Научная статья на тему 'Unexplored Eclipsing Stars with Elliptical Orbits'

Unexplored Eclipsing Stars with Elliptical Orbits Текст научной статьи по специальности «Физика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Peremennye Zvezdy
Область наук
Ключевые слова
variable stars / eclipsing binaries / переменные звезды / затменные двойные системы

Аннотация научной статьи по физике, автор научной работы — Volkov I.M.

This study presents parameters of several poorly studied eclipsing variable stars with elliptical orbits. The data were obtained from solution of our own long-term photometric observations.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Неизученные затменные звезды с эллиптическими орбитами

В работе представлены параметры нескольких плохо изученных затменных переменных звезд с эллиптическими орбитами. Данные были получены в качестве решения на основе наших длительных фотометрических наблюдений.

Текст научной работы на тему «Unexplored Eclipsing Stars with Elliptical Orbits»

Peremennye Zvezdy ( Variable ¡Stars) 44, No. 4, 2024

Received 11 June; accepted 18 June.

DOI: 10.24412/2221-0474-2024-44-42-49

Unexplored Eclipsing Stars with Elliptical Orbits

Igor Volkov

Sternberg Astronomical Institute, Moscow University, Universitetsky Ave., 13, 119992 Moscow, Russia

This study presents parameters of several poorly studied eclipsing variable stars with elliptical orbits. The data were obtained from solution of our own long-term photometric observations.

The main goal of this work is to study the internal structure of stars. One of the ways of solving the problem is to measure the rotation speed of the apsidal line from observations of eclipsing stars with elliptical orbits. The rotation periods of the apsidal line can reach tens of thousands of years, and thus long series of observations of each star are required. In particular, our work has been going on for 35 years. Here we present a summary of our study.

The beginning of this study was first announced by Volkov and Volkova (2009), where the method of object selection was also described. The basis was the list of mainly northern stars obtained by Otero et al. (2006) from observations of ROTSE, ASAS, and Hipparcos. A number of stars were also selected that had previously avoided attention of observers due to difficulties of their observations: periods that are multiples of a day; eclipsing stars that are components of visual binary stars, etc.

We carried out observations with the 1.25-m and 60-cm reflectors at the Crimean Observatory of Sternberg institute; Zeiss-600 and Zeiss-1000 telescopes in the Simeiz INASAN observatory; 70-cm reflector of Moscow observatory of Sternberg Institute; 50-cm and 60-cm reflectors of Stara Lesna observatory, Slovakia. We mainly used CCD cameras, such as VersArray-512UV, VersArray-1300, ST-10XME, FLI PL09000; some others were also used, but not often. Observations were fulfilled in the Johnson-Cousins UBV RcR IcI system. For bright stars, a UBV photometer designed by I.M. Volkov, with an EMI9789 photomultiplier, was used (Volkov and Volkova, 2007).

The methods of our observations are described in detail in earlier publications: Bara-banov et al. (2021), Burlak et al. (2018), Volkov et al. (2021). Methods for processing observations and determining the relative and physical parameters of the systems are given in Volkov et al. (2010), Volkov et al. (2011), Bagaev et al. (2018).

Stellar temperatures were determined using Flower (1996) and Popper (1980) color index calibrations. Stellar magnitudes in the UBVRI system were determined by normalizing to standards from Kornilov et al. (1991), Moffett & Barnes (1979).

Table 1 presents the main observational parameters of the stars under study. Interstellar reddening was determined from our UBV photometry. If there is an asterisk, the interstellar reddening was determined from the survey by Green et al. (2015).

The B—V, U—B, V-R, R-I color indices corrected for interstellar reddening allowed us to determine spectral types of the components of eclipsing stars. In Table 1, we present only the B—V index as the most important one. The data in this Table are accurate to one half of the last significant digit.

Modern ephemeris of eclipsing stars given in Table 1 allow observers to pre-calculate minima with a high accuracy.

