Серiя: TexHÏ4HÏ науки ISSN 2225-6733
9. Лойцянский Л.Г. Курс теоретической мехашки: т. II. Динамика / Л.Г. Лойцянский, А.И. Лур'е. - М.: ГИТ-ТЛ, 1954. - 595 с.
10. Яблонский А.А. Курс теории колебаний / А.А. Яблонский, С.С. Норейко. - М.: Высшая школа, 1975. - 248 с.
11. Целиков А.И. Машины и агрегаты металлургических заводов. т. II / А.И. Целиков, П.И. По-лухин. - М.: Металлургия, 1988. - 432 с.
12. Степин П.А., Сопротивление материалов / П.А. Степин. - М.: Высшая школа, 1983. - 303 с.
Bibliography:
1. Panovko Ja.G. Foundations of Applied theory of elastic vibrations / Ja.G. Рапоуко. -Mashinostroenie, 1967. - 316 p. (Rus.)
2. Blekhman I.I. Unbalanced rotor rotation caused by harmonic oscillations of its axis / I.I. Blekhman. - M: Izv. AN SSSR, OTN, 1954. - № 8. (Rus.)
3. Bolshakov V.I. The dynamics of large machines / V.I. Bolshakov. - М.: Mashinostroenie, 1969. -214 p. (Rus.)
4. Butsukin V.V. Improvement of electromechanical bahatodvyhunovoho about tilting the converter to reduce loads in transient conditions: Candidate. techn. science degree. - Dnepropetrovsk, 2004. - 210 p. (Ukr.)
5. Weitz V.L. Dynamic calculations drive cars / V.L. Weitz. -- L.: Mashinostroenie, 1971. - 352 p. (Rus.)
6. Davydov B.L. Statics and dynamics of machines / B.L. Davidov, B.A. Skorodumov. - M.: Mashinostroenie, 1967. - 432 p. (Rus.)
7. Kozhevnikov S.N. The dynamics of non-stationary processes in machines / S.N. Kozhevnikov. — Kyiv: Naukova Dumka, 1986. - 285p. (Rus.)
8. Timoshenko S.P. Fluctuations in engineering / S.P. Tymoshenko. - Moscow: Fizmatgiz, 1960. -472 p. (Rus.)
9. Loytsyanskyy L.G. Course teoretycheskoy mechanics: Vol. II. Dynamics / L.G. Loytsyanskyy, A.I. Lurie. - M.: HYT-TL, 1954. - 595 p. (Rus.)
10. Jablonski A.A. Course in the theory of oscillations / A.A. Jablonski, S. Noreyko. - M.: Vysshaja shkola, 1975. - 248. (Rus.)
11. Cselikov A.I. Machines and units of metallurgical plants. Vol. II. / A.I. Cselikov, P.I. Polukhin. -Moscow, Metallurgya, 1988. - 432 p. (Rus.)
12. Stepin P.A. Strength of Materials / P.A. Stepin. - M.: Vysshaja shkola, 1983. - 303 p. (Rus.)
Рецензент: В.В. Суглобов
д-р техн. наук, ДВНЗ «ПДТУ»
Стаття надшшла 10.11.2012
УДК 621.875
©Сагиров Ю.Г.*
УТОЧНЕННЫЙ МЕТОД АНАЛИЗА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ БАШЕННОЙ ЦИЛИНДРИЧЕСКОЙ КОЛОННЫ ПОРТАЛЬНОГО КРАНА
Разработаны пространственные модели металлоконструкции портального крана. Выполнен анализ напряженного состояния колонны. Предложен уточненный метод анализа напряженно-деформированного состояния металлоконструкции башенной цилиндрической колонны портального крана.
Ключевые слова: портальный кран, металлоконструкция, пространственная модель, метод конечных элементов, SolidWorks, Cosmos Works , долговечность.
канд. техн. наук, доцент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь
Серiя: Техшчш науки ISSN 2225-6733
Саг1ров Ю.Г. Уточнений метод анал1зу напружено-деформованого стану баш-тових цилтдричних колони портального крану. Розроблено просторовi модел1 металоконструкцИ портального крана. Виконано аналiз напруженого стану колони. Запропоновано уточнений метод аналiзу напружено-деформованого стану ме-талоконструкцп баштовог цилтдричног колони портального крана. Ключов1 слова: портальний кран, металоконструкщя, просторова модель, метод ктцевих елементiв, SolidWorks, Cosmos Works, довговiчнiсть.
