Научная статья на тему 'USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (НО∙) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. i. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON'

USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (НО∙) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. i. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
168
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Фармация и фармакология
WOS
Scopus
ВАК
CAS
Ключевые слова
hydroxyl radical / cinnamic acid derivatives / chalcones / flavanones / Mulliken charges / bond numbers / unsaturation index / electron density / гидроксильный радикал / производные коричной кислоты / халконы / флаваноны / Малликеновские за- ряды / связевые числа / индекс ненасыщенности / электронная плотность

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Oganesyan Eduard Tonikovich, Shatokhin Stanislav Sergeevich, Glushko Alexander Alexeevich

45 compounds uniting 3 groups of derivatives of cinnamic acid, chalcone and flavanone, have been studied. Each of them includes 15 substances. The analyzed compounds contain a common structural fragment, which is a cinnamic acid residue (cinnamoyl fragment). The aim is to study the quantum-chemical parameters of the listed groups of the compounds in order to predict possible ways of their interaction with the most aggressive and dangerous of the active oxygen species (ROS) – a hydroxyl radical. Materials and methods. For the analyzed structures, the Mulliken charges (a.u.), bond numbers (Nμ), unsaturation index (IUA), and electron density values on all 9-carbon atoms of the cinnamoyl fragment have been determined. The calculations have been carried out on a workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM. The semi-empirical method PM7 was used (WinMopac 2016 program). The ORCA 4.1 program was used to calculate the energies of homolytic cleavage of the O – H bond. Results. The analysis of Mulliken charges (a.u.), bonded numbers (Nμ), unsaturation indices (IUA), and electron density revealed a number of regularities on the basis of which it can be concluded, that taking into account the nature of the substituent, the most probable for addition in the aryl residueare positions C-1, C-2, C-3, C-4 and C-5. In the propenone fragment, the radical НО∙ first attacks position 8, then 7. For the hydroxy-substituted, the energy of the homolytic breaking of the H – O bond has been determined and it has been established that the spatial difficulty of phenols (compounds 13k, 13x, 13f, 14k, 14x, 14f) H-O bonds are the smallest and on average are -160.63 kJ/mol. It has also been established that the higher the positive Mulliken charge on the carbon atom with which the phenolic hydroxyl is bound, the lower the energy of the homolytic breaking of the H – O bond and the more stable the resulting phenoxy radicalis. Conclusion. The carried out quantum chemical calculations allow us to conclude that the studied classes of compounds can be used to bind the hydroxyl radical formed in the body, causing various kinds of mutations, leading, among other things, to the development of oncological diseases.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Oganesyan Eduard Tonikovich, Shatokhin Stanislav Sergeevich, Glushko Alexander Alexeevich

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИСПОЛЬЗОВАНИЕ КВАНТОВО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ДЛЯ ПРОГНОЗИРОВАНИЯ АНТИРАДИКАЛЬНОЙ (НО∙) АКТИВНОСТИ РОДСТВЕННЫХ СТРУКТУР, СОДЕРЖАЩИХ ЦИННАМОИЛЬНЫЙ ФРАГМЕНТ. i. ПРОИЗВОДНЫЕ КОРИЧНОЙ КИСЛОТЫ, ХАЛКОНА И ФЛАВАНОНА

Изучено 45 соединений, объединяющих 3 группы производных коричной кислоты, халкона и флаванона, каждая из которых включает по 15 веществ. Анализируемые соединения содержат общий структурный фрагмент, представляющий собой остаток коричной кислоты (циннамоильный фрагмент). Цель работы – изучение квантово-химических параметров перечисленных групп соединений с целью прогнозирования возможных путей их взаимодействия с наиболее агрессивным и опасным из числа активных форм кислорода (АФК) гидроксильным радикалом. Материалы и методы. Для анализируемых структур определены Малликеновские заряды (а.е.), связевые числа (Nμ), индекс ненасыщенности (IUA) и величины электронной плотности на всех 9-атомах углерода циннамоильного фрагмента. Расчеты осуществлены на рабочей станции с процессором IntelXeonE5-1620 3,5 ГГц, 20 Гб оперативной памяти. При этом использован полуэмпирический метод РМ7 (программа WinMopac 2016). Для расчетов энергий гомолитического расщепления связи О–Н использована программа ORCA 4.1. Результаты. Анализ величин Малликеновских зарядов (а.е.), связевых чисел (Nμ), индексов ненасыщенности (IUA) и электронной плотности позволил выявить ряд закономерностей, на основании которых можно делать выводы о том, что с учетом природы заместителей наиболее вероятными для присоединения в арильном остатке являются положения С-1, С-2, С-3, С-4 и С-5. В пропеноновом фрагменте радикал НО* в первую очередь атакует положение 8, затем 7. Для гидроксизамещенных определена энергия гомолитического разрыва связи Н-О и установлено, что у пространственно затрудненных фенолов (соединения 13к, 13х, 13ф, 14к, 14х, 14ф) энергия разрыва связи Н-О наименьшая и в среднем составляет – 160,63 кДж/моль. Установлено также, что,чем выше положительный Малликеновский заряд на атоме углерода, с которым связан фенольный гидроксил, тем ниже энергия гомолитического разрыва связи Н-О и тем более устойчив образующийся феноксильный радикал. Заключение. Проведенные квантово-химические расчеты позволяют сделать вывод о том, что изучаемые классы соединений могут быть использованы для связывания образующегося в организме гидроксильного радикала, вызывающего различного рода мутации, приводящие, в том числе, к развитию онкологических заболеваний.