Table 1: Basic observational parameters of the stars

Star V B - V E(B - V) Spectrum Epoch HJD 2400000.0+ Period $ II

V871 Aql 12.51 1.06 1.19 B6V+B6V 52500.0229 2.952641 0.4451

V889 Aql 8.575 0.210 0.202 B9.5V+A0V 59060.3949 11.120760 0.3538

V645 Aur 9.72 0.01 0.11 B8V+B8V 52977.7382 10.8925082 0.7893

OO Cam 10.48 0.21 0.30* B8V+A0V: 55873.6014 8.1190455 0.4892

V347 Cam 10.96 0.26 0.09 A6IV+A6V 55314.4168 9.4545582 0.6944

V361 Cam 10.81 -0.06 0.10 B3IV+B9.5V 58561.2482 8.6385638 0.4727

V409 Cam 10.71 0.47 0.13 F0V+A9IV 57800.4846 6.676482 0.5231

V422 Cam 11.10 0.62 0.11 G0V+G1V 57803.3008 17.8705606 0.4904

V498 Cam 11.64 0.57 0.04 F7V+F7V 57795.3229 12.1102647 0.5653

KX Cnc 7.20 0.585 0.00 F9V+G0V 54162.7372 31.2198585 0.6432

DR CMi 11.06 0.13 0.0 A5IV 56644.5759 23.770030 0.6685

V1066 Cas 10.81 0.28 0.29 A3IV+A0V 58896.2402 8.4649440 0.5564

V1110 Cas 10.33 0.69 0.24 F5+F5: 58958.34515 24.849451 0.7063

V1141 Cas 11.93 0.19 0.49 B2V+B3V 59129.2382 6.9094135 0.4550

V1162 Cas 10.72 0.43 0.2? A0+A2: 59159.5948 29.0674505 0.2299

V750 Cep 11.26 0.68 0.76 B9V+A5V 58886.3278 18.8821656 0.438

V850 Cep 9.98 0.38 0.23* A0 51475.7273 12.914975 0.590

V880 Cep 10.27 0.28 0.32 A0V+A1V 58655.4035 27.330125 0.539

V897 Cep 11.44 0.71 0.3? KIII: 56235.5138 4.4871945 0.5118

V898 Cep 12.14 0.78 0.88 B9V+B9V? 55481.3576 2.8747704 0.6684

V921 Cep 11.69 0.87 0.61 F0IV+A8IV 58347.5032 13.7146644 0.4312

V922 Cep 11.41 0.42 0.5 B7V+B7V 55878.7002 3.57497303 0.5839

V944 Cep 10.92 0.95 1.03 B8V+B9V 58773.3625 6.56005423 0.5070

V1326 Cyg 11.44 0.22 0.23 B8V+B8V 55073.5052 16.681735 0.5302

V2544 Cyg 12.76 1.49 1.73 B2V+B2V 57927.3549 2.09381 0.5342

NS Dra 11.34 0.95 0.00 G5IV+K1III 58942.4806 50.54440 0.6321

V432 Dra 12.23 0.60 0.16 F5V+F5V 53278.3192 11.6281562 0.6985

UW Hya 13.19 0.53 0.0 F8V+F8V 47952.2502 2.11087916 0.5

IL Lac 12.47 0.26 0.35 B8V+B9V 55482.3025 7.395662 0.4354

V340 Lac 11.91 0.32 0.38 B9.5V+B9.5V 58350.5181 19.943091 0.7623

RU Mon 10.50 0.078 0.19 B8V+B9V 58921.1627 3.584690 0.3348

V501 Mon 12.31 0.501 0.22 A9V+F2V 52502.9358 7.0212043 0.4476

V521 Mon 10.055 0.135 0.249 B8V+B8V 59518.5547 2.970692 0.592

V2778 Ori 10.12 0.31 0.40 B6V+B9V 51629.65705 14.38759 0.4365

V751 Per 11.15 0.19 0.28 B8+B9 51508.6200 5.96134777 0.4487

V966 Per 13.08 0.06 0.24 B4V 54158.3045 4.3088431 0.3319

CR Sct 10.96 0.21 0.37 B5V+B5V 59365.5286 4.19235295 0.5112

V370 Sge 12.46 0.57 0.247 F0V+F2V 52734.9374 8.32628726 0.3790

EQ Vul 11.03 0.65 0.79 B6+B5III 60112.3244 9.297071 0.3214

V491 Vul 9.95 0.74 1.09 B0.5V 54648.4446 7.6697718 0.3348

Table 2: Relative parameters of the studied stars obtained from light curve solutions

Star e u i° ri r2 u obs °/year u theor °/year

V871 Aql 0.156(4) 236.90(2) 89.80(1) 0.172(1) 0.180(1) 1.37(9) 2.07

V889 Aql 0.368(4) 127.01(1) 89.21(1) 0.056(3) 0.052(3) 0.014(1) 0.016(2)