Yu. G. Sagirov. Improving method of the analysis of stress-deformed condition of towers cylindrical column portal crane. Developed a spatial model steel portal crane. The analysis of the stress state of the column. We propose a refined method of analysis of the stress-strain state of metal tower cylindrical column gantry crane.
Keywords: portal crane, steel structure, the spatial model, finite element method, Solid Works, Cosmos Works, durability.
Постановка проблемы. Совершенствование методов расчета долговечности крановых металлоконструкций - важная научно-техническая задача, решение конторой позволит повысить безопасность эксплуатации грузоподъемных кранов, а также их надежность.
Анализ последних исследований и публикаций. Современным направлением в конструировании портальных кранов является отказ от четырехстоечного портала с поворотной колонной и переход к порталу с башенной цилиндрической колонной, на которой устанавливается опорно-поворотное устройство (ОПУ) типа Rote-Erde и поворотная часть крана [1].
Цель статьи - на примере портального крана «Азовец», эксплуатируемого в Мариупольском государственном морском порту, разработать уточненный метод расчета и анализа металлоконструкции башенной цилиндрической колонны портального крана.
Изложение основного материала. В процессе эксплуатации крана в Мариупольском государственном морском порту выявлены неоднократные случаи образования трещин и разрывы сварных швов, соединяющих элементы усиления («обребрения») цилиндрической обечайки колонны. Ремонт дефектных участков не давал эффективных результатов, трещины появлялись вновь. Изучение технической документации позволило выявить, что напряжено-деформированное состояние колонны определялось приближенным методом: колонна представлялась как стержень переменной жесткости в стержневом аналоге всей металлоконструкции крана, а не как оболочковая конструкция, подкрепленная диафрагмами и продольными ребрами.
Для определения фактического напряжено-деформированного состояния колонны и, в последующем, усиления был предложен уточненный метод расчета башенных колонн портальных кранов с ОПУ. Вначале разрабатывается расчетная схема (рис. 1), с учетом действующих нагрузок и их сочетаний [2, табл. 6.1].
Для этого все внешние нагрузки, действующие на кран, преобразовываются и приводятся к нагрузкам, равнозначным по воздействию на элементы конструкции колонны. Эти нагрузки можно разделить на три вида:
1. Нагрузки, действующие в вертикальной плоскости и воздействующие на колонну через тела качения ОПУ. Все вертикальные нагрузки на тела качения ОПУ распределяются неравномерно (рис. 2) по следующей зависимости:
G + G V
V + Vм. r, (1)
n 2 R
где Gj - вертикальная сила, действующая от массы поворотной части крана, G3 - вес груза,
n - количество тел качения ОПУ,
Ум — максимальная вертикальная сила, нагружающая тело качения ОПУ от момента всех сил, действующих в вертикальной плоскости качания стрелы, R — радиус окружности расположения тел качения ОПУ,
Серiя: Технiчнi науки ISSN 2225-6733
Г - координата расположения /-того тела качения от центра оси вращения крана.
г. =27.0
X
Рис. 1 - Расчетная схема портального крана
2. Нагрузки, действующие в плоскости качания стрелы и вызывающие изгиб колонны в этой плоскости. Такими нагрузками являются (рис. 1):
• горизонтальная сила от отклонения канатов:
Ра = ^ ' (8а .
сила инерции стреловой системы при изменении вылета стрелы:
„ т -v Р =—£-
ив ^ '
(2)
(3)
где
тс — приведенная к блокам хобота масса стреловой системы, V — мгновенная скорость оголовка хобота, t — время разгона (торможения) механизма изменения вылета. • горизонтальная сила давления ветра.
Действие этих нагрузок приведено к горизонтальной равнодействующей силе Р1 (рис. 2), вызывающей изгиб колонны в плоскости качания стрелы.
3. Нагрузки, действующие в горизонтальной плоскости и вызывающие кручение колонны вокруг ее вертикальной оси. Кручение колонны вокруг ее вертикальной оси вызывается окружными силами торможения FТ (рис. 2) при торможении двух механизмов вращения колонны:
Р = Мг. Т d
(4)
где
МТ — момент торможения,
d — диаметр делительной окружности зубчатого венца ОПУ. Момент торможения определяется, как разность моментов: момента инерции всех вращающихся масс при повороте крана и момента сил трения в ОПУ.
Затем разрабатывается компьютерная твердотельно-деформируемая модель колонны
В1СНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХШЧНОГО УН1ВЕРСИТЕТУ 2012р. Серiя: Техшчш науки Вип. 25
ISSN 2225-6733
(рис. 2). Геометрические параметры модели (геометрическое подобие) полностью соответствуют натурному образцу колонны. Вариант нагружения крана и комбинации нагрузок принимаются в соответствии с нормами расчета металлоконструкций портальных кранов [3, с. 48].