Текст научной работы на тему «USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (НО∙) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. i. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON»

ФАРМАЦИЯ И ФАРМАКОЛОГИЯ

USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (HO) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. I. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON

E.T. Oganesyan, S.S. Shatokhin, A.A. Glushko

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University 11, Kalinin Ave., Pyatigorsk, Russia, 357532

E-mail: edwardov@mail.ru Received: 23.12.2018 Accepted for publication: 20.02.2019

45 compounds uniting 3 groups of derivatives of cinnamic acid, chalcone and flavanone, have been studied. Each of them includes 15 substances. The analyzed compounds contain a common structural fragment, which is a cinnamic acid residue (cinnamoyl fragment). The aim is to study the quantum-chemical parameters of the listed groups of the compounds in order to predict possible ways of their interaction with the most aggressive and dangerous of the active oxygen species (ROS) -a hydroxyl radical. Materials and methods. For the analyzed structures, the Mulliken charges (a.u.), bond numbers (Np), unsaturation index (IUA), and electron density values on all 9-carbon atoms of the cinnamoyl fragment have been determined. The calculations have been carried out on a workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM. The semi-empirical methodPM7 was used (WinMopac 2016program). The ORCA 4.1 program was used to calculate the energies of homolytic cleavage of the O - H bond. Results. The analysis of Mulliken charges (a.u.), bonded numbers (Np), unsaturation indices (IUA), and electron density revealed a number of regularities on the basis of which it can be concluded, that taking into account the nature of the substituent, the most probable for addition in the aryl residueare positions C-1, C-2, C-3, C-4 and C-5. In the propenone fragment, the radical HO^ first attacks position 8, then 7. For the hydroxy-substituted, the energy of the homolytic breaking of the H - O bond has been determined and it has been established that the spatial difficulty ofphenols (compounds 13k, 13x, 13f 14k, 14x, 14f) H-O bonds are the smallest and on average are -160.63 kJ/mol. It has also been established that the higher the positive Mulliken charge on the carbon atom with which the phenolic hydroxyl is bound, the lower the energy of the homolytic breaking of the H - O bond and the more stable the resulting phenoxy radicalis. Conclusion. The carried out quantum chemical calculations allow us to conclude that the studied classes of compounds can be used to bind the hydroxyl radical formed in the body, causing various kinds of mutations, leading, among other things, to the development of oncological diseases.

Keywords: hydroxyl radical, cinnamic acid derivatives, chalcones, flavanones, Mulliken charges, bond numbers, unsaturation index, electron density

For citation: E.T. Oganesyan, S.S. Shatokhin, A.A. Glushko. Using quantum-chemical parameters for predicting anti-radical (НО-) activity of related structures containing a cinnamic mold fragment. I. Derivatives of cinnamic acid, chalcon and flavanon. Pharmacy & Pharmacology. 2019;7(1): 53-66. DOI:10.19163/2307-9266-2019-7-l-53-66 © Э.Т. Оганесян, С.С. Шатохин, А.А. Глушко, 2019

Для цитирования: Э.Т. Оганесян, С.С. Шатохин, А.А. Глушко. Использование квантово-химических параметров для прогнозирования антирадикальной (НО) активности родственных структур, содержащих циннамоильный фрагмент. I. Производные коричной кислоты, халкона и флаванона. Фармация и фармакология. 2019;7(1): 53-66. DOI:10.19163/2307-9266-2019-7-1-53-66

УДК 547.814.5:544.18

ИСПОЛЬЗОВАНИЕ КВАНТОВО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ДЛЯ ПРОГНОЗИРОВАНИЯ АНТИРАДИКАЛЬНОЙ (НО) АКТИВНОСТИ РОДСТВЕННЫХ СТРУКТУР, СОДЕРЖАЩИХ ЦИННАМОИЛЬНЫЙ ФРАГМЕНТ. I. ПРОИЗВОДНЫЕ КОРИЧНОЙ КИСЛОТЫ, ХАЛКОНА И ФЛАВАНОНА

Э.Т. Оганесян, С.С. Шатохин, А.А. Глушко

Пятигорский медико-фармацевтический институт - филиал ФГБОУ ВО ВолгГМУ Минздрава России 357532, Россия, Пятигорск, пр. Калинина, 11

E-mail: edwardov@mail.ru Поступила в редакцию: 23.12.2018 Принята к печати: 20.02.2019

PHARMACY& PHARMACOLOGY

Изучено 45 соединений, объединяющих 3 группы производных коричной кислоты, халкона и флаванона, каждая из которых включает по 15 веществ. Анализируемые соединения содержат общий структурный фрагмент, представляющий собой остаток коричной кислоты (циннамоильный фрагмент). Цель работы - изучение квантово-химиче-ских параметров перечисленных групп соединений с целью прогнозирования возможных путей их взаимодействия с наиболее агрессивным и опасным из числа активных форм кислорода (АФК) гидроксильным радикалом. Материалы и методы. Для анализируемых структур определены Малликеновские заряды (а.е.), связевые числа (Ым), индекс ненасыщенности (ЮЛ) и величины электронной плотности на всех 9-атомахуглерода циннамоильного фрагмента. Расчеты осуществлены на рабочей станции с процессором ШеХеопЕ5-1620 3,5 ГГц, 20 Гб оперативной памяти. При этом использован полуэмпирический метод РМ7 (программа WinMopac 2016). Для расчетов энергий гомолитического расщепления связи О—Н использована программа ORCA 4.1. Результаты. Анализ величин Малликеновских зарядов (а.е.), связевых чисел (Ым), индексов ненасыщенности (1иЛ) и электронной плотности позволил выявить ряд закономерностей, на основании которых можно делать выводы о том, что с учетом природы заместителей наиболее вероятными для присоединения в арильном остатке являются положения С-1, С-2, С-3, С-4 и С-5. В пропеноновом фрагменте радикал НО* в первую очередь атакует положение 8, затем 7. Для гидроксизамещенных определена энергия гомолитического разрыва связи Н-О и установлено, что у пространственно затрудненных фенолов (соединения 13к, 13х, 13ф, 14к, 14х, 14ф) энергия разрыва связи Н-О наименьшая и в среднем составляет - 160,63 кДж/моль. Установлено также, что,чем выше положительный Малликеновский заряд на атоме углерода, с которым связан фе-нольный гидроксил, тем ниже энергия гомолитического разрыва связи Н-О и тем более устойчив образующийся фе-ноксильный радикал. Заключение. Проведенные квантово-химические расчеты позволяют сделать вывод о том, что изучаемые классы соединений могут быть использованы для связывания образующегося в организме гидроксильного радикала, вызывающего различного рода мутации, приводящие, в том числе, к развитию онкологических заболеваний. Ключевые слова: гидроксильный радикал, производные коричной кислоты, халконы, флаваноны, Малликеновские заряды, связевые числа, индекс ненасыщенности, электронная плотность

INTRODUCTION

Currently, experimental biochemistry and clinical pharmacology have accumulated extensive material indicating the relationship of free radical oxidation processes involving reactive oxygen species (ROS) and many diseases. It is known that in violation of the mechanisms of antioxidant protection in the body there is an accumulation of ROS, of which the HO-radical is the most dangerous. It is able to interact with the nitrogenous bases of DNA and RNA, which contributes to the formation of various types of mutations [1, 2]. It also interacts with phospholipids of cell membranes, increasing the level of their peroxidation and resulting in reperfusion tissue damage, carcinogenesis and other pathological processes [2, 3].

In case of disturbances in the equilibrium processes involving ROS, natural compounds — derivatives of cinnamic acid, chalcones and flavanones, containing a common cinnamoyl fragment, are getting more and more become important. In flavonoids it is the main conjugate chain and, in essence, it represents the residue of cinnamic acid. These three groups of compounds are interconnected by biogenetic transformations [4-6].

The listed representatives of polyphenolic compounds are characterized by a broad spectrum of pharmacological activity, which is probably due to their high antiradical activity.

THE AIM istostudy the quantum-chemical char-

DOI: 10.19163/2307-9266-2019-7-1-53-66

ФАРМАКОЛОГИЯ

acteristics of cinnamic acid derivatives, chalcones and flavanones containing substituents in the aryl moiety conjugation of the main chain to predict their possible interactions with the hydroxyl radical HO.

MATERIALS AND METHODS

The objects of the study were hydroxy and methoxy substituted cinnamic acid, chalcone and flavanone derivatives in the aryl residue of the cinnamoyl moiety, 45 compounds in total. Quantum-chemical parameters of the analyzed structures were calculated on a workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM.

The hydroxyl radical HO, whose life expectancy in a biological medium is about 10-9 seconds, represents the greatest danger among the active oxygen species (ROS).

One of the ways of formation of a hydroxyl radical in the body can be the Fenton reaction or the oxidation of Fe2+ to the Fe3+ hypochlorite anion, which, in turn, is formed in phagocytes.

It has been proved that the yield of hydroxyl radical OH- in the second case is higher than in the Fenton reaction [8].

The same radical can be formed by the reaction of Haber-Weiss [8].

The consequences of these reactions involving bivalent iron are obvious: the "extraction" of Fe2+ cation from the systems containing it and its subsequent oxidation to Fe3+, which is extremely dangerous in itself, since it contributes to the destruction of blood heme and iron-containing endogenous substances.

On the other hand, the hydroxyl radical, interacting with the amino acid fragments of proteins, causes denatur-ation of the latter and subsequent inactivation of enzymes.

There is an opinion that the OH- radical-is able to selectively accumulate near the DNA [9].

Possessing sufficiently high electrophilic properties, it can not only hydroxylate the nitrogenous bases of nucleic acids, but also contribute to the subsequent breaking of both carbohydrate bridges between nucleo-tides and hydrogen bonds of "interlaced" polynucleotide chains [2]. It is clear that further processes will mutate or damage genes.

In the lipid layer of cell membranes, the HO- initiates a chain reaction of lipid oxidation by a radical mechanism, which leads to cell damage and cell death.

Biochemical processes involving ROS in the physiological norm are controlled by both enzyme and non-enzyme components of cells. In case of disturbances in the equilibrium processes involving ROS, natural antioxi-dants, such as polyphenolic compounds as cinnamic acid derivatives, as well as flavonoids (chalcones, flavanones, flavones and flavonols), become important.

Due to the structural diversity, as well as the totality of the manifested pharmacological effects, they occupy a special place among natural antioxidants.

It is known that cinnamic acid is directly involved in the biosynthesis of flavonoids [4]. Comparing the structures of cinnamic acid and flavonoids, it is easy to verify that the common structural fragment in all the compounds is the cinnam-oyl fragment, which is essentially a cinnamic acid residue (Fig. 1).

HO

Cinnamic acid 2

2'-Hydroxychalcone

О

Flavonone

Figure. 1. Structural features of chalcone, flavanone and flavone

It should be noted that with slight changes in the pH-environment, the chalcones become flavanones and vice versa: flavanone prevails in the acidic environment, and chalcone prevails in the alkaline one. This circumstance is important from the point of view of the biological activity of chalcones and flavanones.

It is clear from the presented structures, that the main conjugation chain is formed thanks to the cynnamoyl fragment, and the transfer of electronic effects exerted by substituents in ring B, occurs through this chain.

In continuation of our earlier studies [10-13], and also taking into account the structural proximity of cinnamon

PHARMACY& PHARMACOLOGY

acids, chalcones and flavanones (the presence of a cinnam-oyl fragment), we found it advisable to a priori examine the activity of the chalcones and flavanones in relation to the hydroxyl radical OH- using such quantum-chemical parameters as Mulliken charges (a.u.), bond numbers

(Np), theoretical valence (Vp), unsaturation index (IUA), and electron density. Table 1 presents the analyzed compounds, which are designated respectively 1k-15k (derivatives of cinnamic acid), 1x-15x (derivatives of chalcone), 1f-15f (derivatives of flavanone).

Table 1. Derivatives of cinnamic acid (k), chalcone (x) * and flavanone with substituents in the aromatic core of the main conjugation chain

^oh

ri r2

2

o

3 R3

No. Position of substituents

K X* f 1 2 3 4

1k 1x 1f H H H H

2k 2x 2f OH H H H

3k_3x_3f_CH3O_H_H_H

4k 4x 4f H OH H H

5k_5x_5f_H_CH3O_H_H

6k 6x 6f H H OH H

7k_7x_7f_H_H_CH3O_H

8k 8x 8f H OH OH H

9k_9x_9f_H_CH3O_OH_H

10k 10x 10f H OH CH3O H

11k_11x_11f_H_CH3O_CH3O_H

12k 12x 12f H OH OH OH

13k_13x_13f_H_CH3O_OH_CH3O

14k 14x 14f H C №X OH C (CH3X

15k 15x 15f H CH3O CH3O CH3O

* Note: Falcone derivatives containing an OH group in the ortho-position to the carbonyl are considered, since in its absence the chalcone-flavanone transition is impossible

Previously, using semi-empirical quantum-chemical methods, we studied the reactivity indices of cinnamic acid derivatives with respect to the hydroxyl radical [10]. This made it possible to identify the most reactive centers in the cinnamoyl fragment: the interaction of cinnamic acid with the OH-radical electrophilic in properties occurs primarily at the C-8 position, since this atom is characterized by the lowest degree of "saturation" (the lowest bond number), the highest electron density, and the greatest negative charge compared to its two nearest atoms. Further interaction of cinnamic acid with the formation of the corresponding adducts is possible according to the C-7, C-6, C-1 and C-5 positions1.

Taking into account the trends revealed in cinnamic

acid, we considered it expedient to determine the most probable centers of primary attack by the OH- radical of chalcone and flavanone.

The quantum chemical characteristics listed above were calculated using the PM7 semi-empirical method (WinMopac 2016 program) for chalcones and flavanones containing hydroxy and methoxy groups in the aryl moiety of the main conjugation chain.

Tables 2, 3, 4 present the distribution of Mulliken charges (a.u.), bond numbers (N^), unsaturation index (IUA) and electron density on the carbon atoms of the cinnamoyl fragment of the two derivatives of cinnamic acid (6k and 7k), chalcone (6x and 7x) and flavanone (6f and 7f).

1 Henceforward, numbering of atoms in the analyzed structures is given not in accordance with the IUPAK rules, but in accordance with the calculation programs. For cinnamic acid, the carbon numbering generated by the programs is shown. To make it easier and more convenient to compare the results obtained, authors have kept this numbering for chalcones and flavanones.

ФАРМАЦИЯ И ФАРМАКОЛОГИЯ

Ъ

•ч

к «

^ ч

И «

•ч

к «

к г

I

г

у

к

г «

« К

8 К

§ X •в ^

^ ад вд -г С «

и

I 1 | «

^ -15 ¡^ §

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12 "У «

§ &

£ 1 I 3

к г

I

ад •ч

к «

7к го 7 00 00 СП 7х гч го о 00 7 гч 7f о о <ч о

о 1 го о сз 1 го сз сз 1 СП сз

00

6к 6 го о ^ 7 6 го 6х 7 го о 7 7 го СП 6f 00 00

о 1 го о сз 1 СП сз ^г сз 1 СП о

£ 00 о о 6 00 о 00 о сл сл 7х 6 о сл о го 00 с* 7f с^ го 00 гч ю 00

о го о СП о го о СП о СП сз СП

6к <4 о о 6 6 00 с^ 7 о 7 с^ сл 6х с^ о о сл с^ о с^ 6f 00 го 00 го 0^ 6 о чэ 00

о го о го о СП сз СП сз СП о СП

7к 00 го <4 го 00 о го 7х 00 го го 00 00 го 00 сл 7f 6 с^ 00 гч ю гч

о 1 го о сз 1 СП сз го о 1 СП сз ^г

6к го 6 го 00 00 го 6х го 6 го 7 го 6f г^ 00 о ю

о ■ го о сз 1 го сз сз 1 го сз

7к 6 о О 00 6 6 о 7х 7 сз о 6 7 7f 7 6 гч о 7

о 1 го о сз 1 СП сз сз 1 СП о

6к <4 о 00 <ч о 6х о 00 6 сз 6f о сз 6 гч с^ го о

о 1 го о сз 1 СП сз сз 1 СП сз

£ 7 го 7 6 7 7х го 7 7f о го о го

о 1 го о о 1 го о о 1 го сз

6к 6 <4 СП 7 7 ^ го 6 гч 6х гч гч го 7 7 го гч <ч 6f 6 7 7 6

о 1 го о о 1 СП сз о 1 СП сз

7к 7 гч £ 7х 7 7 7 00 гч гч 7f 6 00 гч го

о го о СП сз СП сз СП сз СП сз СП

го

6к 7 го 7 ^ <4 го го 00 6х 7 го го 7 го го го 00 чэ 6f 6 о го го 00 6 го с^ чэ

о го о СП о СП сз го о го сз СП

£ с^ 6 г^ <4 00 о 7 7х 7 г^ го 00 го 7 7f го о 00 го

о 1 го о ^г сз 1 СП сз сз 1 СП сз

<4

6к <4 6 г^ с^ 00 7 ю 6 6х 6 г^ 00 00 с^ ю 6 6f 00 6 00 гч 00

о 1 го о ^г сз 1 СП сз сз 1 СП о ^г

7к го о го 00 го 7х 6 00 гч 6 сз 7f 6 сз гч гч <1 с^ го о 7

о 1 го о сз 1 СП сз о 1 го сз

6к о о 00 6х 7 о о 00 6 7 6f 00 6 с^ 6 гч 00 о 00 6 о

о 1 го о о 1 СП о сз 1 СП сз

а.и. А УШ еИ. а.и. УШ е1.а. а.и. УШ е1.а.

Table 3. Values of Mulliken charges (a.u.) of bond numbers (Nfi), index unsaturation (IVA) and the electron density on the carbon atoms

of cinnamoyl moiety 8k and 9k compounds 8h and 9h, 8f and 9F

1 2 3 4 5 6 7

8k 9k 8k 9k 8k 9k 8k 9k 8k 9k 8k 9k 8k 9k 8k 9k

a.u. -0.105 0.105 -0.216 -0.217 0.229 0.225 0.126 0.094 -0.212 -0.206 -0.060 -0.066 -0.008 -0.004 -0.303 -0.306

Np. 3.803 3.802 3.786 3.788 3.763 3.755 3.761 3.766 3.767 3.762 3.839 3.839 3.868 3.867 3.794 3.792

IUA 0.168 0.169 0.176 0.174 0.172 0.178 0.172 0.183 0.203 0.207 0.152 0.152 0.08 0.08 0.156 0.156

el.d. 4.105 4.105 4.216 4.218 3.770 3.775 3.873 3.905 4.212 4.206 4.060 4.066 4.008 4.004 4.303 4.306

8x 9x 8x 9x 8x 9x 8x 9x 8x 9x 8x 9x 8x 9x 8x 9x

a.u. -0.110 -0.109 -0.218 -0.225 0.228 0.192 0.129 0.141 -0.213 -0.280 -0.059 0.061 -0.02 0.004 -0.324 -0.328

Np. 3.804 3.806 3.788 3.780 3.763 3.760 3.761 3.760 3.766 3.763 3.841 3.838 3.854 3.853 3.809 3.807

IUA 0.169 0.166 0.175 0.183 0.172 0.189 0.172 0.175 0.203 0.206 0.151 0.153 0.090 0.090 0.147 0.147

el.d. 4.110 4.109 4.218 4.225 3.771 3.807 3.870 3.858 4.214 4.220 4.059 4.061 4.022 3.996 4.324 4.328

8f 9f 8f 9f 8f 9f 8f 9f 8f 9f 8f 9f 8f 9f 8f 9f

a.u. -0.196 -0.198 0.206 0.165 0.147 0.163 -0.232 -0.242 -0.137 -0.134 -0.073 -0.080 0.130 0.133 -0.437 -0.435

Nn 3.765 3.760 3.777 3.776 3.748 3.746 3.799 3.797 3.815 3.815 3.833 3.833 3.840 3.841 3.818 3.820

IUA 0.197 0.205 0.162 0.178 0.183 0.187 0.169 0.170 0.156 0.156 0.159 0.158 0.064 0.062 0.115 0.114

el.d. 4.196 4.198 3.793 3.835 3.852 3.837 4.232 4.242 4.137 4.134 4.073 4.080 3.869 3.866 4.437 4.435

ФАРМАЦИЯ И ФАРМАКОЛОГИЯ

I

К г

К

•ч

К «

«

§ 4 • ^

к

-8

•в

к ^ в

в 13

«ч К В

в в г

I

8

И

£ 1

5а в

1 3

В ^

£ *

§1 •в В

8 -13 Й> а

в в -в о

Л 1 ^ §

8 .¡8

§

т 00 г^ 4 8 9 <ч т 3 0 т 00 0 3 0 т т 0 3 8 6 0 3

о 1 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

00

М О 00 о т 2 ^ 6 8 0 т X о 7 2 т 7 0 00 7 7 2 т о 8 3 9 14 8 3

о 1 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

м т -0.01 3.867 0.08 4.001 13х -0.025 3.852 0.142 3.976 13f 0.129 3.838 0.063 3.870

М О -0.002 3.866 0.081 4.002 о 0.002 3.853 0.09 3.998 о 0.132 3.841 0.062 3.867

м т 0.008 3.845 0.149 3.991 13х 0.023 3.852 0.142 3.976 13f -0.004 3.835 0.157 4.004

М О т ю о 3 00 4 3 6 о о 6 6 о 0 4 00 2 6 6 о <4-1 О 6 7 2 3 00 9 6 7

0. - 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

м т 8 <ч 8 3 ^ 9 <ч 8 6 <ч X т 0 9 <4 4 3 ^ 7 <ч 0 9 <ч <4-1 т 2 9 5 4 3 0 3 9

0. - 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

М О 8 <ч 5 6 ^ 5 0 <ч 8 <ч X о 6 0 <4 61 8 0 <ч 6 0 <ч о 0 5 7 0

0. - 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

м т 0.146 3 6 ^ 3. 0.186 3.854 13х 0.171 3.770 0.176 3.830 0.176 3.765 0.180 3.823

М О 0.138 3.760 0.175 3.861 о 0.097 6 6 3. 0.183 3.902 о -0.224 3.795 0.173 4.224

м т 0.102 3.712 0.234 3.897 13х 0.057 3.699 0.235 3.943 13f 0.05 3.705 7 2 0. 3.949

т

М О 3 0 6 ^ 9 00 6 0 00 о 4 2 <ч 5 5 9 6 7 ^ о 4 2 5 6 5 8 00

0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3.

м т 3 00 6 7 ^ 9 7 00 X т 3 0 <ч 4 7 6 6 9 ^ 13Г 0 2 71 6 9 7

0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3.

<4

М О -0.223 3.779 0.184 4.223 X о -0.220 3.788 0.174 4.220 о 0.200 3.771 0.167 3.800

м т <ч 8 2 ^ 8 2 <ч 71 <ч X т 2 4 <ч 3 3 ^ 4 2 <ч 2 4 <ч т 5 6 6 4 ^ 5 0 0 6

0. - 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

М О 0 6 0 00 5 ю 5 о X о 9 0 2 0 00 0 9 о о 4 9 6 6 6 4

0. - 3. 0. 4. 0. - 3. 0. 4. 0. - 3. 0. 4.

а.и. А £ УШ еЫ. а.и. А £ УШ еЫ. а.и. УШ е1.а.

PHARMACY& PHARMACOLOGY

It is characteristic for the C-7 and C-8 atoms to have the same dynamics of changes in parameters as it had been in cinnamic acid. In the analyzed structures, the carbon atom C-9 is characterized by a significantly lower electron density and a higher positive Mulliken charge, although the bond number is insignificant (third decimal place), it is higher than those for C-8 and C-7. The highest negative Mulliken charge and the electron density, as well as the smallest bond numbers compared to the two nearest atoms, are concentrated on the C-8 atom of all the three types of the structures under consideration. Similar electronic effects are easy to explain, if we take into consideration the fact that with respect to the prope-none moiety, the electron-donating hydroxy and methoxy groups at positions 1 and 3 (ortho and para positions with

respect to the propene unit) contribute to the enhancement of the polar conjugation and, consequently, to an increase in the Mulliken charge and electron density on C-8 (compounds 2, 3, 6, 7) compared with the parent structure of each group of the analyzed compounds.

If the hydroxy- and methoxy groups are in position 2 of the aryl fragment (compounds 4 and 5), then the electron density and Mulliken charge decrease, but the same parameters increase on the C-1, C-3 and C-5 atoms, that is, in two ortho- (P-1 and P-3) and para-positions (P-5) (table 5). This dependence is repeated in all the three types of the structures under consideration - 4k, 4x, 4f and 5k, 5x and 5f. Such electronic effects are in good agreement with the contribution of the Taft constants [14].

Table 5. Values of Mulliken charges (a.u.), electron density and bond numbers (Np) on carbon atoms in o- and p- positions with respect to the substituent for the derivatives of cinnamic acid, chalcone

and flavanone, numbered 2, 3 and 4

Unsubstitute dcinnamic acid Unsubstitute dchalcone Unsubstituted flavanone

Cv a.u. el.d. N^ a.u. el.d. N^ a.u. el.d. N^

1 -0.118 4.1180 3.812 -0.122 4.122 3.813 -0.141 4.141 3.827

2 -0.159 4.1590 3.852 -0.161 4.162 3.852 -0.145 4.145 3.849

3 -0.125 4.1249 3.836 -0.121 4.126 3.837 -0.135 4.135 3.845

4 -0.159 4.1595 3.854 -0.156 4.156 3.854 -0.151 4.151 3.852

5 -0.126 4.1260 3.816 -0.128 4.128 3.814 -0.132 4.133 3.829

6 -0.054 4.0540 3.858 -0.053 4.054 3.856 -0.081 4.081 3.840

7 -0.020 4.0200 3.869 -0.013 4.013 3.855 0.122 3.877 3.840

8 -0.298 4.9810 3.798 -0.319 4.319 3.814 -0.440 4.440 3.819

2k 2x 2f

Cv a.u. el.d. N^ a.u. el.d. N^ a.u. el.d. N^

8 -0.288 4.288 3.798 -0.364 4.364 3.763 -0.446 4.442 3.812

2 -0.234 4.047 3.852 -0.268 4.268 3.787 -0.229 4.229 3.803

4 -0.149 4.062 3.854 -0.238 4.238 3.842 -0.197 4.197 3.844

1 -0.046 4.322 3.832 0.342 3.658 3.747 0.284 3.715 3.777

3k 3x 3f

Cv a.u. el.d. N^ a.u. el.d. N^ a.u. el.d. N^

8 -0.301 4.301 3.781 -0.368 4.368 3.785 -0.439 4.439 3.819

2 -0.238 4.050 3.838 -0.270 4.270 3.780 -0.309 4.310 3.773

4 -0.161 4.060 3.783 -0.235 4.235 3.842 -0.227 4.228 3.834

1 -0.050 4.314 3.833 0.309 3.690 3.740 0.269 3.730 3.777

4k 4x 4f

Cv a.u. el.d. N^ a.u. el.d. N^ a.u. el.d. N^

8 -0.283 4.283 3.804 -0.299 4.299 3.819 -0.437 4.437 3.818

1 -0.290 4.290 3.740 -0.230 4.230 3.750 -0.240 4.240 3.747

3 -0.228 4.228 3.779 -0.296 4.296 3.769 -0.303 4.303 3.774

5 -0.205 4.205 3.800 -0.210 4.210 3.803 -0.223 4.223 3.813

5k 5x 5f

Cv a.u. el.d. N^ a.u. el.d. N^ a.u. el.d. N^

8 -0.290 4.290 3.802 -0.303 4.303 3.819 -0.436 4.436 3.818

1 -0.278 4.278 3.737 -0.234 4.234 3.743 -0.252 4.252 3.757

3 -0.233 4.233 3.773 -0.285 4.285 3.766 -0.293 4.293 3.770

5 -0.204 4.204 3.798 -0.210 4.210 3.803 -0.215 4.210 3.814

Note: k - cinnamic acid, x - chalcone, f-flavanone

DOI: 10.19163/2307-9266-2019-7-1-53-66

ФАРМАКОЛОГИЯ

Thus, the primary hydroxyl radical electrophilic attack will take place primarily at position C-8, and then at the C-7 position.

A similar conclusion is valid for the considered types of the analyzed compounds, as shown before [11, 12].

Using a similar approach to interpret the possible attack paths of the monosubstituted derivatives by the OH-radical (compounds 2k, 2x, 2f - 7k, 7x, 7f) taking into account the quantum chemical parameters, it can be assumed that the most likely are the C-2 and C-4 positions for compounds 2 and 3, since they are characterized by the highest IUA values. If the substituent is in position 2, then the attack is likely to occur in C-1, C-3 or C-5 positions of the phenyl fragment of all three types of structures under consideration due to high IUA values. For compounds of types 6 and 7, the attack of a hydroxyl

radical is equally probable in the C-2 and C-4 positions for the same reasons as mentioned above (Tables 2, 3, 4, 5).

In the case of disubstituted for the aryl fragment, the dynamics of changes in the Mulliken charges, the unsaturation index and the electron density in compounds 8, 9 and 10 of all the three types of the structures under consideration practically coincide and actually make the same electronic contribution to the C-8 propene unit.

It should be emphasized that two hydroxy- or hydroxy- and methoxy-groups in positions 2 and 3 of the aryl fragment have a competitive effect on the conjugation system: the effect of the para-substituent is partially extinguished by the inconsistent influence of the same substituent in position 2. This conclusion can be illustrated by Taft G-constants for -OH and -OCH3 groups [14]:

a = 0.127 a = -0.370

0-ch3 oh

a = 0.115 Z= -0.370

OH

O

CH3

a = 0.127 a= -0.268

X=-0.243

X=-0.255

1= -0.141

Compounds 8k, 8x, 8f

When interpreting antiradical (HO-)activity of poly-hydroxy cinnamic acid derivatives, chalcones and flava-nones, one should take into account their ability to bind reactive oxygen species not only with the participation of carbon atoms of the aryl radical, but also due to the homolytic breaking of the H - O bond of the phenolic hydroxy-group to form an intermediate adduct — the phenoxyl radical.

Earlier, when analyzing the antiradical activity of polyhydroxychalcons, we calculated the energies of homolytic breaking of H-O bonds in monohydroxy-com-pounds in which the hydroxy-group is located at C-3 or C-4, as well as for disubstituted ones, as shown below.

In continuation of these studies using the ab ini-tio method, we calculated the energies of the homolytic breaking of the H O bond with the transition of the hydrogen atom to the hydroxyl radical in the cinnamoyl disub-stituted along the aryl residue. The relationship between the breaking energy of the H-O bond and the unsaturation index (IUA) of the carbon atom which the substituent is

Compounds 10k, 10x, 10f

associated has been revealed. For this program, ORCA 4.1 was used. The optimization of the geometry of molecules was performed using the density functional theory (UB3LYP) method using the set of basis functions 3-21G*. Vibrational analysis, as well as the calculation of thermodynamic functions (enthalpy, entropy, and Gibbs energy) were performed on the basis of the density functional theory (UB3LYP) using the set of basic functions 6-311G** [15, 16]. It has been established that the lower the bond breaking energy, the higher the IUA value is (Table 6).

In the presented data, a clear relationship can be traced: the larger the unsaturation index (IUA) of the aryl carbon atom with which the hydroxy group is associated, the lower the energy of the H - O homolytic bond break is. There is a similar relationship for bond numbers (Table 3).

In the list of the compounds subjected to quantum-chemical study, we have considered three types of compounds containing three substituents in positions 2, 3, 4 of the aryl fragment and designated by numbers 12, 13 and 14.

Compounds 9k, 9x, 9f

PHARMACY& PHARMACOLOGY

Table 6. Gibbs free energy of homolytic breaking of the H-O bond

Structuralfragment Breaking energy of the O - H bond IUA (^1) IUA (^2) IUA (^3)

ho \ 0.135 (2k) - -

-150.30 0.152 (2x) - -

0.145 (2f) - -

/—\ - - 0.132 (6k)

H ,^oh -137 , 70 - - 0.133 (6x)

V 7 - - 0.126 (6f)

/OH - 0.175 (8k) 0.172 (8k)

-173.89 - 0.173 (8x) 0.172 (8x)

- 0.162 (8f) 0.183 (8f )

oh / - 0.184 (10k) 0.189 (10k)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^>°ch3 -130.01 - 0.174 (10x) 0.179 (10x)

- 0.167 (10f) 0.196 (10f)

o-ch3 / 3 - 0.174 (9k) 0.178 (9k)

-0"°oh -174.26 - 0.183 (9x) 0.189 (9x)

- 0.178 (9f) 0.187 (9f)

For these compounds, the energies of the homo- the addition of a hydrogen atom to a hydroxyl radical. lytic O - H bond have been calculated resulting in In our opinion, it can be represented by the following

corresponding phenoxyl radical in position C-3 and scheme:

This reaction was simulated by the molecular dynamics method in a 3-21G* force field using the density functional theory (UB3LYP) method for 50 picoseconds. In the process of simulation, a hydroxyl radical attacks a phenolic hydroxyl group, bonding a hydrogen atom with its oxygen. In the course of the oscillation of the phenolic

hydroxyl group, covalent bonding of the hydrogen atom of the phenol hydroxide to the oxygen atom of the hydroxyl radical occurs. After that, a free water molecule and a phenol radical are formed. Figure 2 shows a graph of the dependence of potential energy of the simulated system on time.

DOI: 10.19163/2307-9266-2019-7-1-53-66

ФАРМАКОЛОГИЯ

-381.060

1000D-000 2000t ООО 30000 000 -10000.000 50000.000 60000 000

-381.130

Time, fs

Figure 2. Dynamics ofpotential energy changes in the process of simulating homolytic cleavage

of the OH bond of the phenolic hydroxyl

According to the results of the molecular dynamics

It should be notified that this phenolic hydroxyl

simulation, the activation energy of a simulated reaction of is surrounded by two ortho substituents, which have a

the homolytic cleavage of phenolic hydroxyl with the transition of a hydrogen atom to a hydroxyl radical has been determined. The activation energy was 34.918 kJ/mol, which indicates that the reaction proceeds fairly quickly at a human body temperature (310 K).

shielding effect. The phenoxyl radical formed by the C-3 hydroxyl in structures 12, 13, and 14 belongs to the spatially obstructed types of radicals and is therefore more stable.

Table 7. Gibbs free energy of homolytic breaking of the H - O bond

Substance

Structuralfragment

Energy of O-Hsplittingbreaking

12x

12k

12f

-171.21

-170.72

-166.79

13x

13k

l3f

-164.66

-117.04

-159.40

14x

14k

14f

-l7s.3l

-lsl.29

-163.0s

PHARMACY& PHARMACOLOGY

The same dependence as in the case of disubstituted ones, is observed here, i.e. the lower the energy of the homolytic breaking of the H - O bond in sterically hindered phenols, the higher the IUA values and the positive charge of the carbon atom, phenolic hydroxyl is bound with (in this case C-3). It should be notified that compound 14k (4-hydroxy-3,5-di-tertbutyl-cinnamic acid) was previously synthesized by us in accordance with the forecast [11], since its high activity had been predicted. An experimental study of the pharmacological properties confirmed our prediction: the substance is characterized by cerebroprotective [17], antioxidant [18], endothelio-protective [19] and actoprotective [20] types of activity.

It is possible to predict with high probability the same level of activity for compounds 14x and 14f, since

their quantum-chemical characteristics are almost identical with compound 14k.

With regard to the analysis of structures of all three types, we found it expedient to take into account the molar mass in the characterization of bonded numbers (N^), unsaturation index (IUA), and electron density. For this purpose, the total value of the listed characteristics was determined for each compound, which was then referred to the molar mass. The partial dividing of the total value-sof N^, IUA and electron density by the molar mass, in our opinion, characterizes the specific value of the listed parameters in terms of the mass unit of the molecule. In our opinion, a similar indicator in the future may be useful for the interpretation of biologically active related compounds. The results are presented below:

c9h8o5 m=196

c15h12o5 m=272

OH

C15H12O5 M=272

I* f _ 33.99

M 196

I IUA . 1.41 - -I

M 196

Iel.d. _ 35.685

M 196

0.0072

HO

o-ch

O-CH

O-CH

O

C11H12O5 M=224

^N 33 94

" - =0.1515

M

I

IUA

224 1.49

M 224 In. = 35-798 M 224

= 0.0066

= 0.1598

f — 34.04

M 272

I IUA . 1.41 - -1

M 272

Iel.d. _ 35.874

M 272

= 0.0051 .1319

O-CHj

O-CH, O-CH

O

C15H16O5 M=276

M

Z

M

34 276

= 0.1231

1 49

m- = 0.0054

276

Su. = 35.974 M 276

= 0.1303

I* 34 — — 1

M 272

IIUA 1.42

M 272

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Iel.d. _ 35.205

M 272

O"

'OyV

= 0.0052

.1294

CH

„o-CH,

0

1

CH3

C15H16O5 M=276

M

I

M

33.95 276

= 0.1230

m= 0.0054

276 = 35.906 M 276

= 0.1301

DOI: 10.19163/2307-9266-2019-7-1-53-66

ФАРМАКОЛОГИЯ

HO

oh

C 17H24°3 M

V 34.12

M 276

^IUA _ 1.32

M 276

^el.d. . 35.974

M 276

o

c23h28o3 m=352 34 24

= 0.0047

= 0.1303

M

z

IUA

352 1.31

C23H28O3 M=352

-N 3413

N^ _ ____ = 0.0970

M 352 _ 36.204

= 0.0037

M

I

IUA

352 1.36

M

352

= 0.1028

M

Jel.d.

M

352 36.116 352

= 0.0386

= 0.1026

The attention of the scientistshas been attracted to very close values of specific indicators of bond numbers, indices of unsaturation and electron density for chalcone and flavanone. This fact once again confirms not only the ease of their interconversion, but, apparently, the same level of pharmacological properties.

CONCLUSION

Cinnamic acid differs from chalcone and flava-

none in the absence of an aryl residue in its molecule, directly associated with carboxyl carbon, hence there are some differences in the values of quantum-chemical characteristics. But anyhow, all the three types of compounds can be successfully used to bind a hydro-xyl radical in order to prevent those detrimental effects that the hydroxyl radical can cause, being, by Vladi-mirov Yu.A. metaphor, a destroyerradical, a killer radical.

REFERENCES

1. Afanasyev IB. Kislorodnye radikaly v biologicheskih processah [Oxygen radicals in biological processes]. Pharmaceutical Chemistry Journal. 1958;19(1): 11-23. Russian.