V645 Aur 0.5733(8) 320.04(1) 89.71(1) 0.0612(1) 0.0582(2) 0.020(5) 0.047

OO Cam 0.103(3) 260.62(1) 87.52(1) 0.0606(35) 0.0716(31) 0.008(2) -

V347 Cam 0.3110(1) 4.28(1) 87.59(1) 0.0728(1) 0.0441(5) - -

V361 Cam 0.128(3) 251.23(1) 89.49(1) 0.1339(7) 0.0544(3) 0.185 0.052

V409 Cam 0.043(2) 32.39(7) 84.92(1) 0.084(9) 0.105(6) 0.16(6) -

V422 Cam 0.035(3) 243.86(4) 89.57(1) 0.0324(1) 0.0244(1) - -

V498 Cam 0.259(9) 67.47(2) 87.54(1) 0.063(5) 0.050(7) 0.020(3) -

KX Cnc 0.4666(5) 63.80(1) 89.83(1) 0.0193(5) 0.0190(5) 0.0056(5)

DR CMi 0.562(3) 65.85(1) 88.32(1) 0.0492(6) 0.0548(5) 0.011(7) -

V1066 Cas 0.155(3) 55.34(1) 86.35(1) 0.1604(7) 0.0707(4) 0.193(4) -

V1110 Cas 0.512(20) 54.10(4) 87.68(1) 0.040(14) 0.036(17) 0.0088 0.0036:

V1141 Cas 0.365(2) 259.58(1) 89.14(1) 0.1135(3) 0.0919(2) 0.15(3) 0.235

V1162 Cas 0.522(2) 142.94(1) 89.71(1) 0.0268(6) 0.0263(6) 0.00043: 0.0028

V750 Cep 0.278(2) 109.86(1) 89.99(4) 0.0501(2) 0.0306(1) - 0.0050

V850 Cep 0.465(2) 74.20(1) 88.44(1) 0.0693(7) 0.0586(10) 0.010(3) -

V880 Cep 0.320(6) 79.55(1) 88.34(1) 0.0393(6) 0.0272(9) - -

V897 Cep 0.034(8) 57.8(2) 82.15(1) 0.12(4) 0.14(4) - -

V898 Cep 0.2670(1) 359.02(1) 85.15(1) 0.140(9) 0.149(9) 4.6(10) -

V921 Cep 0.469(2) 258.14(1) 89.68(1) 0.0868(2) 0.0699(2) 0.030(2) -

V922 Cep 0.1325(1) 3.56(1) 89.64(1) 0.1000(7) 0.0984(8) - -

V944 Cep 0.179(2) 86.33(1) 84.62(1) 0.1931(4) 0.1049(3) 0.44(3) 0.70

V1326 Cyg 0.396(9) 276.3(1) 89.12(1) 0.0403(2) 0.0502(1) 0.014(7)

V2544 Cyg 0.0827(9) 338.53(3) 85.97(1) 0.236(2) 0.190(3) 8.5(1) 8.9

NS Dra 0.349(9) 305.58(2) 88.09(1) 0.0245(3) 0.0674(8) 0.009(4) 0.0086

V432 Dra 0.377(1) 325.12(1) 89.19(1) 0.0389(4) 0.0388(4) 0.0265(10)

UW Hya 0.0 - 87.01(1) 0.196(3) 0.197(2) - -

IL Lac 0.1089(8) 158.83(2) 89.81(1) 0.0734(2) 0.0668(2) 0.047(20) 0.032

V340 Lac 0.4261(1) 4.35(1) 89.62(1) 0.0333(3) 0.0352(2) -

RU Mon 0.398(2) 128.87(1) 89.10(1) 0.129(2) 0.129(2) 1.00(2) 0.86(3)

V501 Mon 0.137(2) 233.22(1) 88.27(1) 0.0854(4) 0.0678(6) 0.021(6) 0.024

V521 Mon 0.192(5) 45.15(3) 86.82(1) 0.2075(12) 0.1255(9) 1.85(7) 1.60

V2778 Ori 0.164(2) 127.28(1) 89.24(1) 0.0689(2) 0.0487(2) 0.18(3) -

V751 Per 0.0809(1) 176.77(2) 88.72(1) 0.0942(2) 0.0761(4) 0.73: 0.05

V966 Per 0.2961(6) 206.52(1) 89.16(1) 0.1475(2) 0.1223(2) 0.68(2) 0.575

CR Sct 0.042(1) 65.7(1) 88.40(1) 0.1492(9) 0.1311(12) 0.57(1) 0.47(10)

V370 Sge 0.2189(4) 150.32(1) 89.02(1) 0.0945(1) 0.0756(1) 0.020(2) 0.025

EQ Vul 0.2906(6) 192.08(1) 88.88(1) 0.1543(6) 0.1282(6) 0.96(20) -

V491 Vul 0.3372(9) 220.63(1) 89.99(1) 0.1115(2) 0.1018(2) 0.340(5) 0.31

The algorithm of light curve solution used to obtain parameters in Table 2 is described in Khaliullin and Khaliullina (1984). In Volkov (2023), an algorithm of taking into account pulsations of components was added to the program. Parameters' errors are given in parentheses. The last two columns of Table 2 present the apsidal rotation velocities obtained from observations and their theoretical values. Theoretical values are given only for those stars for which we consider the observed values to be reliable. It can be seen that, for some systems, there is a significant discrepancy between the theoretical and

observed values. A possible explanation for this fact is lacking synchrc

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

between the

is lacking synchronism rotational and orbital moments. At this time, we do not have spectroscopic data on the axial rotation of the stars. Theoretical calculations are made under the assumption of synchronism at the periastron.

We obtained the absolute masses and radii of the components using the indirect method proposed by D.Ya. Martynov and described in Khaliullin (1985), Volkov et al. (2017). The results are presented in Table 3.

log M

1.5

1.0 0.5 -0.0

-0.5

-1.0

J_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_L

J_I_L

3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7

log T

Figure 1. Dependence of mass on temperature according to the data from Table 3. Blue circles are the primary components, the red ones are secondary components. Green curve is the zero age main sequence, ZAMS.

We plotted the obtained data from Table 3 in the diagrams presented in Figs. 1, 2. They are similar to such diagrams constructed for other objects by other authors and to theoretical ones. We can conclude that the indirect method works satisfactorily, the obtained sizes and masses are close to real ones, and our data are suitable for use in studying the structure and evolution of stars.

Table 3: Absolute parameters of the stars obtained from light curve solutions

Star TiK T2K Mi M2 Ri R2 log Li log L2 log 9i log 92

Mq Me Rq Rq Lq Lq cm/s2 cm/s2

V871 Aql 15500 15500 4.80 4.90 3.18 3.32 2.72 2.76 4.114 4.085

V889 Aql 10500 10120 2.49 2.42 1.97 1.84 1.58 1.46 4.245 4.275

V645 Aur 12000 11400 3.17 2.92 2.31 2.19 2.00 1.86 4.211 4.221

OO Cam 12000 9530 2.74 2.39 1.77 2.10 1.74 1.51 4.377 4.173

V347 Cam 7886 7950 1.97 1.55 2.08 1.26 1.18 0.75 4.095 4.426

V361 Cam 14852 11099 5.66 2.69 4.81 1.95 3.00 1.75 3.826 4.286

V409 Cam 7216 7399 1.74 2.00 1.94 2.43 0.96 1.20 4.104 3.967

V422 Cam 6453 5983 1.23 0.99 1.21 0.92 0.36 -0.017 4.359 4.510

V498 Cam 6198 6117 1.51 1.32 1.97 1.56 0.71 0.49 4.025 4.172

KX Cnc 6048 5994 1.138 1.131 1.057 1.043 0.127 0.099 4.446 4.455

DR CMi 8200 8200 2.44 2.57 2.93 3.26 1.55 1.64 3.892 3.822

V1066 Cas 9600 10000 3.80 2.64 5.21 2.29 2.32 1.68 3.584 4.137

V1110 Cas 6820 6725 1.74 1.63 2.16 1.95 0.96 0.84 4.009 4.070

V1141 Cas 21300 19000 7.59 6.39 4.21 3.39 3.51 3.22 4.069 4.184

V1162 Cas 9530 9140 2.17 2.06 1.72 1.69 1.34 1.25 4.301 4.295

V750 Cep 11240 8580 3.11 1.86 2.55 1.56 1.97 1.07 4.117 4.321

V850 Cep 8625 8454 2.45 2.21 2.68 2.27 1.55 1.37 3.971 4.071

V880 Cep 10200 9261 2.83 2.14 2.56 1.77 1.80 1.32 4.074 4.271

V897 Cep 5751 5819 1.41 1.50 2.01 2.22 0.60 0.71 3.981 3.921

V898 Cep 11376 11678 2.90 3.07 2.16 2.29 1.84 1.94 4.232 4.203

V921 Cep 7300 7650 2.36 2.22 3.47 2.80 1.49 1.38 3.730 3.890

V922 Cep 13197 13437 3.08 3.11 1.80 1.77 1.95 1.96 4.413 4.432

V944 Cep 12370 10200 5.16 3.13 5.76 3.13 2.84 1.98 3.629 3.943

V1326 Cyg 11238 11376 2.75 3.11 2.00 2.49 1.76 1.97 4.277 4.139

V2544 Cyg 21800 20500 7.5 6.3 3.90 3.13 3.49 3.19 4.130 4.247

NS Dra 5620 4767 1.42 2.00 2.12 5.83 0.61 1.20 3.935 3.206

V432 Dra 6587 6518 1.21 1.20 1.12 1.12 0.33 0.31 4.418 4.414

UW Hya 6158 6117 1.49 1.48 1.95 1.96 0.69 0.68 4.029 4.025

IL Lac 12008 11099 3.01 2.66 2.09 1.90 1.91 1.69 4.276 4.303

V340 Lac 10195 10011 2.32 2.34 1.72 1.82 1.46 1.47 4.333 4.288

RU Mon 12080 11736 3.21 3.07 2.35 2.35 2.02 1.95 4.202 4.183

V501 Mon 7319 6867 1.655 1.465 1.92 1.53 0.98 0.67 4.088 4.236

V521 Mon 14384 13867 4.77 3.58 3.65 2.21 2.71 2.21 3.992 4.303

V2778 Ori 12000 10000 3.71 2.60 3.17 2.24 2.27 1.65 4.006 4.152

V751 Per 11750 10500 3.10 2.49 2.31 1.87 1.96 1.58 4.201 4.292

V966 Per 15240 15240 4.86 3.43 3.32 2.74 2.74 2.58 4.082 4.096

CR Sct 16218 16218 5.30 4.97 3.54 3.12 2.89 2.78 4.063 4.147

V370 Sge 6964 7113 1.91 1.75 2.51 2.01 1.13 0.97 3.918 4.073

EQ Vul 14093 15488 6.34 6.35 6.69 5.56 3.20 3.20 3.588 3.750

V491 Vul 35900 34300 14.7 13.4 5.55 5.06 4.66 4.50 4.118 4.157

4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6

log T

Figure 2. Dependence of luminosity on temperature (Hertzsprung-Russell diagram) according to Table 3. Blue circles are the primary components, red circles are the secondary ones. Green curve is the zero age main sequence, ZAMS.

The obtained rates of apsidal rotation, both theoretical and observed, cannot yet be considered final. In some systems, the eccentricity turned out to be insignificant and therefore determined with a large error. This significantly degrades the accuracy of the calculated value. In other systems, the longitude of periastron is close to 0° or 180°, which makes determining the observed value extremely difficult. V751 Per is a prime example of this case. Its periastron longitude is u = 177°, and small errors in determining the periods led to a clearly erroneous overestimation of the rate of apsidal rotation, see Table 2.

However, for some stars both values were determined with good accuracy. For V889 Aql, V2544 Cyg, V501 Mon, V521 Mon, V966 Per, CR Sct, V370 Sge, V491 Vul, the observations do not contradict theory.

For V645 Aur and V944 Cep, apsidal rotation is slowed down and the reason may be lacking synchronism between rotational and orbital moments, just as we discovered earlier in the systems EQ Boo (Volkov et al., 2011) and V490 Sct (Volkov and Kravtsova, 2022). In V1103 Cas (Volkov and Kravtsova, 2022), the lack of synchronism accelerates the apsidal motion.

We pay special attention to the fact that the rate of apsidal rotation for CR Sct given in Wolf et al. (2004), uobs = 0.082(8)°/year, is 7 times lower than ours and is definitely wrong. The error is probably due to the use of photographic observations, which are not accurate enough. In addition, the orbital eccentricity turned out to be two times lower than Wolf et al. suggest, which leads to an underestimate of the apsidal rotation rate by

them.