а
б
Рис. 2 - Модель колонны (а) и участки приложения сил (б)
Для каждого режима нагружения крана (подъем груза; подъем груза и поворот; подъем груза, поворот и изменение вылета и т.д.) и соответствующих значений действующих нагрузок определяется напряженно-деформированное состояние колонны с использованием САПР SoПdWorks, CosmosWorks.
Результаты исследования каждого варианта нагружения выдаются в виде:
1. Эпюр распределения коэффициента запаса прочности (рис. 3);
2. Эпюр эквивалентных напряжений в цилиндрической оболочке колонны (рис. 4), в скрытых участках (элементы обребрения) колонны и в кольцевых диафрагмах (рис. 5).
Серiя: Технiчнi науки ISSN 2225-6733
Рис. 3 - Эпюра распределения коэффициента запаса прочности
Рис. 4 - Эпюра распределения эквивалентных напряжений
Рис. 5 - Эпюра распределения эквивалентных напряжений в скрытых участках
Серiя: Техшчш науки ISSN 2225-6733
Выводы
1. Предложен уточненный метод анализа напряженно - деформированного состояния.
2. Полученные результаты анализа использованы в практических рекомендациях по усилению колонны крана «Азовец».
3. Предложенный метод может быть использован при расчетах башенных цилиндрических колонн других машин и сооружений.
Список использованных источников:
1. Михеев В.А. Специальные краны. Учебник для студентов технических ВУЗов / В.А. Михеев, В Т. Власов. - Мариуполь: ПГТУ, 2004. - 424 с.
2. Петухов П.З. Специальные краны: учебное пособие для машиностроительных ВУЗов / П.З. Петухов, Г.П. Ксюнин, Л.Г. Серлин. - М.: Машиностроение, 1985. - 248 с.
3. Брауде В.И. Справочник по кранам: В 2 т., Т. 1. / В.И. Брауде, М.М. Гохберг, И.Е.Звягин. -М.: Машиностроение, 1988. - 536 с.
4. Алямовский А.А. Solid Works / Компьютерное моделирование в инженерной практике / А.А. Алямовский, А.А. Собачкин, Е.В. Одинцов. - СПб.: БВХ-Петербург. - 2005. - 800 с.
Bibliography:
1. Mikheev V.A. Special cranes. Textbook for students of technical universities / V.A. Mikheev, V.T. Vlasov. - Mariupol: PSTU, 2004. - 424 p. (Rus.)
2. Petukhov P.Z. Special cranes: a textbook for engineering universities / P.Z. Petukhov, G.P. Ksyunin, L.G. Serlin. - M.: Mashinostroenie, 1985. - 248 p. (Rus.)
3. Braude V.I. Reference cranes: in 2 books, book 1 / V.I. Braude, M.M. Hochberg, I.E. Zvyagin. -M.: Mashinostroenie, 1988. - 536 p. (Rus.)
4. Alyamovsky A.A. Solid Works / Computer modeling in engineering / A.A. Alyamovsky, A.A. So-bachkin, E.V. Odintsov. - SPb.: BVH - Peterburg. - 2005. - 800 р. (Rus.)
Рецензент: В.В. Суглобов
д-р техн. наук, проф. ГВУЗ «ПГТУ» Статья поступила 10.11.2012
УДК 621.771.06-589.4
©Лоза Е.А.*
ОЦЕНКА НАПРЯЖЕННОГО СОСТОЯНИЯ ДИСКОВ ПИЛ ГОРЯЧЕЙ РЕЗКИ ПРОКАТА
Определено напряженное состояние диска в опасном сечении методом неплоских сечений. Предложен критерий усталостной прочности диска в виде условия непревышения напряжений в основании зуба над напряжениями во впадине. Приведены рекомендации по выбору рациональных размеров режущей части дисков. Ключевые слова: напряженное состояние диска, метода неплоских сечений, критерий усталостной прочности.
Лоза О.А. Ощнки напруженого стану диств для пил гарячого рiзання прокату.
Визначено напружений стан диска в небезпечному перер1з1 методом неплоских пе-ретитв. Запропоновано критерт втомног мщност1 диска у вигляд1 умови непере-вищення напружень в тдстав1 зуба над напругами в западим. Наведено рекомен-дацИ' з вибору ращональнихрозм1р1в р1жучог частини дисшв.
Ключовi слова: напружений стан диска, методу неплоских перетитв, критерт втомног мгцностг.
канд. техн. наук, доцент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь