Научная статья на тему 'USING THE HETEROCENTRIC MODEL IN POPULATION-CONSORTIUM ANALYSIS OF THE NEST-DWELLING ARTHROPODS OF THE SAND MARTIN (RIPARIA RIPARIA (LINNAEUS, 1758)) IN SARATOV REGION'

USING THE HETEROCENTRIC MODEL IN POPULATION-CONSORTIUM ANALYSIS OF THE NEST-DWELLING ARTHROPODS OF THE SAND MARTIN (RIPARIA RIPARIA (LINNAEUS, 1758)) IN SARATOV REGION Текст научной статьи по специальности «Биологические науки»

CC BY
51
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Russian Journal of Ecosystem Ecology
ВАК
Область наук
Ключевые слова
HETEROCONCENTRIC MODEL / RIPARIA RIPARIA / SAND MARTIN / NEST-DWELLING FAUNA / FAUNA / SARATOV REGION / RUSSIA

Аннотация научной статьи по биологическим наукам, автор научной работы — Kondratev E.N., Sazhnev A.S., Anikin V.V., Mironova A.A.

Background . The composition of the nest-dwelling fauna is highly diverse. When examining the population of arthropods (Arthropoda) in the nests of the sand martin Riparia riparia (Linnaeus, 1758) as a heterogeneous consortium, a heterocentric model was constructed for the first time, allowing for the assessment of the qualitative structure of the consortium taking into account various groups of connections between its members. Materials and methods. The materials were collected in 7 districts of Saratov Region during 2019-2021 by excavating nests of Riparia riparia . The Tullgren funnel was used for collecting arthropods, and the nesting material was additionally manually sifted. After laboratory processing and identifying the arthropods, their number was counted to construct the model. Results. Constructing a heterocentric model enabled demonstrating different types of consortial connections between the determinant (sand martin and its nest) and consorts (arthropods) to assess the qualitative structure of this model. Conclusions . During population and consortium analysis of invertebrates inhabiting the nests of Riparia riparia , three groups of consortial connections (topical, trophic, fensive) and nine variants (substrate-stational, hematophages, zoophages, phytophages, polyphages, saprophages, keratophages, aphages, fensive) of connections were identified. Insects participate in all nine variants of connections, mites have five variants of connections, while pseudoscorpions, spiders, centipedes, millipedes, and woodlice have two variants of connections.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «USING THE HETEROCENTRIC MODEL IN POPULATION-CONSORTIUM ANALYSIS OF THE NEST-DWELLING ARTHROPODS OF THE SAND MARTIN (RIPARIA RIPARIA (LINNAEUS, 1758)) IN SARATOV REGION»

0 RUSSIAN JOURNAL OF ECOSYSTEM ECOLOGY Vol. 8 (2), 2023

Reœived 26.04.23 Revised 24.05.23 Accepted 02.06.23 ^^^^OrIGINALRESEARC^ Open Access

DOI 10.21685/2500-0578-2023-2-2

USING THE HETEROCENTRIC MODEL IN POPULATION-CONSORTIUM ANALYSIS OF THE NEST-DWELLING ARTHROPODS OF THE SAND MARTIN (RIPARIA RIPARIA (LINNAEUS, 1758)) IN SARATOV REGION

E.N. Kondratev1, A.S. Sazhnev2, V.V. Anikin3, A.A. Mironova4

13 4 Saratov State University, Saratov, Russia

2 Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok vill., Yaroslavl Region, Russia 2 Joint Directorate of the Mordovia State Nature Reserve and National Park "Smolny", Saransk, Russia

1 eugene.n.kondratyev@gmail.com

Abstract. Background. The composition of the nest-dwelling fauna is highly diverse. When examining the population of arthropods (Arthropoda) in the nests of the sand martin Riparia riparia (Linnaeus, 1758) as a heterogeneous consortium, a heterocentric model was constructed for the first time, allowing for the assessment of the qualitative structure of the consortium taking into account various groups of connections between its members. Materials and methods. The materials were collected in 7 districts of Saratov Region during 2019-2021 by excavating nests of Riparia riparia. The Tullgren funnel was used for collecting arthropods, and the nesting material was additionally manually sifted. After laboratory processing and identifying the arthropods, their number was counted to construct the model. Results. Constructing a heterocentric model enabled demonstrating different types of consortial connections between the determinant (sand martin and its nest) and consorts (arthropods) to assess the qualitative structure of this model. Conclusions. During population and consortium analysis of invertebrates inhabiting the nests of Riparia riparia, three groups of consortial connections (topical, trophic, fensive) and nine variants (substrate-stational, hematophages, zo-ophages, phytophages, polyphages, saprophages, keratophages, aphages, fensive) of connections were identified. Insects participate in all nine variants of connections, mites have five variants of connections, while pseudoscorpions, spiders, centipedes, millipedes, and woodlice have two variants of connections.

Keywords: heteroconcentric model, Riparia riparia, sand martin, nest-dwelling fauna, fauna, Saratov Region, Russia

Acknowledgments: the authors are grateful to K.A. Grebennikov (Russian Center for Plant Quarantine, Balashikha), A.A. Haustov (Tyumen State University, Tyumen), A.B. Babenko, and R.A. Sayfutdinov (Institute of Physics and Power Engineering RAS, Moscow) for their help in determining the species.

Financing: A.S. Sazhnev's work was carried out within the framework of funding under the grant of the Russian Science Foundation No. 22-14-00026.

For citation: Kondratev E.N., Sazhnev A.S., Anikin V.V., Mironova A.A. Using the heterocentric model in population-consortium analysis of the nest-dwelling arthropods of the sand martin (Riparia riparia (Linnaeus, 1758)) in the Saratov Region. Russian Journal of Ecosystem Ecology. 2023;8(2). (In Russ.). Available from: https://doi.org/10.21685/2500-0578-2023-2-2

удк 595.42: 595.7: 574.38

ПОСТРОЕНИЕ ГЕТЕРОКОНЦЕНТРОВОЙ МОДЕЛИ ЧЛЕНИСТОНОГИХ В ГНЕЗДАХ БЕРЕГОВОЙ ЛАСТОЧКИ (RIPARIA RIPARIA (LINNAEUS, 1758)) НА ТЕРРИТОРИИ САРАТОВСКОЙ ОБЛАСТИ С ИСПОЛЬЗОВАНИЕМ ПОПУЛЯЦИОННО-КОНСОРТИВНОГО АНАЛИЗА

Е. Н. Кондратьев1, А. С. Сажнев2, В. В. Аникин3, А. А. Миронова4

13 4 Саратовский государственный университет имени Н. Г. Чернышевского, Саратов, Россия

2 Институт биологии внутренних вод им. И. Д. Папанина Российской академии наук, пос. Борок, Россия

2 Объединенная дирекция Мордовского государственного природного заповедника имени П. Г. Смидовича и национального парка «Смольный», Саранск, Россия 1 eugene.n.kondratyev@gmail.com

Аннотация. Актуальность и цели. Состав нидикольной фауны очень разнообразен. Рассматривая население членистоногих (Arthropoda) гнезд ласточки береговушки Riparia riparia (Linnaeus, 1758), как гетерогенную

© Кондратьев Е. Н., Сажнев А. С., Аникин В. В., Миронова А. А. 2023. Данная статья доступна по условиям всемирной лицензии Page 1 from 10

Creative Commons Attribution 4.0 International License (http://creativecommons.0rg/licenses/by/4.o/), которая дает разрешение на неограниченное использование, копирование на любые носители при условии указания авторства, источника и ссылки на лицензию Creative Commons, а также изменений, если таковые имеют место.

консорцию, при ее анализе впервые была построена гетероконцентровая модель, позволяющая оценить качественную структуру консорции с учетом различных групп связей между ее участниками. Материалы и методы. Материал собирали в 7 районах Саратовской области в течении 2019-2021 гг., выкапывая гнезда Riparia riparia. Для сбора членистоногих применяли термофотоэклоектор Туллгрена, дополнительно перебирая гнездовой материал вручную. После камеральной обработки и определения членистоногих подсчитывали их количество для построения модели. Результаты. С помощью построения гетероконцентровой модели удалось показать разные типы консортивных связей между детерминантом (береговая ласточка и ее гнездо) и консортами (членистоногие), дать оценку качественной структуры данной модели. Выводы. В ходе популяционно-консортивного анализа населения беспозвоночных в гнездах Riparia riparia было выделено три группы консор-тивных связей (топические, трофические и форические) и девять вариантов связей (субстратно-стациальные, гематофагия, зоофагия, фитофагия, полифагия, сапрофагия, кератофагия, афагния и форические). Насекомые участвуют во всех девяти вариантах связей, клещи имеют пять вариантов связей, ложноскорпионы, пауки, хи-лоподы, диплоподы и мокрицы имеют по два варианта связи.

Ключевые слова: гетероконцентровая модель, Riparia riparia, береговая ласточка, нидиколы, фауна, Саратовская область, Россия

Благодарности: авторы выражают благодарность К. А. Гребенникову (ВНИИКР, Балашиха), А. А. Хаустову (Тюменский государственный университет, Тюмень), А. Б. Бабенко и Р. А. Сайфутдинову (ФЭИ РАН, Москва) за помощь в определении вида.

Финансирование: работа А. С. Сажнева выполнена в рамках финансирования по гранту РНФ № 22-14-00026.

Для цитирования: Кондратьев Е. Н., Сажнев А. С., Аникин В. В., Миронова А. А. Построение гетероконцентровой модели членистоногих в гнездах береговой ласточки (Riparia riparia (Linnaeus, 1758)) на территории Саратовской области, с использованием популяционно-консортивного анализа // Russian Journal of Ecosystem Ecology. 2023. Vol. 8 (2). https://d0i.0rg/10.21685/2500-0578-2023-2-2

Introduction

Bird nests are microbiocenoses that provide special conditions for the habitat of Acariformes, Para-sitiformes, Heteroptera, Lepidoptera, Coleoptera, Diptera and Siphonaptera [1-10]. The specificity of the nest fauna, its differentiation according to topical and trophic relationships with the nest of the host, allows considering the nest as a consortium [11, 12]. Where arthropods serve as associates, they concentrate around the determinant (the nest and its host). Unlike the classical definition of a consortium [13, 14], there is no autotrophic producer here, so nests are considered a heterotrophic consortium [15, 16]. There are different representations of consortium organization [13, 14, 17, 18], but one of the most informative is the heterocentric model. It includes all variants of consortial relationships between the determinant (and its nest) and each individual associate, which enables the most complete reflection of the qualitative structure of the consortium in its population-consortium analysis. In addition, the model perfectly illustrates the existing types of relationships in the considered consortium at the level of potential and real concentrations. The aim of the study is to analyze the qualitative organization of arthropod consortia in the nests of the sand martin (Riparia riparia) in different areas of the Saratov Region.

Materials and methods

The description of the structure of the burrow and nest of the sand martin is as follows. The

nesting habitat of the sand martin is represented by a subterranean (burrows in shores) complex of a multi-year type [19]. The entrance to the burrow is oval-shaped, with the larger diameter usually located in the horizontal plane, and the smaller diameter in the vertical one. The burrow ends in an expansion where a simple nest is constructed. Due to the nest location deep inside the burrow, unique temperature conditions are created (during the study, the temperature varied from 16.5-17.5 °C), which are more constant throughout the day than the air temperature [20]. When colonies form on river banks, periodic water erosion often partially destroys the cliff during spring floods, forcing most martins to build new nests each year, although sometimes they occupy old nests by extending the burrow [21]. The nest is usually lined with plant material, feathers, stems of herbaceous plants, and their roots. During egg-laying, the martins continue to supply building material to the nest, gradually increasing its size. Feathers are brought by the birds usually during the period when the hatch-lings are completely featherless. The completion of construction coincides with the hatching of the first nestlings [22]. Thus, specific conditions are created for the existence of consortium elements [4].

Description of the location

of the sand martin colonies

The entomological material from the sand martin nests was collected in the following areas of the Saratov Region (Table 1).

Table 1

Sampling locations and number of collected nests

Date Locality Latitude, N Longitude, E nV)

2019

23-24.VI; 5-7.VII Khvalynsky distr., vicinity of Ivanovka vill., shore of the Volga River 52.4002 48.0906 52(25)

20.VII Krasnoarmeysky discr., vicinity of Mordovo vill., shore of the Volga River 51.1242 45.8160 19(8)

25.VII Saratov, Gagarinsky distr., vicinity of Sand Umet vill., abandoned sand quarry 51.5219 45.6280 13(9)

2020

25.VI; 29.VII; 7.XI Khvalynsky distr., vicinity of Ivanovka vill., shore of the Volga River 52.4002 48.0906 53(31)

25.VI; 30.VII Khvalynsky distr., vicinity of Demkino vill., sand quarry 52.2670 47.7965 22(11)

26.VI; 30.VII; 7.XI Khvalynsky distr., vicinity of Elshanka vill., pond shore 52.6043 47.9766 23(16)

26.VII Lysogorsky distr., vicinity of Simonovka vill., shore of the Medveditsa River 51.3569 44.8001 25(1)

Lysogorsky distr., vicinity of Ataevka vill., shore of the Medveditsa River 51.3100 44.8205 13(4)

27.VII Saratov, Gagarinsky distr., vicinity of Sand Umet vill., abandoned sand quarry 51.5219 45.6280 12(3)

2021

8.V; 27.VI Khvalynsky distr., vicinity of Elshanka vill., pond shore 52.6043 47.9766 16(5)

27.VI; 8.VII; 11.VII; 5.XI Khvalynsky distr., vicinity of Ivanovka vill., shore of the Volga River 52.4002 48.0906 49(24)

8.VII; 4.XI Khvalynsky distr., vicinity of Apalikha vill., sand quarry 52.3171 47.6780 24(7)

Khvalynsky distr., vicinity of Demkino vill., sand quarry 52.2670 47.7965 19(9)

27.VIII Rovensky distr., vicinity of Beregovoe vill., shore of the Volga River 50.7565 46.0117 16(4)

3.XI Engelssky distr., vicinity of Malaya Topolevka vill., sand quarry 51.5566 46.2827 22(8)

6.XI Voskresensky distr., vicinity of Komarovka vill., shore of the Tereshka River 51.9667 46.6604 9(2)

Notes: 1n - total number of burrows examined in the colony, 2s - number of nests collected.

The studied colonies can be divided into three groups.

1. Colonies in sand quarries. The burrows of these colonies are located in a sand cliff at a height of 0.5-3.5 m. The length of such colonies varies from 1.2 to 25 m. The entrance holes of the burrows are elongated in a chain of 2-6 tiers in the upper third of the cliff. In the Sand Umet village quarry, the birds were last recorded in 2019. In the Demkino village, the birds were recorded in both 2020 and 2021. The colonies in the Apalikha and Malaya Topolevka villages were already abandoned in 2021. Ruderal vegetation grows around all colonies.

2. Colonies in the territory of the Saratov Region and Volgograd Region. Colonies are located in a soil, sand, and soil-sand coastal cliff at a height of 1.2-7 m. The length of such colonies varies from 3 to 40 m. Colonies are long-lasting, but in different years the location of the burrows and the number of nesting birds varies significantly due to the collapse

of the shore and changes in nesting conditions. The entrance holes of the burrows are elongated in a chain of 1-5 tiers in the middle or upper third of the cliff. The birds in the colony in the vicinity of the Ivanovka village were recorded all three years, but due to strong shore collapse, burrows are always built from scratch. The colony in the Mordovo village was last inhabited by the birds in 2019. The colony in the Beregovoe village was abandoned in 2021. Ruderal vegetation grows around all colonies.

3. Colonies on small rivers. Colonies are located in a soil cliff at a height of 1.5-2.5 m. The length of the colonies varies from 2 to 4 m. The entrance holes of burrows are elongated in a chain of 1-4 tiers in the middle or upper third of the cliff. Often, the burrows are located very sparsely. The colonies are unstable due to the collapse of the shore and changes in nesting conditions. The colony in the El-shanka village was inhabited in 2020, but the birds were not recorded in 2021, and ruderal vegetation

grows there. The colonies in the vicinity of the Si-monovka and Ataevka villages were abandoned in 2020, and they are located near meadow edges in the floodplain forest. The colony in the Komarovka village was abandoned in 2021, and ruderal vegetation grows there.

Research Methodology

The nest material was extracted during the excavation of burrows and individually placed in numbered zip-lock bags. Samples were dissected using a Tullgren funnel (extraction for 2-3 hours), followed by manual examination for arthropods that did not pass through the funnel [23]. The material was fixed in 70 % ethanol solution.

The following sources were used to identify the material. The identification of ticks [24-29], pseudoscorpions [30], hay mites [31], thrips [31], dipter-ans [32-34], and fleas [33] were conducted by the first author using standard methods. The identification of beetles was carried out according to Die Käfer Europas [35] and performed by A.S. Sazhnev (Borok). The identification of Lepidoptera was carried out using modern keys [36-41]. All identifications of microlepidoptera were made using genital structures of species according to the standard method [42] and performed by V.V. Anikin (Saratov). Hemipterans and ants were identified by K.A.

Grebenikov (Balashikha). The identification of Trombidiformes was carried out by A.A. Khaustov (Tyumen). Collembolans were identified by A.B. Babenko (Moscow) and R.A. Sayfutdinov (Moscow).

After identifying and counting the material, 2 heterocentric models of consortium were constructed, including 8 types of concentrations, based on consortial relationships [17,18, 43]. The potential sizes of the concentrations in the first model correspond to the number of consortia species included in it, while in the second model, they correspond to the number of individual consortia included. The largest concentration in the model determines the potential size of all others (dotted line). The real sizes of the concentrations (dark circles) correspond to the actual number of species/individuals included in them [43]. The construction of the heterocentric model was carried out using Adobe Photoshop CC 2019.

Results and discussion

In the presented consortium, the dominant (system-forming) groups of relationships are trophic and topical (Fig. 1, 2 and Table 2). At the trophic level (by number), six types of relationships are distinguished, corresponding to hematophages, zoophages, phytophages, saprophages, polyphages, and aphages.

Fig. 1. Heterocentric model of consortium "sand martin and its nest" by abundance

Vol. 8 (2), 2023

Topical 19.2% r' ■ *

» «

• «

• <

I 9

• •

• в I • •

• a » «

• I I

Aphages 2.1% -i

! *—____

■ ■ .................i

• ■ •

• « • <

L-— I

Polyphages 4.8% " .,1

: .............................\

III

' I «

! I I

• 9

• a

Phytophages 26% ^^^^

----------------------*"" !

• • «

I • •

» «

• •

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

l i Saprophages 34.2% ^^^^^^

t !

> t 111

• и •

—••—t--.-.—«

Hematophages 8.9% ;-**

--...............t

> f

t ■

■ •

I I I

j •

Zoophages 24%

Fig. 2. Heterocentric model of consortium "sand martin and its nest" by amount of species

Table 2

Classification of consortial connections of the sand martin nest-dwelling fauna

Group of connections Type of connection Variant of connection Connection with the determinant

Topical Substrate-stational Substrate-stational Bird and nest

Trophic Biotrophic Hematophages Bird

Zoophages Nest

Phytophages Nest

Polyphages Nest

Saprotrophic Saprophages Nest

Keratophages (Scavenger) Bird

Aphages Absent

Fensive Fensive Fensive Burrow

In the consortial model by abundance (Fig. 1), hematophages (Ixodes lividus (Koch, 1844), Rhip-icephalus sanguineus (Latreille, 1806), Haemoga-masus horridus (Michael, 1892), H. liponyssoides (Ewing, 1925), Dermanyssus hirundinis (Hermann, 1804), Androlaelaps casalis (Berlese, 1887), Oeci-acus hirundinis (Lamarck, 1816), Platygastroidea sp., Leptoconops aff. borealis (Gutsevich, 1945), Ceratophyllus styx (Rothschild, 1900)), feeding on the nest host - Riparia riparia, are the most represented (63.94 %).

Additionally, zoophages dominate in the consortium - 17.83 % (Cheiridium museorum (Leach, 1817), Chernes cimicoides (Fabricius, 1793),

Cyrtolaelas sp., Rhodacarellus sp., Euryparasitus tori (Davydova, 1970), Geholaspis mandibularis (Berlse, 1904), Lasioseius muricatus (Koch, 1839), Protogamasellus mica (Athias-Henriot, 1961), Mel-ichares sp., Geolaelapsa culeifer (Canestrini, 1884), G. expolitus (Berlese, 1904), Stratiolaelaps miles (Berlese, 1892), Sphaerolichus sp., Spinibdella subrufa (Rack, 1961), Cunaxa setiros-tris (Hermann, 1804), Lupaeus subterraneus (Berlese, 1916), Anystis sp., Neognathus terrestris (Summers and Schinger, 1955), Caeculus sp., Hap-loglossa nidicola (Fairmare, 1853), H. picipennis (Gyllenhal, 1827), Falagrioma thoracica (Stephens, 1832), Leptacinus sulcifrons (Stephens, 1833),

Sepedophilus obtusus (Luze, 1902), Saprinus rugifer (Paykull, 1809), Lampyris noctiluca (Linnaeus, 1758), Syntormon sp., Xanthochlorus sp., Cros-sopalpus sp., order Araneae, class Chilopoda, larvae of families Carabidae spp., Cecidomyiidae spp., Empididae spp., and larvae of Haploglossa sp.) that primarily use hematophages, but also feed on other arthropods from the nest.

Saprophages are also quite diverse (Nenteria sp., Pachylaelaps perlucidus (Masän, 2007), Pneu-molaelaps lubrica (Voigts & Oudemans, 1904), Sit-eroptres sp., Belba sp., Oppia sp., Achipteria sp., Ceratozetes sp., Acarus siro (Linnaeus, 1758), Bakerdania sp., Scutovertex aff. sculptus (Michael, 1879), Damaeus sp., Diplopoda class, Oniscidea suborder, Campodeaplus iochaeta (Silvestri, 1912), Proisotoma minuta (Tullberg, 1871), Desoria sp., Tomocerus vulgaris (Yosii, 1954), Pseudosinellas exoculata (Schött, 1902), Entomobrya sp., Lepidocyrtus sp., Arrhopalites sp., Mesaphoru ray-osii (Rusek, 1967), Hemisotomather mophila (Ax-elson, 1900), Seira aff. squamoornata (Scherbakov, 1898), Liposcelis divinatoria (Müller, 1776), Lepinotus reticulatus (Enderlein, 1904), Pleuroph-orus caesus (Panzer, 1796), Plagiogonus arenarius (Olivier, 1789), Dermestes laniarius (Illiger, 1801), Sericoderus lateralis (Gyllenhal, 1827), Xylebor-inus saxeseni (Reitter, 1913), Anthicus flavipes (Panzer, 1796), Corticaria sp., Corticaria crenulata (Gyllenhal, 1827), Blaps lethifera (Marsham, 1802), Niditinea fuscella (Linnaeus, 1758), Infurci-tinea rumelicella (Rebel, 1903), Epicypta scatoph-ora (Edwards, 1913), Trichonta sp., Platypezidae, larvae of Lagria sp., Ceratopogon sp., Fannia sp., Scarabaeidae, Elateridae, Tenebrionidae, Infurci-tinea, Syrphidae, Panorpidae), feeding on decomposing residues of both plant and animal origin.

Phytophagous species are significantly less represented - 2.14 % (Ameroseius delicatus Berlese, 1918, Gaeolaelaps brevipilis (Bernhard, 1969), Laelaspis heselhausi (Oudemans, 1912), Cosmo-laelaps zachvatkini (Buyakova & Goncharova, 1972), Aptinothrips stylifer (Trybom, 1894), Chiro-thrips manicatus (Haliday, 1836), Thrips sp., Haplo-thrips tritici (Kurdjumov, 1912), Berytinus clavipes (Fabricius, 1775), Agrilus hyperici (Creutzer, 1799), Cytilus sericeus (Forster, 1771), Chae-tocnema hortensis (Geoffroy, 1785), Acompsia ci-nerella (Clerck, 1759), Brachmia dimidiella (Denis & Schiffermüller, 1775), Rhyacia simulans (Hufnagel, 1766), Epermenia ochreomaculella (Milliere, 1854), Acleris forsskaleana (Linnaeus, 1758), Cochylidia implicitana (Wocke, 1856), Borkhausenia fuscescens Haworth, 1829, Caloptilia fidella (Reutti, 1853), Laodamia faecella (Zeller, 1839), Loxostege sticticalis (Linnaeus, 1761), Poly-pogon tentacularia (Linnaeus, 1758), Ctenosciara

aff. hyalipennis (Meigen, 1804), Lycoriella sp., Phytosciara sp., Gitona sp., Agathomyia sp., Me-gaselia aff. flavicoxa (Zetterstedt, 1848), M. aff. elongata (Wood, 1914), Metopina aff. galeata (Hal-iday, 1833), the family Tachinidae and Parasitengona, larvae of the families Chrysomelidae, Phoridae, Sar-cophagidae, larvae of the orders Thysanoptera and Hemiptera), feeding on plant parts of the nest. Po-lyphagous species constitute 1.94 % (Tetramorium sp., Solenopsis fugax (Latreille, 1798), Lasiusflavus (Fabricius, 1782), Lasius cf. alienus (Forester, 1850), Myrmica rubra (Linnaeus, 1758), Formica rufa Linnaeus, 1761, Camponotusa ethiops (Latreille, 1798)), feeding on a variety of plant and animal food. A few aphagous species were found in the collected material (0.03 %) (Sycorax silacea (Haliday, 1839), Kief-ferulus tendipediformis (Goetghebuer, 1921), Schwenckfeldina carbonaria (Meigen, 1830)).

In the consortium model based on topical connections (Fig. 2), the niche represents an isolated part, where only a group of substrate-substrate connections is distinguished (82.83 %).

The substrate-station connection is mainly performed by hematophagous species - 63.69 % (Ixodes lividus (Koch, 1844), Haemogamasus horridus (Michael, 1892), H. liponyssoides (Ewing, 1925), Dermanyssus hirundinis (Hermann, 1804), An-drolaelaps casalis (Berlese, 1887), Oeciacus hirun-dinis (Lamarck, 1816), Ceratophyllus styx (Rothschild, 1900)); zoophagous species - 15.5 % (Cyrtolaelaps sp., Euryparasitus tori (Davydova, 1970), Stratiolaelaps miles (Berlese, 1892), Haploglossa nidicola (Fairmare, 1853), H. picipennis (Gyllenhal, 1827), Falagrio mathoracica (Stephens, 1832), Saprinus rugifer (Paykull, 1809), as well as larvae of Haploglossa sp.) and saprophagous species - 3.64 % (Pneumolaelaps lubrica (Voigts & Oudemans, 1904), Acarus siro (Linnaeus, 1758), Liposcelis divinatoria (Müller, 1776), Dermestes laniarius (Illiger, 1801), Niditinea fuscella (Linnaeus, 1758), Infurcitinea rumelicella (Rebel, 1903), larvae of Lagria sp., larvae of the families Scarabaeidae, Elateridae, Tenebri-onidae, Infurcitinea), which use determinant environmental preferences as topical and trophic resources.

Regarding the number of species at the trophic level, saprophages (50 species), zoophages (35 species), and phytophages (39 species) dominate. Hematophages (13 species), polyphages (7 species), and aphages (3 species) are significantly fewer. At the topical level, there are few species that implement substrate-station connections in this consortium (28 species). There are significantly more species (118 species) that have fensive connections (use burrows as a place for temporary protection).

Using the heteroconcentric model of the consortium, it was possible to visually demonstrate the relationships between the determinant (sand martin and its nest) and consortium (arthropods).

Conclusion

Functional analysis of heterotrophic consortia of the sand martin nest (Riparia riparia) in the Saratov Region using the heterocentric model showed the presence of three groups of consortial relationships and nine variants of connections. Among the analyzed systematic groups of invertebrates, insects had the highest number of types of connections. Insects occur in all types and species of connections: substrate-

stational, bio- and saprotrophic, and fensive. Ticks have six types of connections (phytophages, hema-tophages, zoophages, substrate-stational saprotrophs, and fensive). Pseudoscorpions, spiders, millipedes, centipedes, and mites have two types of connections each. Pseudoscorpions, spiders, and centipedes are represented by zoophages, while millipedes and mites are saprotrophs. Additionally, pseudoscorpions, spiders, millipedes, centipedes, and mites are connected with the determinant, burrow, and nest through fensive connections, realizing themselves as topocanosters. Thus, insects, with their high ecological plasticity, are able to form the greatest number of functional types of connections within the consortium "sand martin and its nest".

References

1. Hicks E. A. Check-list and bibliography on the occurrence of insects in bird's nests. Iowa : The Iowa State College Press, 1959. 681 p.

2. Hicks E. A. Check-list and bibliography on the occurrence of insects in bird's nests. Supplement I // Iowa State College Journal of Science. 1962. Vol. 36. P. 233-347.

3. Hicks E. A. Check-list and bibliography on the occurrence of insects in bird's nests. Supplement II // Iowa State College Journal of Science. 1971. Vol. 46. P. 123-338.

4. Nests, eggs, and incubation: new ideas about avian reproduction / ed. by D. C. Deeming, S. J. Reynolds. Oxford : Oxford University Press, 2015. 296 p.

5. Anikin V. V., Kondratev E. N. Distribution of ecological groups of lepidoptera (Lepidoptera, Insecta) in the nests of sand martin (Riparia riparia (Linnaeus, 1758)) in the Saratov region // Povolzhskiy Journal of Ecology. 2022. Vol. 2. P. 232-241. doi: 10.35885/1684-7318-2022-2-232-241

6. Kondratev E. N., Korneev M. G., Porshakov A. M., Matrosov A. N. Gamasid mites in nests of the sand martin (Riparia riparia (Linnaeus, 1758)) in the territory of Saratov province // Parazitologiya. 2021. Vol. 55. P. 346-352.

7. Nelzina E. N. The structure of burrow microbiocoenoses of the little ground squirrel and some species of gerbils // Parazitologiya. 1971. Vol. 5. P. 266-273.

8. Nelzina E. N. Main taxonomic groupings of organisms participating in the formation of nest-burrow microbiocoenoses // Parazitologiya. 1977. Vol. 11. P. 326-332.

9. Sazhnev A. S., Kondratev E. N. Data on the fauna of beetles-nidicoles (Insecta: Coleoptera) from nests of sand martin (Riparia riparia) (Aves: Hirundinidae) of Saratov Province // Field Biologist Journal. 2019. Vol. 1. P. 193-197. doi: 10.18413/26583453-2019-1-4-193-197

10. Sazhnev A. S., Kondratev E. N. The beetles (Insecta: Coleoptera) from nests of sand martin Riparia riparia (Linnaeus, 1758) (Aves: Hirundinidae) in Saratov region // Field Biologist Journal. 2020. Vol. 2. P. 276-281. doi: 10.18413/2658-3453-2020-2-4-276-281

11. Beklemishev V. N. Populations and micropopulations of parasites and nidicols // Zoologicheskii zhurnal. 1959. Vol. 38. P. 1128-1137.

12. Ramenskii L. G. On some fundamental principles of modern geobotany // Botanicheskii zhurnal. 1952. Vol. 37. P. 181-201.

13. Mazing V. V. Consortia as elements of the functional structure of biogeocenoses // Proceedings of the Moscow Society of Naturalists. 1966. Vol. 27. P. 117-126.

14. Rabotnov T. A. Some issues in the study of coenotic populations // Bulletin of the Moscow Society of Naturalists. Department of Biology. 1969. Vol. 74. P. 147-149.

15. Vasilevich V. I. Essays on theoretical phytocenology. Leningrad : Nauka. Leningradskoe otdelenie, 1983. 248 p.

16. Krivokhatskii V. A. Studies of the inhabitants of the holes of mammals of the USSR // Bulletin of the Leningrad University. Series 3. 1989. Vol. 4. P. 13-18.

17. Negrobov V. V., Khmelev K. F. Consortium analysis of water lily families Nymphaeaceae Salisb, Middle Don basin. Voronezh : VGTU, 1999. 184 p.

18. Mironova A. A., Anikin V. V. The using of heteroconcentric model to display consortium relations between xy-lotrophic Basidiomycota (Fungi) with Coleoptera (Insecta) of the Saratov Province // Entomological and Parasito-logical Investigations in Volga Region. 2022. Vol. 19. P. 14-18.

19. Sazhnev A. S., Matyukhin A. V. Data to the fauna of beetles (Insecta: Coleoptera) of bird's nidocenoses // Field Biologist Journal. 2020. Vol. 2. P. 14-23. doi: 10.18413/2658-3453-2020-2-14-23

20. Jakimenko V. V., Bogdanov I. I., Tagiltsev A. A. Arthropods of the nest complex in colonies of sand martin in West Siberia and South Kazakhstan // Parazitologiya. 1991. Vol. 25. P. 39-47.

21. Sieber O. J. Causal and functional aspects of brood distribution in sand martins (Riparia riparia L.) // Zeitschriftfür Tier psychologie. 1980. № 52. P. 19-56.

22. Birds of the north of the Lower Volga region. IV book. Composition of the avifauna / ed. by E. V. Zavialov. Saratov : Izdatelstvo Saratovskogo universiteta, 2009. 268 p.

23. Golub V. B., Tsurikov M. N., Prokin A. A. Collections of insects: collection, processing and storage of material. Moscow : Tovarishchestvo nauchnykh izdanii KMK, 2021. 358 p.

24. A manual of acarology / ed. by G. W. Krantz, D. E. Walter. Texas : Texas Tech University, 2009. 816 p.

25. Masan P., Özbek H. H., Fend'a P. Two new species of Pachylaelaps Berlese, 1888 from the Iberian Peninsula, with a key to European species (Acari, Gamasida, Pachylaelapidae) // ZooKeys. 2016. Vol. 603. P. 71-95. doi: 10.3897/zookeys.603.9038

26. Bregetova N. G. Gamasid mites (Gamasoidea): a brief key. Moscow : USSR Academy of Science Publishing House, 1956. 247 p.

27. Key to the soil-dwelling Sarcoptiformes / ed. by M. S. Gilyarov. Moscow : Nauka, 1975. 491 p.

28. Key to the soil-dwelling Mesostigmata / ed. by M. S. Gilyarov. Moscow : Nauka, 1977. 718 p.

29. Key to the soil-dwelling Trombidiformes / ed. by M. S. Gilyarov. Moscow : Nauka, 1978. 271 p.

30. Christophoryova J., Stahlavsky F., Fedor P. Christophoryova J. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia // Zootaxa. 2011. Vol. 2876. P. 35-48. doi: 10.11646/zootaxa.2876.1.4

31. Keys to the Insects of the European parts of the USSR. I. Apterygota, Palaeoptera, Hemimetabola / ed. by G. Ya. Bei-Bienko. Moscow ; Leningrad : Nauka, 1964. 936 p.

32. Keys to the Insects of the European parts of the USSR. V. Part I. Diptera and Siphonaptera / ed. by G. Ya. Bei-Bienko. Leningrad : Nauka, 1969. 806 p.

33. Keys to the Insects of the European parts of the USSR. V. Part I. Diptera and Siphonaptera / ed. by G. Ya. Bei-Bienko. Leningrad : Nauka, 1970. 943 p.

34. Nartshuk E. P. Key to families of diptera (Insecta) of the fauna of Russian and adjacent countries. Saint Petersburg : Nauka, 2003. 250 p.

35. Lompe A. Die Käfer Europas. 2023. URL: http://coleonet.de

36. Anikin V. V., Zolotuhin V. V., Kirichenko N. I. Leaf mining moths (Lepidoptera, Gracillariidae) of the Middle and Lower Volga region. Ulyanovsk : Karporatsiya Technologiy Prodvizhenia, 2016. 152 p.

37. Anikin V. V., Sachkov S. A., Zolotuhin V. V. «Fauna LepidopterologicaVolgo-Uralensis»: from P. Pallas to present days. Munich ; Vilnius : Museum Witt Munich & Nature Research Center Vilnius, 2017. 696 p.

38. Gaedike R. Microlepidoptera of Europe. Tineidae I (Dryadaulinae, Hapsiferinae, Euplocaminae, Scardiinae, Nemapogoninae and Meessiinae) / ed. by M. Nuss, O. Karsholt, P. Huemer. Leiden, Boston : Brill, 2015. 308 p.

39. Gaedike R. Microlepidoptera of Europe. Tineidae II (Myrmecozelinae, Perissomasticinae, Tineinae, Hieroxestinae, Teichobiinae and Stathmopolitinae) / ed. by O. Karsholt, M. Muntanen, M. Nuss. Leiden, Boston : Brill, 2019. 248 p.

40. Slamka F. Pyraloidea of Europe (Lepidoptera). Vol. 3: Pyraustinae, Spilomelinae. Identification. Distribution. Habitat. Biology. Bratislava : Coronet Books Inc., 2013. 357 p.

41. Slamka F. Pyraloidea of Europe (Lepidoptera). Vol. 4: Phycitinae, Part 1. Identification. Distribution. Habitat. Biology. Bratislava : Coronet Books Inc., 2019. 432 p.

42. Robinson G. The preparation of slides of Lepidoptera genitalia with special reference to the Microlepidoptera // Entomologist's Gazette. 1976. Vol. 27. P. 127-132.

43. Negrobov V. V., Khmelev K. F. Modern concepts of consortiology // Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2000. Vol. 2. P. 118-121.

References

1. Hicks E.A. Check-list and bibliography on the occurrence of insects in bird's nests. Iowa: The Iowa State College Press, 1959:681.

2. Hicks E.A. Check-list and bibliography on the occurrence of insects in bird's nests. Supplement I. Iowa State College Journal of Science. 1962;36:233-347.

3. Hicks E.A. Check-list and bibliography on the occurrence of insects in bird's nests. Supplement II. Iowa State College Journal of Science. 1971;46:123-338.

4. Deeming D.C., Reynolds S.J. (eds.). Nests, eggs, and incubation: new ideas about avian reproduction. Oxford: Oxford University Press, 2015:296.

5. Anikin V.V., Kondratev E.N. Distribution of ecological groups of lepidoptera (Lepidoptera, Insecta) in the nests of sand martin (Riparia riparia (Linnaeus, 1758)) in the Saratov region. Povolzhskiy Journal of Ecology. 2022;2:232-241. doi: 10.35885/1684-7318-2022-2-232-241

6. Kondratev E.N., Korneev M.G., Porshakov A.M., Matrosov A.N. Gamasid mites in nests of the sand martin (Riparia riparia (Linnaeus, 1758)) in the territory of Saratov province. Parazitologiya = Parasitology. 2021;55:346-352.

7. Nelzina E.N. The structure of burrow microbiocoenoses of the little ground squirrel and some species of gerbils. Parazitologiya = Parasitology. 1971;5:266-273.

8. Nelzina E.N. Main taxonomic groupings of organisms participating in the formation of nest-burrow microbiocoenoses. Parazitologiya = Parasitology. 1977;11:326-332.

9. Sazhnev A.S., Kondratev E.N. Data on the fauna of beetles-nidicoles (Insecta: Coleoptera) from nests of sand martin (Riparia riparia) (Aves: Hirundinidae) of Saratov Province. Field Biologist Journal. 2019;1:193-197. doi: 10.18413/26583453-2019-1-4-193-197

10. Sazhnev A.S., Kondratev E.N. The beetles (Insecta: Coleoptera) from nests of sand martin Riparia riparia (Linnaeus, 1758) (Aves: Hirundinidae) in Saratov region. Field Biologist Journal. 2020;2:276-281. doi: 10.18413/26583453-2020-2-4-276-281

11. Beklemishev V.N. Populations and micropopulations of parasites and nidicols. Zoologicheskii zhurnal = Zoological Journal. 1959;38:1128-1137.

12. Ramenskii L.G. On some fundamental principles of modern geobotany. Botanicheskii zhurnal = Botanical Journal. 1952;37:181-201.