The original observations in the V band on which this work is based are presented in the form of an electronic appendix to the html version of this paper, which contains headings with the name of the star and two columns: the heliocentric Julian date and the brightness of the star normalized to a constant level between minima. To get the real V magnitude of the star, one should add this value to the constant level between minima which is given in the second column of Table 1.

Original observations of some stars whose studies have already been published are added to this Table: BW Aqr (Volkov and Chochol, 2014), V1176 Cas (Bagaev et al., 2018), V798 Cep (Volkov et al., 2017), V541 Cyg (Volkov and Khaliullin, 1999), V2647 Cyg (Kravtsova et al., 2019), DI Her (Volkov, 2005), V577 Oph (Volkov and Volkova, 2010).

Currently, we continue observations of the objects, and the data presented in the Tables 1, 2, 3 may be refined over time.

Acknowledgements

This study has made use of the SIMBAD database of the Strasbourg Astronomical Data Center (France).

I express my sincere gratitude to A.S. Volkova for her help in processing the data and for valuable discussion.

References:

Bagaev, L. A., Volkov, I. M., & Nikolenko, I. V. 2018, Astron. Rep., 62, 664 Barabanov, S. I., Potanin, S. A., Savvin, A. D., Volkov, I. M., Kravtsova, A. S., &

Nikolenko, I. V. 2021, INASAN Science Reports, 6, 92 Burlak, M. A., Volkov, I. M., & Ikonnikova N. P. 2018, Contributions of the Astronomical

Observatory Skalnate Pleso, 48, 536 Flower, P. J. 1996, Astrophys. J., 469, 355

Green, G. M., Schlafly, E. F., Finkbeiner, D. P., Rix, H. -W., et al. 2015, Astrophys. J., 810, 25

Khaliullin, Kh. F. 1985, Astrophys. J., 299, 668

Khaliullina, A. I. & Khaliullin, Kh. F. 1984, Sov. Astron., 28, 228

Kornilov, V. G, Volkov, I. M., Zakharov, A. I., Kozyreva, V. S., Kornilova, L. N. et al.

1991, Tr. Gos. Astron. Inst. Sternb., 63, 4 Kravtsova, A. S., Volkov, I. M., & Chochol, D., 2019, Astron. Rep., 63, 495 Moffett, T. J. & Barnes, T. G. III 1979, Astron. J., 84, 627

Otero, S. A., Wils, P., Hoogeveen, G., & Dubovsky, P. A. 2006, Inform. Bull. Var. Stars, No. 5681

Popper, D. M. 1980, Ann. Rev. Astron. & Astrophys., 18, 115 Volkov, I. M. 2005, ASP Conference Series, 335, 351 Volkov, I. M. 2023, Astron. Rep., 67, 320

Volkov, I. M. & Chochol, D. 2014, Contributions of the Astronomical Observatory Skalnate Pleso, 43, 419

Volkov, I. M., Chochol, D., & Kravtsova, A. S. 2017, Astron. Rep., 61, 440

Volkov, I. M., Chochol, D., Grygar, J., Masek, M., & Jurysek, J. 2017, Contributions of

the Astronomical Observatory Skalnate Pleso, 47, 29 Volkov, I. M. & Khaliullin, Kh. F. 1999, Inform. Bull. Var. Stars, No. 4680 Volkov, I. M. & Kravtsova, A. S. 2022, Astron. J., 164, 194 Volkov, I. M. & Kravtsova, A. S. 2022, Astron. Rep., 99, 470

Volkov, I. M., Kravtsova, A. S., & Chochol, D. 2021, Astron. Rep, 65, 184 Volkov, I. M. & Volkova, N. S. 2007, Astron. Astrophys. Trans., 26, No. 1, 129 Volkov, I. M. & Volkova, N. S. 2009, A.stron. Rep., 53, 136 Volkov, I. M. 2010, ASP Conference Senes, 435, 323 Volkov, I. M., Volkova, N. S., & Chochol, D., 2010, Astron. Rep, 54, 418 Volkov, I. M., Volkova, N. S., Nikolenko, I. V., & Chochol, D. 2011, Astron. Rep., 55, 824

Wolf, M., Harmanec, P., Sarounova, L., Zejda, M., BozyC, H., Hornoch, K., Kozyreva, V. S., Hynek, T., & Kral, L. 2004, Astron. & Astrophys., 420, 619

i Надоели баннеры? Вы всегда можете отключить рекламу.