании скорости и широты плавания приходится на курс 270°. Эти значения приведены в табл. 2.

Таблица 2 - Максимальные значения погрешности периода незатухающих колебаний при различных сочетаниях скорости и широты плавания_

Широта, градусы

0 10 20 30 40 50 60 70

Пог] решность периода, мин.

Скорость, узлы 5 9,9 10,1 10,9 12,3 14,8 19,2 28,1 49,9

10 19,9 20,3 21,8 24,7 29,7 38,7 56,7 101,0

15 29,9 30,6 32,9 37,2 44,8 58,5 85,7 153,4

20 40,1 41,0 44,0 49,8 60,1 78,5 115,3 207,1

25 50,3 51,5 55,3 62,6 75,5 98,8 145,4 262,3

30 60,6 62,1 66,7 75,5 91,1 119,3 176,0 318,9

Данные табл. 2 дают возможность построить два оценочных графика: зависимости погрешности периода незатухающих колебаний от широты плавания для различных скоростей судна (рис. 2, верхняя кривая соответствует скорости 30 уз, следующая за ней - 25 уз и т.д.) и зависимости этого периода от скорости судна для различных широт плавания (рис. 3, верхняя кривая соответствует широте 70°, следующая за ней - 60° и т.д.).

Широта, градусы

Рисунок 2 - Зависимость погрешности периода незатухающих колебаний

от широты плавания судна

Скорость, узлы

Рисунок 3 - Зависимость погрешности периода незатухающих колебаний

от скорости судна

Оценка погрешности инерционной девиации первого рода для различных сочетаний курса, скорости и широты плавания судна

Результаты оценки абсолютной погрешности периода незатухающих колебаний с практической точки зрения малоинформативны. В связи с этим рассмотрим, как эта погрешность влияет на точность определения инерционной девиации первого рода. Иными словами, требуется количественно оценить погрешность, которая возникнет при определении инерционной девиации по формуле:

) = ()))2/To2 -1), (3)

где 5,1,5,2 - значения скоростной девиации до и после маневра судна, Ts = 84,4 мин. - период Шулера, если в этой формуле будет использоваться период незатухающих колебаний для неподвижного судна, а судно при этом движется.

Эта же погрешность будет иметь место и в показаниях самого гирокомпаса, если в автоматически реализуемом алгоритме учета инерционной девиации будет отсутствовать информация о скорости и широте плавания судна.

В целях оценки условимся, что судно совершает маневр курсом, причем его начальное значение равно 0° или 180° (выбирается то значение, которое обеспечивает большее по модулю изменение северной составляющей скорости), а конечное значение варьируется от 0° до 360° с дискретностью 10°.

Для оценки погрешности инерционной девиации для одной конкретной скорости и заданной широты необходимо, изменяя значении конечного курса, рассчитать значения погрешностей, которые будут равны разности двух результатов расчета инерционной девиации по формуле (3): один из них получен со значением периода, определенным по формуле (1), другой - со значением периода, определенным по формуле (2). В итоге получается оценочная кривая зависимости погрешности от курса судна (конечного).

В результате расчета этих кривых для указанных выше значений скорости и широты были получены восемь графиков (для различных значений широты), на каждом из которых построено семейство оценочных кривых для различных скоростей судна. На рис. 4 представлен один из таких графиков, построенный для широты 70°.

Рисунок 4 - Погрешность инерционной девиации первого рода, обусловленная использованием формулы периода незатухающих колебаний для неподвижного судна, в зависимости от

широты, курса и скорости судна (широта 70° )

Оценка максимальной погрешности инерционной девиации для различных сочетаний скорости и широты плавания судна

Каждой кривой погрешности инерционной девиации первого рода (рис. 4 и аналогичные рисунки для других широт) характерно свое максимальное значение. Эти значения представлены в табл. 3. Они дают возможность наглядно представить, какая погрешность может возникнуть в показаниях гирокомпаса с непосредственным управлением после маневра при отсутствии учета движения судна.

Таблица 3 - Максимальные значения погрешности инерционной девиации при различных _сочетаниях скорости и широты плавания_

Широта, градусы

0 10 20 30 40 50 60 70

Пог] решность инерционной девиации, градусы

Скорость, узлы 5 0,00 0,00 0,00 0,01 0,01 0,01 0,01 0,01

10 0,02 0,02 0,02 0,02 0,02 0,03 0,04 0,05

15 0,04 0,04 0,04 0,05 0,05 0,07 0,08 0,12

20 0,07 0,08 0,08 0,09 0,10 0,12 0,15 0,22

25 0,12 0,12 0,12 0,13 0,15 0,18 0,23 0,34

30 0,17 0,17 0,18 0,19 0,22 0,26 0,34 0,49

http://vestnik-nauki.ru

Данные табл. 3 дают возможность построить графики (рис. 5 и 6), аналогичные представленным на рис. 2 и 3. В свою очередь эти графики позволяют определить граничные условия (сочетания скорости и широты), при которых значение погрешности инерционной девиации первого рода не превысит заданное значение. Так, на рис. 7 представлено три кривых, для точек справа от которых (т.е. для соответствующих этим точкам сочетаниям широты и скорости) значения погрешности инерционной девиации будет превышать указанное на кривой значение.

|,50 п

20 30 40 50 Широта, градусы

Рисунок 5 - Зависимость погрешности инерционной девиации от широты плавания судна

10 15 20

Скорость, узлы

25

30

Рисунок 6 - Зависимость погрешности инерционной девиации

от скорости судна

5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

http://vestnik-nauki.ru

Рисунок 7 - Граничные условия (сочетания широты и скорости), при которых максимальное значение погрешности инерционной девиации будет превышать заданное значение

Изменение расчётной широты гирокомпаса

Для неапериодических компасов широта, в которой период незатухающих колебаний гиросферы равна периоду Шулера, и инерционная девиация первого рода не возникает, называется расчётной. Так, для гирокомпаса «Курс-4» расчётная широта равна 60° (или, точнее, с использованием принятых выше к расчёту данных - 60,4° ). Однако это значение имеет место быть только в случае неподвижного судна. В ином случае (при движении судна) расчётная широта будет отличаться от указанной в перечне технических характеристик.

Для оценки изменения расчётной широты, обусловленной движением судна, выразим из формулы (2) значение широты р :

р = агссоБ

(ПО')2 • ИГ1Б -(VсоБКК/Я) -(VмпКК/Я))

(4)

Учитывая, что Б = Mga, и принимая ТО' = Т3 = , получим следующую форму-

лу для расчётной широты неапериодического гирокомпаса с непосредственным управлением, установленного на движущемся судне:

С = агссоБ

^(ИГ/Ма)2 - (V соБ КК)2 - V

- V мп КК Яш

(5)

При помощи формулы (5) для гирокомпаса «Курс-4» построим оценочные графики для шести использованных выше значений скорости - график зависимости расчётной широты от курса и скорости судна (рисунок 8) и график зависимости изменения расчётной широты от курса и скорости судна (рисунок 9).

Рисунок 8 - Зависимость расчётной широты от курса и скорости судна

Рисунок 9 - Зависимость изменения расчётной широты от курса и скорости судна

Эти графики показывают, что расчётная широта может сместиться в ту или иную сторону на два градуса и более.

По данным рисунка 9, используя экстремумы кривых, построим график зависимости максимальных значений изменения расчётной широты от скорости судна (рисунок 10). Эта зависимость имеет практически линейный характер.

Рисунок 10 - Зависимость максимального изменения расчётной широты

от скорости судна

Заключение

Использование в современном судовождении высокоточных технических средств определения места судна и параметров его движения ставит под сомнение любые приближения в расчётах, требуя от них анализа результатов с точки зрения допустимой точности и количественной оценки возможных погрешностей, возникающих при этих приближениях.

Таким образом, любые необоснованные анализом заявления о возможности использования для получения какой-либо значимой для навигации величины приближенных формул и алгоритмов (в том числе приближенных вследствие пренебрежения другими величинами) должны быть исключены из теории и практики судовождения до выяснения (количественной оценки) величины возникающей погрешности. Результаты расчетов по таким формулам могут в итоге крайне негативно сказаться на навигационной безопасности, предоставив в распоряжение судоводителю информацию, содержащую недопустимую и неоцененную погрешность.

В настоящей работе для различных соотношений курса, скорости и широты плавания судна проведена количественная оценка погрешностей в определении периода незатухающих колебаний, которые могут возникнуть вследствие отсутствия учёта движения судна, а также связанных с ними погрешностей в определении инерционной девиации первого рода и смещения расчётной широты.

Установлено, что величина погрешности периода для гирокомпаса «Курс-4» может достигать 5 мин. и более, инерционной девиации первого рода 0,5°, а смещения расчётной

широты 2° и более.

Таким образом, результатом представленной работы является:

— методики определения погрешностей периода незатухающих колебаний гирокомпаса с непосредственным управлением, инерционной девиации первого рода и смещения расчётной широты гирокомпаса, обусловленных отсутствием учёта движения судна (использованием для расчёта указанного периода в случае движущегося судна формулы для гирокомпаса на неподвижном основании);

— результаты количественной оценки погрешностей и смещения, полученные с помощью обоснованных методик (для гирокомпаса «Курс-4»);

— граничные условия (сочетания широты и скорости), при которых максимальное значение погрешности инерционной девиации будет превышать заданное значение (рисунок 7).

Новизна результата состоит в получении количественных представлений о влиянии движения судна на период незатухающих колебаний, инерционную девиацию первого рода и расчетную широту, которое ранее оценивалась только качественно (невысокие широты, небольшая скорость).

Достоверность результата подтверждается положенными в его основу известными теоретическими положениями, касающимися принципов построения и работы гирокомпасов с непосредственным управлением.

В отличие от гирокомпаса «Курс-4» в большинстве современных гирокомпасов с непосредственным управлением (например, в ГК «Standard 22») скоростная и инерционная девиации рассчитываются в электронных блоках, содержащих математические модели этих девиаций, и далее исключаются из показаний прибора. В этом случае описанные погрешности могут возникать только в аварийных ситуациях, когда в силу различных причин в схему гирокомпаса не поступает информация о скорости движения судна и о широте его плавания. Диагностика подобной неисправности не представляет судоводителю труда, а результаты приведенного исследования дадут ему возможность оценить точность и достоверность показаний гирокомпаса до устранения проблемы дефицита информации о скорости и широте.

ЛИТЕРАТУРА

1. Международная конвенция по охране человеческой жизни на море 1974 года (СО-ЛАС-74). (Консолидированный текст, измененный Протоколом 1988 года к ней, с поправками). СПб.: ЗАО «ЦНИИМФ», 2010. 992 с.

2. Ермаков С.В. Исследование принципов построения и расчет погрешностей курсо-указателей и лагов: методические указания по выполнению курсовой работы по дисциплине «Технические средства судовождения» для курсантов и студентов всех форм обучения специальности 26.05.05 «Судовождение». Калининград: Изд-во БГАРФ, 2016. 85 с.

3. Международная конвенция о подготовке и дипломировании моряков и несении вахты 1978 года, с поправками. Кодекс по подготовке и дипломированию моряков и несению вахты, с поправками. Лондон: Международная морская организация, 2013. 425 с.

4. Смирнов Е.Л., Яловенко А.В., Воронов В.В. Технические средства судовождения. Том 1. Теория: Учебник для вузов. СПб.: Элмор, 1996. 554 с.

REFERENCES

1. Mezhdunarodnaya konventsiya po okhrane chelovecheskoy zhizni na more 1974 goda (SOLAS-74). (Konsolidirovannyy tekst, izmenennyy Protokolom 1988 goda k ney, s popravkami) [International Convention for the Safety of Life at Sea, 1974 (text modified by the Protocol of 1988 relating thereto, including amendments)]. SPb.: ZAO «TsNIIMF», 2010. 992 p.

http://vestnik-nauki.ru

ISSN 2413-9858

2. Ermakov S.V. Issledovanie printsipov postroeniya i raschet pogreshnostey kurso-ukazateley i lagov: metodicheskie ukazaniya po vypolneniyu kursovoy raboty po distsipline «Tekhnicheskie sredstva sudovozhdeniya» dlya kursantov i studentov vsekh form obucheniya spe-tsial'nosti 26.05.05 «Sudovozhdenie» [Study of the principles and calculation of errors of course indicators and lags: methodical instructions for the implementation of the course work on the discipline "Technical aids of navigation" for cadets and students of all forms of training specialty 26.05.05 "Navigation"]. Kaliningrad: BGARF Publ., 2016. 85 p.

3. Mezhdunarodnaya konventsiya o podgotovke i diplomirovanii moryakov i nesenii vakhty 1978 goda, s popravkami. Kodeks po podgotovke i diplomirovaniyu moryakov i neseniyu vakhty, s popravkami [International Convention on Standards of Training, Certification and Watchkeeping for Seafarers, 1978, as amended. International Code on Standards of Training, Certification and Watchkeeping for Seafarers, as amended]. London: Mezhdunarodnaya morskaya organizatsiya, 2013. 425 p.

4. Smirnov E.L., Yalovenko A.V., Voronov V.V. Tekhnicheskie sredstva sudovozhdeniya. Tom 1. Teoriya: Uchebnik dlya vu-zov [Technical aids of navigation. Vol. 1. Theory: Textbook for high schools]. Saint-Petersburg: Elmor, 1996. 554 p.

Ермаков Сергей Владимирович Калининградский государственный технический университет, г. Калининград, Россия, старший преподаватель кафедры судовождения, E-mail: esv.klgd@mail.ru

Ermakov Sergey Vladimirovich Kaliningrad State Technical University, Kaliningrad, Russia, Senior Lecturer of Navigation Department,

E-mail: esv.klgd@mail.ru.

Корреспондентский почтовый адрес и телефон для контактов с автором статьи: 236035, Калининград, ул. Молодежная, 6, «БГАРФ» ФГБОУ ВО «КГТУ», ГУК, каб. 329.

89114594119

ИНФОРМАЦИЯ ОБ АВТОРЕ

i Надоели баннеры? Вы всегда можете отключить рекламу.