13. Mazing V.V. Consortia as elements of the functional structure of biogeocenoses. Proceedings of the Moscow Society of Naturalists. 1966;27:117-126.

14. Rabotnov T.A. Some issues in the study of coenotic populations. Bulletin of the Moscow Society of Naturalists. Department of Biology. 1969;74:147-149.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

15. Vasilevich V.I. Essays on theoreticalphytocenology. Leningrad: Nauka. Leningradskoe otdelenie, 1983:248.

16. Krivokhatskii V.A. Studies of the inhabitants of the holes of mammals of the USSR. Bulletin of the Leningrad University. Series 3. 1989;4:13-18.

17. Negrobov V.V., Khmelev K.F. Consortium analysis of water lily families Nymphaeaceae Salisb, Middle Don basin. Voronezh: VGTU, 1999:184.

18. Mironova A.A., Anikin V.V. The using of heteroconcentric model to display consortium relations between xy-lotrophic Basidiomycota (Fungi) with Coleoptera (Insecta) of the Saratov Province. Entomological and Parasito-logical Investigations in Volga Region. 2022;19:14-18.

19. Sazhnev A.S., Matyukhin A.V. Data to the fauna of beetles (Insecta: Coleoptera) of bird's nidocenoses. Field Biologist Journal. 2020;2:14-23. doi: 10.18413/2658-3453-2020-2-14-23

20. Jakimenko V.V., Bogdanov I.I., Tagiltsev A.A. Arthropods of the nest complex in colonies of sand martin in West Siberia and South Kazakhstan. Parazitologiya = Parasitology. 1991;25:39-47.

21. Sieber O.J. Causal and functional aspects of brood distribution in sand martins (Riparia riparia L.). Zeitschriftfür Tier psychologie. 1980;(52):19-56.

22. Zavialov E.V. (ed.). Birds of the north of the Lower Volga region. IV book. Composition of the avifauna. Saratov: Izdatelstvo Saratovskogo universiteta, 2009:268.

23. Golub V.B., Tsurikov M.N., Prokin A.A. Collections of insects: collection, processing and storage of material. Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2021:358.

24. Krantz G.W., Walter D.E. (eds.). A manual of acarology. Texas: Texas Tech University, 2009:816.

25. Masan P., Özbek H.H., Fend'a P. Two new species of Pachylaelaps Berlese, 1888 from the Iberian Peninsula, with a key to European species (Acari, Gamasida, Pachylaelapidae). ZooKeys. 2016;603:71-95. doi: 10.3897/zook-eys.603.9038

26. Bregetova N.G. Gamasidmites (Gamasoidea): a brief key. Moscow: USSR Academy of Science Publishing House, 1956:247.

27. Gilyarov M.S. (ed.). Key to the soil-dwelling Sarcoptiformes. Moscow: Nauka, 1975:491.

28. Gilyarov M.S. (ed.). Key to the soil-dwellingMesostigmata. Moscow: Nauka, 1977:718.

29. Gilyarov M.S. (ed.). Key to the soil-dwelling Trombidiformes. Moscow: Nauka, 1978:271.

30. Christophoryova J., Stahlavsky F., Fedor P. Christophoryova J. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa. 2011;2876:35-48. doi: 10.11646/zootaxa.2876.1.4

31. Bei-Bienko G.Ya. (ed.). Keys to the Insects of the European parts of the USSR. I. Apterygota, Palaeoptera, Hemi-metabola. Moscow; Leningrad: Nauka, 1964:936.

32. Bei-Bienko G.Ya. (ed.). Keys to the Insects of the European parts of the USSR. V. Part I. Diptera and Siphonaptera. Leningrad: Nauka, 1969:806.

33. Bei-Bienko G.Ya. (ed.). Keys to the Insects of the European parts of the USSR. V. Part I. Diptera and Siphonaptera. Leningrad: Nauka, 1970:943.

34. Nartshuk E.P. Key to families of diptera (Insecta) of the fauna of Russian and adjacent countries. Saint Petersburg: Nauka, 2003:250.

35. Lompe A. Die Käfer Europas. 2023. Available at: http://coleonet.de

36. Anikin V.V., Zolotuhin V.V., Kirichenko N.I. Leaf mining moths (Lepidoptera, Gracillariidae) of the Middle and Lower Volga region. Ulyanovsk: Karporatsiya Technologiy Prodvizhenia, 2016:152.

37. Anikin V.V., Sachkov S.A., Zolotuhin V.V. «Fauna LepidopterologicaVolgo-Uralensis»: from P. Pallas to present days. Munich; Vilnius: Museum Witt Munich & Nature Research Center Vilnius, 2017:696.

38. Gaedike R. Microlepidoptera of Europe. Tineidae I (Dryadaulinae, Hapsiferinae, Euplocaminae, Scardiinae, Nemapogoninae andMeessiinae). Leiden, Boston: Brill, 2015:308.

39. Gaedike R. Microlepidoptera of Europe. Tineidae II (Myrmecozelinae, Perissomasticinae, Tineinae, Hieroxestinae, Teichobiinae and Stathmopolitinae). Leiden, Boston: Brill, 2019:248.

40. Slamka F. Pyraloidea of Europe (Lepidoptera). Vol. 3: Pyraustinae, Spilomelinae. Identification. Distribution. Habitat. Biology. Bratislava: Coronet Books Inc., 2013:357.

41. Slamka F. Pyraloidea of Europe (Lepidoptera). Vol. 4: Phycitinae, Part 1. Identification. Distribution. Habitat. Biology. Bratislava: Coronet Books Inc., 2019:432.

42. Robinson G. The preparation of slides of Lepidoptera genitalia with special reference to the Microlepidoptera. Entomologist's Gazette. 1976;27:127-132.

43. Negrobov V.V., Khmelev K.F. Modern concepts of consortiology. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2000;2:118-121.

i Надоели баннеры? Вы всегда можете отключить рекламу.