2. Vladimirov YuA. Svobodnye radikaly v biologicheskih sistemah [Free radicals in biological systems]. Soros Educational Journal. 2000;6(12):13-9. Russian.

3. Vladimirov YuA, Archakov AI. Perekisnoe okislenie lipidov v biologicheskih membranah [Lipid peroxidation in biological membranes]. M .: Science. 1972. 252 p. Russian.

4. Minaeva VT. Flavonoidy v ontogeneze rastenij i ih prakticheskoe ispolzovanie [Flavonoids in plant ontogenesis and their practical use]. Moscow, Nau-ka;1978:243 p. Russian.

5. Geissman T.A. The chemistry of flavonoid compounds. New York:Pergamon Press, Ox-ford,1962:666 p.

6. Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relationships. Proceedings of a symposium. Buffalo, New York, July 22-26, 1985. Prog Clin Biol Res. 1986;213:1-592.

7. Osipov AN, Yakutova ESh, Vladimirov YuA. Obra-zovanie gidroksilnyh radikalov pri vzaimodejstvii gipohlorita s ionami zheleza [Formation of hydroxyl radicals in the interaction of hypochlorite with iron ions]. Biophysics.1993;38(3):390-6. Russian.

8. Koppenol WH. The Haber-Weiss cycle - 70 years later. Redox Rep. 2001;6(4):229-34. DOI: 10.1179/135100001101536373

9. Pryor WA. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radic Biol Med. 1988;4(4):219-23.

10. Aghajanayan VS, Oganesyan ET. Applying quantum-chemical methods to interpretation of the antiradical activity in a series of hydroxy derivatives of cinnamic acid. Pharmaceutical Chemistry Journal. 2008;42(11):12-7. DOI: https://doi. org/10.30906/0023-1134-2008-42-11-12-17.

11. Agadzhanayan VS, Oganesyan ET, Abaev VT. Targeted search for lead compound in series of cinnamic acid derivatives possessing antiradical activity. Pharmaceutical Chemistry Journal. 2010;44(7):21-6. DOI: https:// doi.org/10.30906/0023-1134-2010-44-7-21-26.

PHARMACY& PHARMACOLOGY

12. Oganesyan ET, Mal'tsev YuA, Tvorovskii DE. Mechanism of reaction of flavone derivatives with hydroxyl radical by semiempirical methods. Russian Journal of General Chemistry. 2001;71(6):939-44. DOI: 10.1023/A:1012395821594.

13. Oganesyan ET, Dorkina EG, Khochava MR, Tuska-yev VA, Maltsev YuA. Ispolzovanie kvantovo himi-cheskih metodov dlya obosnovaniya antiradikalnogo no-dejstviya-poligidroksihalkonov [Using quantum chemical methods to substantiate the antiradical (OH) action of polyhydroxychalcones]. Pharmaceutical Chemistry Journal. 2002;36(12):21-5. Russian.

14. Spravochnik himika [Chemist Handbook]. Part 3. Moscow: Himiya.1964:1005 p.

15. Bykov D, Petrenko T, Izsák R, Kossmann S, Becker U, Valeev E, Neese F. Efficient implementation of the analytic second derivatives of Hartree-Fock and hybrid DFT energies: a detailed analysis of different approximations. Molecular Physics. 2015;113(13-14):1961-77. DOI: 10.1080/00268976.2015.1025114.

16. Minkin VI, Simkin BYa, Minyaev RM. Teoriya stro-eniya molekul [The theory of the structure of molecules]. Rostov-on-Don.1997. 560 p. Russian.

17. Voronkov AV, Oganesyan ET, Pozdnyakov DI, Abaev VT. Nekotorye aspekty cerebroprotektornoj aktivnosti 4-gidroksi-3-5-di-tretbutil korichnoj kis-loty pri ishemicheskom povrezhdenii golovnogo mozga v ehksperimente [Some aspects of cerebro-

protective activity of 4-hydroxy-3,5-di-tretboutyle of cinnamic acid in ischemic damage of the brain in experiment. Medical News of the North Caucasus]. 2018;13(1.1):90-3. DOI: https://doi.org/10.14300/ mnnc.2018.13025. Russian.

18. Voronkov AV, Pozdnyakov DI, Khuri EI, Kulbekova YuE, Kobin AA. Ocenka antioksidantnoj aktivnosti 4-gidroksi-3-5-ditretbutilkorichnoj kisloty meksido-la i tioktovoj kisloty na modeli fokalnoj ishemii golovnogo mozga [The evaluation of the antioxidant activity 4-hydroxy-3,5-ditretbutil cinnamic acid, mexidol and thioctic acid at the model of brain focal ischemia]. Problems of biological, medical and pharmaceutical chemistry. 2017;20(2):48-52. Russian.

19. Voronkov AV, Oganesyan ET, Pozdnyakov DI, Abaev VT. Izuchenie dozozavisimogo ehndotelio-tropnogo vliyaniya soedineniya ATACL v usloviyah ishemicheskogo-povrezhdeniya golovnogo moz-ga u krys v ehksperimente [Experimental study of dose-dependent endotheliotropic effect of ATACL in ischemic brain damage in rats]. Journal of VolgSMU. 2017;1:54-8. Russian.

20. Voronkov AV, Oganesyan ET, Gerashchenko AD. As-pekty aktoprotektornoj aktivnosti nekotoryh prirod-nyh soedinenij razlichnoj himicheskoj struktury [Aspects of actoprotective activity of certain natural compounds with different chemical structure]. Sports medicine: research and practice. 2017;7(1):92-6. DOI: 10.17238/ISSN2223-2524.2017.1.92.

Conflict of interest

The authors declare no conflict of interest.

Authors

Oganesyan Eduard Tonikovich - Doctor of Sciences (Pharmacy), Professor, Head of the Department of Organic Chemistry, Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University. E-mail: edwardov@mail.ru

Shatokhin Stanislav Sergeevich - postgraduate of the Department of Organic Chemistry, Pyatigorsk Medical and Pharmaceutical Institute - branch of Vol-

gograd State Medical University. E-mail: Shatohin.stan-islav95@ yandex.ru

Glushko Alexander Alexeevich - Candidate of Sciences (Pharmacy), Lecturer of the Department of Inorganic, Physical and Colloidal Chemistry, Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University. E-mail: alexander.glush-ko@lcmmp.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.